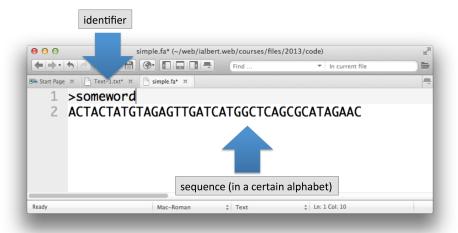
Bioinformatics Analysis Tools for NGS Data

Sequence representation and data retrieval

Philipp Rescheneder, Moritz Smolka April 27, 2016

Center for Integrative Bioinformatics Vienna Max F. Perutz Laboratories



► One of the most "dangerously" simple formats

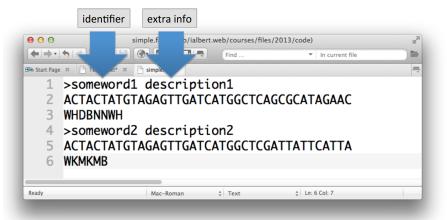
- One of the most "dangerously" simple formats
- Seemingly trivial but it is also "under-specified", there are many "custom" extensions

- One of the most "dangerously" simple formats
- Seemingly trivial but it is also "under-specified", there are many "custom" extensions
- ► Tools may make assumptions on the structure of a FASTA file

- ► One of the most "dangerously" simple formats
- Seemingly trivial but it is also "under-specified", there are many "custom" extensions
- ► Tools may make assumptions on the structure of a FASTA file
- Surprising number of problems can arise

The alphabet is similar to a specification: we need to know what are the valid characters to describe the sequence

 Nucleotide sequences: International Union of Pure and Applied Chemistry (IUPAC) codes


	Symbol	Meaning	Mnemonic
DNA Bases	G	Guanine	Guanine
	Т	Thymine	Thymine
	Α	Adenine	Adenine
	С	Cytosine	Cytosine
Ambiguity Characters	R	G + A	pu <u>R</u> ine
	Y	T + C	p <u>Y</u> rimidine
	S	G+C	Strong interactions (3 H bonds)
	W	T + A	Weak interactions (2 H bonds)
	К	G + T	Keto
	М	A + C	a <u>M</u> ino
	D	G + T + A	Not-C (D follows C in alphabet)
	н	T + A + C	Not-G (H follows G)
	В	G + T +C	Not-A (<u>B</u> follows A)
	V	G + A + C	Not-T or U (V follows U)
	N	G + A + T + C	aNy

- Nucleotide sequences: International Union of Pure and Applied Chemistry (IUPAC) codes
- ▶ Peptide sequence: amino acid one letter code

	Symbol	Meaning	Mnemonic
DNA Bases	G	Guanine	Guanine
	Т	Thymine	Thymine
	Α	Adenine	Adenine
	С	Cytosine	Cytosine
Ambiguity Characters	R	G+A	pu <u>R</u> ine
	Y	T+C	p <u>Y</u> rimidine
	S	G+C	Strong interactions (3 H bonds)
	W	T + A	Weak interactions (2 H bonds)
	к	G+T	Keto
	М	A+C	a <u>M</u> ino
	D	G + T + A	Not-C (D follows C in alphabet)
	н	T + A + C	Not-G (H follows G)
	В	G + T +C	Not-A (<u>B</u> follows A)
	V	G + A + C	Not-T or U (V follows U)
	N	G + A + T + C	aNy

SYM	4BOL	
1-Letter	3-Letter	AMINO ACID
Y	Tyr	Tyrosine
G	Gly	Glycine
F	Phe	Phenylalanine
M	Met	Methionine
A	Ala	Alanine
S	Ser	Serine
I	Ile	Isoleucine
L	Leu	Leucine
Т	Thr	Threonine
V	Val	Valine
P	Pro	proline
K	Lys	Lysine
H	His	Histidine
Q	Gln	Glutamine
E	Glu	glutamic acid
Z	Glx	Glu and/or Gln
W	Trp	Tryptophan
R	Arg	Arginine
D	Asp	aspartic acid
N	Asn	asparagine
B	Asx	Asn and/or Asp
C	Cys	Cysteine
X	Xaa	Unknown or other

Multi record FASTA

It is not clear what the sequence above contains nucleic acids or aminoacids

(feels like a nucleic acids because of having so many ACTG both those are also valid amino acids)

More considerations

- Many tools will embed extra information into either the identifier or the "free zone" of the description section
- ► See the FASTA format wiki page
- Accession: unique (often numerical) identifier for each sequence that is entered into the database
- Locus an identifier that represents a position in the genome, multiple accessions may point to the same locus
- ► Loci may have versions like: ABCD.1 ABCD.2

GenBank	gb accession locus		
EMBL Data Library	emb accession locus		
DDBJ, DNA Database of Japan	dbj <i>accession</i> <i>locus</i>		
NBRF PIR	pir entry		
Protein Research Foundation	prf name		
SWISS-PROT	sp accession entry name		
Brookhaven Protein Data Bank	pdb entry chain		
Patents	pat country number		
GenInfo Backbone Id	bbs number		
General database identifier	gnl database identifier		
NCBI Reference Sequence	ref accession locus		
Local Sequence identifier	lcl identifier		

- ► First step of any sequence processing step
- How many sequences do we have
- ► Are sequences all on a single line or over multiple lines
- ► What is the identifier, what is embedded int the description
- ► We used almost exclusively for reference genomes

- ► The sequences are measurements
- There needs to be a way to associate quality measures to each base
- ► FASTQ: .fq, .fastq (FASTA with qualities)

Structure of a FASTQ file

🔊 data.fastq ((C:\cygwin\hon	ne\ialbert\	docs\web\b	pioinfo-c	ourses\sou	rce\597E)-2011\da	wn\lecture-3) - Komo	do Edit 5.2		2 X	
<u>F</u> ile <u>E</u> dit <u>(</u>	⊆ode <u>V</u> iew	Project	Toolbo <u>x</u>	Tools	<u>W</u> indow	<u>H</u> elp						
Start Page	data.fastq	×										•
826085	5 @HWI-	ST40	7_110	218_	0088	B81	H3VA	3XX:1:1:28	19:22968#	0/1		^
826086	5 TGACO	ATTC	AAGTA	стте	GTAG	CAGA	TTCG	FATACGACAT	CGCAGCCT			
826087	7 +											Ξ
826088 GFGGGGDGEBGGAFGFFFCGFFFF>FFFFGGGEDCEGFDEEC>EE<							Ŧ					
4		1	11								Þ	
Ready			_		4	; ; (CP1252	Ln: 4 Col: 27	Sel: 1 ch, 1 ln	Text	\$.11

Four lines per FASTQ record

- 1. @ indicates the sequence identifier
- 2. The sequence content of the read
- 3. + optionally repeat the sequence id (often left empty)
- 4. Sequence quality string

Paper: The Sanger FASTQ file format for sequences with quality scores, and the Solexa/Illumina FASTQ variants - Nucl. Acids Res. (2010) 38 (6): 1767-1771.

Encodings

An encoding is a transformation from one representation to another

- ▶ The information is not changed
- ► Example: ASCII code

Encodings

An encoding is a transformation from one representation to another

- ▶ The information is not changed
- ► Example: ASCII code

Start Pa		
1	# the encoding	
2	ABCa	
3		
4	<pre># is equivalent to writing</pre>	
	65 66 67 97	
-	05 00 01 51	
6		
		_

One character \rightarrow one byte space ABCa = 4 bytes long 65 66 67 97 = 11 bytes long

Good: three characters are turned into one, saves space **Bad:** not readable, hinders understanding

- A quality score is a number that usually has limits, a low (say 0) to a high (say 40)
- ► A quality score represents an error probability
- ► It characterizes a single step of the process and NOT the entire experimental procedure
- Quality scores are used to represent base calling accuracy, alignment accuracy and other probabilities

► The reported quality indicates the probability of an error

 $Q = -10 \log_{10}(e)$

where e is the probability of a base call being wrong.

> The reported quality indicates the probability of an error

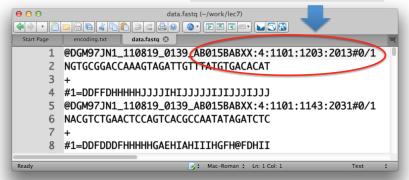
 $Q = -10 \log_{10}(e)$

where *e* is the probability of a base call being wrong.

- ▶ Q10: 1 in 10 incorrectly called bases (90% accuracy)
- Q20: 1 in 100 (99% accuracy)
- Q30: 1 in 1000 (99.9 % accuracy)

- Illumina used to switch around the encoding every once in a while
- ► Finally they settled on the Sanger encoding/Phred quality representation. Since 2011 or so.
- There are plenty of datasets/tools out there that may use different encodings!

- ▶ Quality value range between 0 and 93
- ► Start the scale at character 33
- ► End the scale at character 33 + 93 = 126


Currently most instruments only produce qualities in the range of 0 to 40

- ► Obsolete but still often observed in the wild
- ▶ Quality range between 0 to 62
- ▶ Start scale at character 64
- ► End scale at character 64 + 62 = 126

FASTQ encoding summary

	xxx	******	*****	*****	******	
		IIIIII	IIIIIIIIIIIII	IIIIIIIIIIIIIIII		
		3 3333	133333333333		1333333333	
TATATATATATATATA			LILL.			
					`abcdefghijklmnopg	
: #98α ()^+,/U	123430/09:;~-	->readcobi	GHIJKLMNOF	QRSIOVWAI2[\]_	_ abcdergirjkrimopd	ISCUVWXY2{ }-
33	59	64	73		104	126
0		.31	40			
	-5		9			
				•••••		
0.2		.31	41			
S - Sanger	Phred+33, r	aw reads	typically	(0, 40)		
X - Solexa	Solexa+64, r	aw reads	typically	(-5, 40)		
I - Illumina 1.3+	Phred+64	aw reads	typically	(0. 40)		
J - Illumina 1.5+						
			gment Quali	ty Control Indi	Leator (bold)	
(Note: See di						
L - Illumina 1.8+	Phred+33, r	aw reads	typically	(0, 41)		

Illumina instrumentation specific information: lane, tile, spot

De-facto standard for producing sequencing reads. The vast majority of current tools expect this format.

Storing data in SRA removes the extra header information in the FASTQ record! That is unfortunate! Some information is now lost and available only to the original authors!

- 2. Run id: 96
- 3. Flowcell id: HONP9ADXX (unique for every flowcell)
- 4. Flowcell lane: 2
- 5. Tile number within the flowcell: 1115
- 6. X-coordinate of the cluster in the tile: 13393
- 7. Y-coordinate of the cluster in the tile: 59201

More fields are may also be present (not shown above):

- 1. Mate pair 1 or 2
- 2. Flag: Y or N
- ... control bits, index sequences, usually defined in the Illumina manuals

▶ There is no standard way to save paired end data in FASTQ files

- ► There is no standard way to save paired end data in FASTQ files
- ► Use two files
 - Both files must contain the same number of reads in the same order
 - reads_1.fq: Read1/1, Read2/1, Read3/1
 - ▶ reads_2.fq: Read1/2, Read2/2, Read3/2

- ► There is no standard way to save paired end data in FASTQ files
- ► Use two files
 - Both files must contain the same number of reads in the same order
 - ▶ reads_1.fq: Read1/1, Read2/1, Read3/1
 - ► reads_2.fq: Read1/2, Read2/2, Read3/2
- ► Use one file:
 - Mates must be next to each other
 - ▶ reads.fq: Read1/1, Read1/2, Read2/1, Read2/2, ...

- ► There is no standard way to save paired end data in FASTQ files
- ► Use two files
 - Both files must contain the same number of reads in the same order
 - ▶ reads_1.fq: Read1/1, Read2/1, Read3/1
 - ► reads_2.fq: Read1/2, Read2/2, Read3/2
- ► Use one file:
 - Mates must be next to each other
 - ▶ reads.fq: Read1/1, Read1/2, Read2/1, Read2/2, ...
- Most programs don't check the read names to find a matching pair

- ► There is no standard way to save paired end data in FASTQ files
- ► Use two files
 - Both files must contain the same number of reads in the same order
 - ▶ reads_1.fq: Read1/1, Read2/1, Read3/1
 - ► reads_2.fq: Read1/2, Read2/2, Read3/2
- ► Use one file:
 - Mates must be next to each other
 - ▶ reads.fq: Read1/1, Read1/2, Read2/1, Read2/2, ...
- Most programs don't check the read names to find a matching pair
- Simple to convert. You just have to know what the program you are using expects

- ► There is no standard way to save paired end data in FASTQ files
- ► Use two files
 - Both files must contain the same number of reads in the same order
 - ▶ reads_1.fq: Read1/1, Read2/1, Read3/1
 - ► reads_2.fq: Read1/2, Read2/2, Read3/2
- ► Use one file:
 - Mates must be next to each other
 - ▶ reads.fq: Read1/1, Read1/2, Read2/1, Read2/2, ...
- Most programs don't check the read names to find a matching pair
- Simple to convert. You just have to know what the program you are using expects
- When working with paired FASTQ files, do simple sanity checks (e.g. count the number of reads in both files)

	How To 🕑		iua1@psu.edu My NCBI Sign Out
SRA	SRA	Advanced	Search
		Advanced	Help
G AT	GA	SRA SRA	
TTG		community to enhance reproducibi	ikes biological sequence data available to the research lity and allow for new discoveries by comparing data sets. The nd alignment information from high-throughput sequencing
A A A	200		S System®, Illumina Genome Analyzer®, Applied Biosystems e®. Complete Genomics®, and Pacific Biosciences SMRT®.
Getting Started	~A		
Getting Started Understanding and Using SF	RA	SOI iD System®. Helicos Heliscon	e®. Complete Genomics®, and Pacific Biosciences SMRT®.
	RA	SOI ID System®. Helicos Helicon Tools and Software	e® Complete Genomics® and Pacific Riosciences SMRT® Related Resources
Understanding and Using SF	RA	SOLID System® Helicos Helicos Tools and Software Download SRA Toolkit	e® Complete Genomics® and Pacific Riosciences SMRT® Related Resources dbGaP Home
Understanding and Using SF How to Submit	RA	SOLID System® Helizon Tools and Software Download SRA Toolkit SRA Toolkit Documentation	e® Complete Genomics® and Pacific Riosciences SMRT® Related Resources dbGaP Home Trace Archive Home

It is (partially) documented and "sort of logical" - but only "sort of"

NCBI BioProject: PRJN... (aka SRA study SRP...)

- the overall description of a single research initiative; a project will typically relate to multiple samples and datasets

NCBI BioSample: SAMN... (aka SRA Sample SRS...)

- a description of biological source material; each physically unique specimen should be registered as a single BioSample with a unique set of attributes

SRA Experiment: SRX ...

- a unique sequencing library for a specific sample

SRA Run: SRR...

This contains the data

- a manifest of data file(s) linked to a given sequencing library (experiment)

Full list of prefixes

Accession Prefix	Accession Name	Definition
SRA	SRA submission accession	The submission accession represents a virtual container that holds the <u>objects</u> represented by the other five accessions and is used to track the submission in the archive.
SRP	SRA study accession	A Study is an <u>object</u> that contains the project metadata describing a sequencing study or project. Imported from BioProject.
SRX	SRA experiment accession	An Experiment is an <u>object</u> that contains the metadata describing the library, platform selection, and processing parameters involved in a particular sequencing experiment.
SRR	SRA run accession	A Run is an object that contains actual sequencing data for a particular sequencing experiment. Experiments may contain many Runs depending on the number of sequencing instrument runs that were needed.
SRS	SRA sample accession	A Sample is an <u>object</u> that contains the metadata describing the physical sample upon which a sequencing experiment was performed. Imported from BioSample.
SRZ	SRA analysis accession	An analysis is an <u>object</u> that contains a sequence data analysis BAM file and the metadata describing the sequence analysis.

Visit BioProject for the data

BioProject	BioProject	\$	
		Limits Advanced	
<u>Display Settings:</u>			<u>Send to:</u> ⊙
Zaire ebolavirus			Accession: PRJNA257197 ID: 257197
Zaire ebolavirus Genon	ne sequencing		
Zaire ebolavirus sample	sequencing from	the 2014 outbreak in Sierra Le	eone, West Africa.
Project Data Type: Geno	ome sequencing		
Attributes: Scope: Multiis	olate; Material: G	enome; Capture: Whole; Meth	od type: Sequencing
Relevance: Medical			
Proiect Data:			

Resource Name	Number of Links
SEQUENCE DATA	
Nucleotide (Genomic RNA)	99
SRA Experiments	195
Protein Sequences	891
OTHER DATASETS	
BioSample	99

Gene expression Omnibus

- GEO was originally designed for microarray data, later augmented for high throughput sequencing
- ► The Gene Expression Omnibus also stores results from functional genomic experiments.
- ► Additional data is stored at GEO (e.g. read counts from RNA-Seq)
- But the raw data links back to SRA

Gene expression Omnibus

- GEO was originally designed for microarray data, later augmented for high throughput sequencing
- The Gene Expression Omnibus also stores results from functional genomic experiments.
- Additional data is stored at GEO (e.g. read counts from RNA-Seq)
- But the raw data links back to SRA

S NCBI Re	sources 🕑 How To 🖂			
GEO Home	Documentation <	Query & Browse 🔻	Email GEO	

Gene Expression Omnibus

GEO is a public functional genomics data repository supporting MIAME-compliant data submissions. Array- and sequence-based data are accepted. Tools are provided to help users query and download experiments and curated gene expression profiles.

Getting Started	Tools	
Overview	Search for Studies at GEO DataSets	
FAQ	Search for Gene Expression at GEO Profiles	
About GEO DataSets	Search GEO Documentation	

GEO example experiment

S NCBI	GEO				
> NCRI	Gene Expression Omnibus				
		ME Email GEO			
NCBI > GEO > Acces		ogged in Login (2			
Scope: Self \$	Format: HTML : Amount: Quick : GEO accession: GSE70149	60			
Series GSE70149	Query DataSets for GSE70149				
Status	Public on Jan 19, 2016				
Title	A-type lamins bind both hetero- and euchromatin, the latter being regulated by lamina-associated polypeptide 2alpha				
Organism	Mus musculus				
Experiment type	Expression profiling by high throughput sequencing Genome binding/occupancy profiling by high throughput sequencing				
Summary	This SuperSeries is composed of the SubSeries listed below.				
Overall design	Refer to individual Series				
Citation missing	Has this study been published? Please login to update or notify GEO.				
Submission date	Jun 22, 2015				
Last update date	Apr 21, 2016				
Contact name	Philipp Rescheneder				
E-mail	philipp.rescheneder@univie.ac.at				
Organization name					
Street address	Dr. Bohr Gasse 9				
City	Vienna				
ZIP/Postal code	1030				
Country	Austria				
Platforms (1)	GPL13112 Illumina HiSeq 2000 (Mus musculus)				
Samples (28)	GSM1717489 Input WT 12cyc DNA				
.≝ More	GSM1717490 Input KO 12cvc DNA				
	GSM1717491 LAP2alpha WT 12cvc ChIPSeg				
	composed of the following SubSeries:				
lamina	lamins bind both hetero- and euchromatin, the latter being regulated by associated polypeptide Zalpha [ChIP-Seq]				
	lamins bind both hetero- and euchromatin, the latter being regulated by -associated polypeptide 2alpha [gene expression]				
Relations					
BioProject	PRJNA287718				

Library strategy Library source	ChIP-Seq genomic			
	ChIP			
	Illumina HiSeg 2000			
	Adapters were clipped with cutadapt Reads were mapped to the mouse genome with bowtie2 version 2.1.0 using default parameters. Reads with a mapping quality below 20 were discarded. Reads stemming from PCR dupletes were removed and all ChiP read files using pictraf-tools ruling pictraf-tools draft control of the respective input sample Regions of enrithment (pasks) were identified EDD (parameters "b 11 – g 5 – f n CJ) version 1.2 and SICER version 1.1 (parameters "version size of 1,000kp, page size of 3,000kp and a false discovery rate of 0.01) Supplementary. (Res, formal, and cortext: BDD files containing peaks called			
	by EDD or SICER; BigWig files containing log ratios between histone modification ChIP-Seq read counts and respective Input read counts for 500bp bins			
	Jun 22, 2015 Jan 20, 2016			
Contact name	Philipp Rescheneder			
E-mail	philipp.rescheneder@univie.ac.at			
Organization name				
Street address City	Dr. Bohr Gasse 9 Vienna			
ZIP/Postal code	1030			
Country	Austria			
Platform ID	GPI 13112			
Series (2)	GSE70147 A -type lamins bind both hetero- and euchromatin, the latter being regulated by lamina-associated polypeptide 2alpha [ChIP- Seq]			
	GSE70149 A-type lamins bind both hetero- and euchromatin, the latter being regulated by lamina-associated polypeptide 2alpha			
Relations				
BioSample	SAMN03785446			
	Supplementary file	Size	Download	File
	10 17100 COCTOC UTSUUDIOL 2 201402000 20140200 https://www.usd.downwood.downwood.do			type/resource
GSM1717491_17468_17468_CCGTCC_H7E4VADXX_2_20140306B_20140306_bowtie2_filtered_dupremoved_downsampled W1000-G3000-FDR0.01-island.bed.gz		77.5 Kb	(rtp)(nttp)	BED
GSM1717491_17468_edd-b11-g5-fdr0.1_peaks.bed.gz		3.7 Kb	(ftp)(http)	BED
	as supplementary file			
Processed data pro	vided as supplementary file			

.

Getting data from SRA

- ► In sra format
- Special format to increase compression rate
- ► You will need to install a software called sra-toolkit
 - github.com/ncbi/sra-tools/wiki/Downloads
- Download manually and unzip with fastq-dump

\$ fastq-dump SRR501544.sra

▶ Get data directly with fastq-dump

\$ fastq-dump SRR501544

 When working with paired end data using the "-split-3" option is important