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Quality Control

» First step of any data analysis
» Always look at your data!
» Short sanity checks after each step



FastQC

» A quality control tool for high throughput sequence data.
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FastQC

» A quality control tool for high throughput sequence data.

» Platform independent
» Interface: Command line or GUI
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A quality control tool for high throughput sequence data.

Java

A suitable Java Runtime Environment
Requirements
The Picard BAM/SAM Libraries (included in download)
m Stable. Mature code, but feedback is appreciated.

Code Released Yes, under GPL v3 or later.

Download Now

www.bioinformatics.babraham.ac.uk/projects/fastqc/
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FastQC: QV distribution
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» Overview of the range of quality values across all bases at each
position of the reads
» The central red line is the median value
The yellow box represents the inter-quartile range (25-75
The upper and lower whiskers represent the 10
The blue line represents the mean quality
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» Check for low qualities at 5" or 3" end

» Low quality ends can be removed using tools like fast,
cutadapt, trimmomatic (see adapter removal)



FastQC: Mean distribution
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FastQC: Mean QV distribution
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» Mean base quality per read
» The higher the better
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» Mean base quality per read
» The higher the better
» Errors here usually indicate a general loss of quality within a run



FastQC: GC distribution
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» Measures the GC content across the whole length of each read
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» Measures the GC content across the whole length of each read

» In normal library: normal distribution with peak that
corresponds to the overall GC of the sequenced genome

» Sharp additional peaks results of specific contaminant (adapter

dimers), broader peaks may represent contamination with
different species
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DNA from other organisms in the lab
RNA-Seq: rRNA contamination (usually depleted)
Primer/Adapter dimers (probably caused by low amount of
DNA/RNA)
(Significantly) reduces the number of reads
Might cause problems during down stream analysis
» Cause false positives during SNP calling
» Severely alter expression values for RNA-Seq
» Reduce the number of "usable” reads to a point were only noise is
picked up by downstream analysis
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Most common contamination: human DNA
DNA from other organisms in the lab
RNA-Seq: rRNA contamination (usually depleted)
Primer/Adapter dimers (probably caused by low amount of
DNA/RNA)
» (Significantly) reduces the number of reads
» Might cause problems during down stream analysis
» Cause false positives during SNP calling
» Severely alter expression values for RNA-Seq
» Reduce the number of "usable” reads to a point were only noise is
picked up by downstream analysis
» Strategy to identify contaminations:
» Blast random subset of (unmapped) reads
» Tools: Kraken (https://cch.jhu.edu/software/kraken/)
» If contaminating organisms are known, add to downstream
analysis (e.g. remove while mapping)
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» Proportion of bases (A, T, G, C) per read position
» In random library, little difference between bases expected
» Causes:

» Overrepresented sequences (e.g. adapter dimers, rRNA)

» (Biased) random priming causes difference in first 12 bp (RNA-Seq)
» Adapter trimming can cause differences at the end of the reads



Example: Per base sequence content
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FastQC: Duplicates

» PCR artifacts vs. biological duplicates
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FastQC: Duplicates

PCR artifacts vs. biological duplicates

Most sequences should fall into far left bins in red and blue line
Datasets with high coverage will flatten the lines
Contaminations tend to produce spikes toward the right of the
plot (read line)
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FastQC: Duplicates

PCR artifacts vs. biological duplicates

Most sequences should fall into far left bins in red and blue line
Datasets with high coverage will flatten the lines
Contaminations tend to produce spikes toward the right of the
plot (read line)

» RNA-Seq: highly abundant transcripts might cause peaks in the
higher duplication bins
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Duplicates removal

» Can be done on raw reads using fastx (reduces mapping
runtime)
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Duplicates removal

» Can be done on raw reads using fastx (reduces mapping
runtime)

» Hard to decided whether duplicates were caused by PCR or
biological/experimental reasons

» Mapping all reads first and removing duplicates after manual
inspection is more sensible

» Picard-tools identifies duplicates after mapping

» For some data experiments removing duplicates can greatly
effect down stream analysis!



Example: sequence duplication

3 9 ap aELGE? a3 qEf qis aF ar2 961 qG3 QAT aRZ A3 aRa

1030218608 103,021,880 bp 103021900 1«
[ [ [

Nomal (Coverage)

Nomal (Reads)
Wihout dupicates. (Coverags)

Wihout duptcates. (Reads)

‘Sequence =] EGATGTAGTTTAGATTAGITIAATGEETTETE TTAAAAG TGGATGTGA TGTTGTTTATTAGTCGGT TTGTGATGAGAGA TTTG TAGAGTAGA TG TACAGGGGAGAG] D]
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Library complexity

» Library complexity refers to the number of unique fragments
present in a given library
» Complexity is affected by:
» Amount of starting material
» Amount of DNA lost during cleanups and size selection
» Amount of duplication introduced via PCR
» For most libraries that only need to be run across a few lanes,
the standard protocol provides libraries with ample complexity
» However, certain projects require very deep coverage from a
single sample - i.e. SNP discovery, mammalian assembly, cancer
resequencing
» When dozens of lanes are required, library complexity becomes
very important

14



Adapter contamination

» |f there are fragment smaller than the read length,

exact 36 nucleotides are ed (defined by your machine; here lllumina)
>

q

ACCTCCCGCCCCCTACCGCACCCCGATCGGAAGAGCTCGTATGCCGTCTTCTGCTTG

ARAACAAGCTAACATGACGATCGGAAGAGCTCGTATGCCGTCTTCTGCTTG

>

AACAGTCTGATTAAAARATGGGCCAAAGGATCGGAAGAGCTCGTATGCCGTCTTCTGCTTG




Adapter contamination

» Align adapters to reads

adapter: GATCGGAAGAGCTCGTATGCCGTCTTCTGCTTG
ACCTCCCGCCCCCTACCGCNCCCCGATCGG AG

adapter: GATCGGAAGAGCTCGTATGCCGTCTTCTGCTTG
AAACAAGCTAACATGACGATCG GCTCGTATG

ter: GATCGGARGAGCTCGTATGCCGTCTTCTGCTTG
AACAGTCTGATTAAAAAATGGG CAAAGGATCGGAA



Adapter contamination

» |f overlap large enough, remove adapter and everything that
follows

ACCTCCCGCCCCCTACCGCNCCCC
AAACAAGCTAACATGAC
AACAGTCTGATTAAAAAATGGGCCARAAG



Example: Adapter contamination
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Finding the correct adapter sequence

If adapters are not mentioned in the study summary:

» [llumina documentation
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Finding the correct adapter sequence

If adapters are not mentioned in the study summary:

» [llumina documentation

» FASTQC Overrepresented sequences

) Overrepresented sequences

Sequence Count Percentage Possible Source

AATAATTAGATCGGAAGAGCGTCGT GTAGGGAAAGAGTGTAGATCTCGGT 163544  0.9910955088727361 Illumina Single End PCR Primer 1 (100% over 43b

ANTTATTAGATI GGT T T TATCG 145733  0.8831587939303824 Illumina Paired End PCR Primer 2 (97% over 43bp
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» Several tools available
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Removing adapter sequence

» Several tools available

» Example: cutadapt

(https://code.google.com/p/cutadapt/)
$ cutadapt -m 15 -a GATCGGAAGAGCACACGTCTGAACTCCAGT-
CACACAGTGATCTCGTATGCCGTCTTCTGCTTG SRR501544.fastq >

SRR501544_cutadapt.fastq

» -a Sequence of an adapter that was ligated to the 3" end
» -m Discard trimmed reads that are shorter than LENGTH

» Cutadapt can also remove low-quality ends (-q <quality cut
off>)

» Cutadapt doesn’t handle paired-end data well. Use
trimmomatic or other tools instead


https://code.google.com/p/cutadapt/

Trimmomatic

Description

Trimmomatic performs a variety of useful trimming tasks for illumina paired-end and single ended data.The selection of trimming steps
and their associated parameters are supplied on the command line

The current trimming steps are:

« ILLUMINACLIP: Cut adapter and other illumina-specific sequences from the read.

SLIDINGWINDOW: Perform a sliding window trimming, cutting once the average quality within the window falls below a
threshold

LEADING: Cut bases off the start of a read, if below a threshald quality

TRAILING: Cut bases off the end of a read, if below a threshold quality

CROP: Cut the read to a specified length

HEADCROP: Cut the specified number of bases from the start of the read

MINLEM: Drop the read if it is below a specified length

TOPHRED33: Convert quality scores to Phred-33

TOPHRED&4: Convert guality scores to Phred-64

It works with FASTQ (using phred + 33 or phred + 64 quality scores, depending on the lllumina pipeline used), either uncompressed or
gzipp'ed FASTQ. Use of gzip format is determined based on the .gz extension

For single-ended data, one input and one output file are specified, plus the processing steps. For paired-end data, two input files are

specified, and 4 output files, Z for the 'paired’ output where both reads survived the processing, and 2 for corresponding 'unpaired’ cutput
where a read survived, but the partner read did not
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Trimmomatic: quick start

Quick start

Paired End:

java -jar trimmomatic-0.35.jar PE -phred33 input_forward.fq.gz input_reverse.fq.gz
output_forward_paired.fq.gz output_forward_unpaired.fq.gz output_reverse_paired.fq.gz
output_reverse unpaired.fqg.gz ILLUMINACLIP:TruSeq3-PE.fa:2:30:10 LEADING:3 TRAILING:3
SLIDINGWINDOW:4:15 MINLEN:36

This will perform the following:

« Remove adapters (ILLUMINACLIP.TruSeq3-PE.fa:2:30.10)

Remove leading low quality or N bases (below quality 3) (LEADING:3)

Remove trailing low quality or N bases (below guality 3) (TRAILING:3)

Scan the read with a 4-base wide sliding window, cutting when the average quality per base draps below 15
[SLIDINGWINDOW:4:15)

Drop regds below the 36 bases long (MINLEN:36)

Single End:

java -jar trimmomatic-0.35.jar SE -phred33 input.fq.gz output.fq.gz ILLUMINACLIP:TruSeq3-
SE:2:30:10 LEADING:3 TRAILING:3 SLIDINGWINDOW:4:15 MINLEN:36

This will perform the same steps, using the single-ended adapter file
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» Understand plots that you see
» Don't just look at the first plot and move on

» Methods that rely on counting reads (RNA-Seq, ChIP-Seq) are
sensitive to duplication rates

» Methods that rely on assembling unknown
genomes/transcriptomes are sensitive to base calling errors

» It is possible to overcorrect!
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