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Abstract. A novel method, PHYNAv, is introduced to reconstruct the evolutionary
relationship among contemporary species based on their genetic data. The key idea
is the definition of so-called minimal k-distance subsets which has fewer sequences
but contains most relevant phylogenetic information from the whole dataset. For
this reduced subset the subtree is created faster and serves as a scaffold to construct
the full tree. Because many minimal subsets exist the procedure is repeated several
times and the best tree with respect to some optimality criterion is considered as
the inferred phylogenetic tree. PHYNAV gives encouraging results compared to other
programs on both simulated and real datasets.

A program to reconstruct phylogenetic trees based on DNA or amino acid based
is available (http://www.bi.uni-duesseldorf.de/software/phynav/).

1 Introduction

One objective in phylogenetic analysis is the reconstruction of the evolution-
ary relationship among contemporary species based on their genetic informa-
tion. The relationship is described by an unrooted bifurcating tree on which
the leaves represent contemporary species and the internal nodes represent
speciation events. The total number of unrooted bifurcating trees with n > 3
leaves is [ [}, (2i — 5) (cf. Felsenstein (1978)). This number increases rapidly
with n. For n = 55 sequences the number of trees exceeds the estimate of
108! atoms in the known universe.

Commonly used tree reconstruction methods are classified into three groups:
(1) Minimum evolution methods (e.g., Rzhetsky and Nei (1993)), (2) max-
imum parsimony methods (e.g., Fitch (1971)), and (3) maximum likelihood
methods (e.g., Felsenstein (1981)). Among these the maximum likelihood
(ML) methods are statistically well founded and tend to give better results.
An overview is given in Swofford et al. (1996) and Felsenstein (2003).

Here, we propose a new heuristic tree search strategy, which reduces the
computational burden. Details how to construct the subsets are given in sec-
tion 2. In section 3 we will describe PHYNAV algorithm and how it elucidates
the landscape of possible optimal trees. The algorithm is then applied to
simulated as well as biological data (Section 4). Finally the results as well as
some possible changes and improvements are discussed.
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Fig. 1. An unrooted bifurcating tree of 6 species

2 Minimal k-distance subsets

First, we introduce the concept of k-distance representatives. A sequence s is
said to be a k-distance representative for a sequence s’ in a tree T' if and only
if their topological distance d(s,s’) in T, that is the number of branches on
the path from s to s’, is smaller or equal to k > 0. The smaller the value of
k is the better a sequence s represents sequence s’, and vice versa.

The k-distance representative sequence concept is now used to introduce
minimal k-distance subsets. A subset Si of sequences is called a minimal k-
distance subset of an n-sequence set S iff the following two conditions hold:

1. For each sequence s € S, there exists a sequence s’ € Sy such that the
sequence s’ is a k-distance representative for the sequence s.

2. If we remove any sequence s’ from Sy, Sj will violate the first condition.
That means, the subset cannot be reduced any further.

The idea behind minimal k-distance subsets is that the phylogenetic infor-
mation in the sequence subset Sj represents phylogenetic information from
the whole dataset. £ = 3 is a good choice according to our experience. This
value retains enough phylogenetic information and connects distances that
are far away.

A sequence s € S, is then called a remaining sequence. The set Sy, := S\ Sk
of all such sequences, which remain to be added to Sj to obtain the full set
S, is called remaining set.

Since |Sk| < |S], the subtree Ty, from subset Sy, can usually be constructed
in less time than the full tree. This subtree is used as a scaffold to build a
full tree containing all sequences by adding all sequences r € Sj.

For example, the sequences A and B in the tree in Figure 1 are 2-
distance representative of each other, as are E and F. The sequence sub-
sets {A,C,D,E}, {A,C,D,F}, {B,C,D,E} and {B,C, D, F} are minimal
2-distance representative subsets of the full set {A, B,C, D, E, F'}.
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3 The PhyNav algorithm

The Navigator algorithm is a three-step procedure: (1) the Initial step, (2) the
Navigator step, and (3) the Disembarking step. We can use the algorithm with
any objective function, e.g. maximum parsimony, maximum likelihood, to
create a list of possible optimal trees. According to this objective function the
best tree found is taken as the inferred phylogeny. In the PHYNAV program
we use the maximum likelihood principle.

The Initial step employs some fast tree reconstruction method to create
an initial tree. In particular, PHYNAV uses the BIONJ algorithm (Gascuel
(1997)) with the pairwise evolutionary distances and a fast nearest neighbor
interchange (NNI) operation as described by Guindon and Gascuel (2003)
to create the initial tree. This tree is then called the current best tree and
denoted as Thest- Thest 18 used to construct the k-distance subsets.

Next, the Navigator step finds a minimal k-distance subset Sy and con-
structs the corresponding subtree Tj. Note, that there exist many minimal
k-distance subsets. One Sy, can be determined in time of O(n?) (details are
left out due to limited space). From the minimal k-distance subset Sy, the cor-
responding subtree T}, could be created by several tree reconstruction meth-
ods. PHYNAV used the subtree Ty,p, of Thest induced by the leaves in Si. This
subtree is subsequently optimized using NNI operations.

The last step, the Disembarking step, constructs the whole tree T' based
on the scaffold T}, using the k-distance information. PHYNAV applies a simple
method to insert the remaining sequences into the scaffold tree as follows.
First we assign T by Tj. Each remaining sequence r € S, is inserted into an
external branch e of T such that the corresponding leaf s, adjacent to e is a
k-distance representative for r. If there are more than one external branches
possible one is selected randomly. To compensate for incorrect placements the
full tree is optimized using again the fast NNI operation mentioned above.
We replace the Tyest by T if T has a better score.

It cannot be guaranteed that T} determined in the Navigator step is the
optimal tree for S, due to the use of heuristics. Even if T} is the best tree it
does not guarantee that the tree T will be the optimal full tree. Hence, the
Navigator and Disembarking steps are repeated several times. The number
of repetitions can be adjusted. The best tree Tiest is considered the final
phylogenetic n-tree.

4 The efficiency of PhyNav

To measure the accuracy and the time-efficiency of PHYNAV we reconstructed
phylogenetic trees from simulated as well as biological datasets. The results
are compared to the results of other programs, in particular, Weighbor (Bruno
et al. (2000); version 1.2) and PHYML (Guindon and Gascuel (2003); version
2.1).
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Computing times were measured on a Linux PC Cluster with 2.0 GHz
CPU and 512MB RAM.

4.1 Simulated datasets

Analysis

To evaluate the accuracy we performed simulations. To simulate realistic
datasets we performed the simulations on a tree topology reconstructed from
a real dataset. To that end an elongation factor (EF-la) dataset with 43
species was used. The dataset as well as the tree was obtained from TreeBase
(http://www.treebase.org, study accession number S606, matrix accession
number M932). The branch lengths of the tree topology were inferred using
the TREE-PUZZLE package (Strimmer and von Haeseler (1996), Schmidt
et al. (2002); version 5.1).

Based on that tree topology datasets were simulated using Seq-Gen (Ram-
baut and Grassly (1997); version 1.2.6) assuming the Kimura 2-parameter
model with an transition:transversion ratio of 2.0 (Kimura (1980)). 1,000
datasets each were simulated with sequence lengths of 700 and 1000 bp.

The trees for simulated datasets were reconstructed using PHYNAv, Weigh-
bor (Bruno et al. (2000); version 1.2) and PHYML (Guindon and Gascuel
(2003); version 2.1).

All programs were run with default options. The evolutionary model and
its parameters were set to the simulation parameters. The PHYNAV options
were set to 5 repetitions and k£ = 3.

The results of the tree reconstructions were compared using two different
methods. First the percentage of correctly reconstructed tree topologies was
derived for each program and sequence length. To measure the variability of
the results for each program, the Robinson-Foulds distance (Robinson and
Foulds (1981)) was computed from each tree to the ’true tree’ and the aver-
age was taken for each program and sequence length. The Robinson-Foulds
distance counts the number of splits (bipartitions) in the two trees, which
occur in only one of the trees. If the trees are identical their distance is zero.

Results for the simulated datasets

Tables 2(a) and 2(b) display the results for PHYNAv, PHYML, and Weigh-
bor. Both tables show that the faster Weighbor program (Table 2(c)) is
out-performed by both PHYML and PHYNAv. PHYML and PHYNAV per-
form similarly well, both in the percentage of correctly reconstructed trees as
well as their average Robinson-Foulds distance to the ’true tree’. However,
PHYNAV shows slightly better values for all analyses, and hence gives better
results.
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Table 1. Results for the simulated datasets: (a) percentage of correctly recon-
structed trees, (b) average Robinson-Foulds distance between the ’true tree’ and
the reconstructed trees, and (c) average runtime of tree reconstruction.

Weighbor| PHYML|PHYNAV
700 bp| 2.4 12.3 13.1
1000 bp| 9.6 33.7 33.9

(a) Percentage of correct trees.

Weighbor| PHYML|PuYNAav
700 bp| 7.57 4.09 3.96
1000 bp| 4.62 2.11 2.07

(b) Robinson-Foulds distance.

Weighbor| PHYML |PHYNAV
700 bp| 3.0s 6.9s 51.8s
1000 bp| 3.6s 9.0s 65.8s

(c) Average runtime.

4.2 Biological datasets

Analysis

The PuYNAvV algorithm was applied to large biological datasets to test
its efficiency on real datasets. Three datasets have been obtained from the
PANDIT database (http://www.ebi.ac.uk/goldman-srv/pandit/; Whe-
lan et al. (2003)). The first dataset consists of 76 Glyceraldehyde 3-phosphate
dehydrogenase sequences with an alignment length of 633 bp (PF00044), the
second of 105 sequences from the ATP synthase alpha/beta family (1821 bp,
PF00006), and the last of 193 sequences with Calporin homology with an
alignment of 465 bp (PF00307).

Since the true tree is usually not known for real datasets, the Robinson-
Foulds distance cannot be used to measure the efficiency of algorithms. There-
fore the likelihood value of the reconstructed trees is used to compare the
methods.

Since Weighbor does not use likelihoods we only compare PHYML and
PHYNAV from the methods above. Note, that Weighbor already was out-
performed in the simulation study (cf. 4.1). Additionally we wanted to use
METAPIGA, another method for large datasets based on a genetic algorithm
(Lemmon and Milinkovitch (2002)). Unfortunately the program crashed on
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Table 2. Results from the biological datasets of 76 Glyceraldehyde 3-phosphate
dehydrogenase sequences, of ATP synthase alpha/beta (105 segs.), and of 193 Cal-
porin homologs: (a) Log-likelihood values of the best reconstructed trees and (b)
Runtimes of tree reconstruction consumed by the different methods. The PHYNAvV
column presents the runtime of a single repetition.

sequences| length| PHYML|PHYNAV
76| 633 bp| -32133 | -32094
1051821 bp| -88975 | -88632
193| 465 bp| -64919 | -64794

(a) Log-likelihood values.

sequences| length|PHYML PHYNav
runtime|repetitions|(single repetition)
76| 633 bp 40s| 2529s 70 36.1s
105|1821 bp 117s| 14413s 100 144.1s
193| 465 bp 101s| 22306s 200 111.5s

(b) Runtimes.

all three datasets. Thus, only PHYML and PHYNAV were used for compari-
son.

Results for the biological datasets

As explained above we use the likelihood values of the reconstructed trees
to compare the efficiency of the two programs. According to the maximum
likelihood framework (cf. for example Felsenstein (1981)) the tree with the
higher likelihood value represents the more likely tree.

The log-likelihood values are given in Table 3(a). These results show that
PHYNAV always find a tree with a higher likelihood. The increase of the
likelihood ranged from 39 up to 343 orders of magnitude.

However, as Table 3(b) shows, the price to pay for better likelihood trees
is an increase in computing time. Each single repetition in the algorithm has
a time consumption comparable to the one run of PHYML.

5 Discussion and Conclusion

In this paper, a new search strategy to find the optimal large phylogenies
is proposed. Starting from an initial tree the PHYNAV method uses easy
heuristics to reduce the number of sequences, reconstruct scaffold trees, and
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adding again the remaining sequences. During these steps the constructed
trees were optimized using fast NNI operations.

The suggested method produced better results on all dataset compared to
Weighbor and PHYML, two tree building programs to analyze large datasets.
The tradeoft for better accuracy is of course the runtime. While Weighbor
outperformed PHYML and PHYNAV with respected to the runtime on the
simulated datasets, PHYML is 7.5-fold faster than PHYNAv. However, spend-
ing more time might be well acceptable, because the quality of the results
increases.

On the biological datasets PHYNAV showed much longer runtimes com-
pared to PHYML. Nevertheless, the increase of the likelihoods ranging from
39 up to 343 orders of magnitude might well justify that this effort is worth-
while, since it is still far from the time consumptions demanded by classical
ML methods like DNAML (Felsenstein (1993)).

The mechanism to add the remaining sequences of Sy to T} cannot be
expected to give the most accurate results. However, our way is simple but
performs efficiently, especially since the NNI operations seem to well recover
unfortunate placements during the construction of the full trees 7. Addi-
tionally, it might be worth trying other algorithms like Quartet Puzzling of
Strimmer and von Haeseler (1996) to add the remaining sequences.
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