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Quality Control

I First step of any data analysis
I Always look at your data!
I Short sanity checks after each step
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FastQC

I A quality control tool for high throughput sequence data.

I Platform independent
I Interface: Command line or GUI

www.bioinformatics.babraham.ac.uk/projects/fastqc/
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FastQC: QV distribution

I Overview of the range of quality values across all bases at each
position of the reads

I The central red line is the median value
I The yellow box represents the inter-quartile range (25-75
I The upper and lower whiskers represent the 10
I The blue line represents the mean quality
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FastQC: QV distribution

I Check for low qualities at 5’ or 3’ end

I Low quality ends can be removed using tools like fastx,
cutadapt, trimmomatic (see adapter removal)
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FastQC: Mean QV distribution

I Mean base quality per read

I The higher the better
I Errors here usually indicate a general loss of quality within a run
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FastQC: GC distribution

I Measures the GC content across the whole length of each read

I In normal library: normal distribution with peak that
corresponds to the overall GC of the sequenced genome

I Sharp additional peaks results of specific contaminant (adapter
dimers), broader peaks may represent contamination with
different species
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Contamination

I Most common contamination: human DNA

I DNA from other organisms in the lab
I RNA-Seq: rRNA contamination (usually depleted)
I Primer/Adapter dimers (probably caused by low amount of
DNA/RNA)

I (Significantly) reduces the number of reads
I Might cause problems during down stream analysis

I Cause false positives during SNP calling
I Severely alter expression values for RNA-Seq
I Reduce the number of ”usable” reads to a point were only noise is
picked up by downstream analysis

I Strategy to identify contaminations:
I Blast random subset of (unmapped) reads
I Tools: Kraken (https://ccb.jhu.edu/software/kraken/)

I If contaminating organisms are known, add to downstream
analysis (e.g. remove while mapping)
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FastQC: Per base sequence content

I Proportion of bases (A, T, G, C) per read position

I In random library, little difference between bases expected
I Causes:

I Overrepresented sequences (e.g. adapter dimers, rRNA)
I (Biased) random priming causes difference in first 12 bp (RNA-Seq)
I Adapter trimming can cause differences at the end of the reads
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Example: Per base sequence content
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FastQC: Duplicates

I PCR artifacts vs. biological duplicates

I Most sequences should fall into far left bins in red and blue line
I Datasets with high coverage will flatten the lines
I Contaminations tend to produce spikes toward the right of the
plot (read line)

I RNA-Seq: highly abundant transcripts might cause peaks in the
higher duplication bins
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Duplicates removal

I Can be done on raw reads using fastx (reduces mapping
runtime)

I Hard to decided whether duplicates were caused by PCR or
biological/experimental reasons

I Mapping all reads first and removing duplicates after manual
inspection is more sensible

I Picard-tools identifies duplicates after mapping
I For some data experiments removing duplicates can greatly
effect down stream analysis!
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Example: sequence duplication
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Library complexity

I Library complexity refers to the number of unique fragments
present in a given library

I Complexity is affected by:
I Amount of starting material
I Amount of DNA lost during cleanups and size selection
I Amount of duplication introduced via PCR

I For most libraries that only need to be run across a few lanes,
the standard protocol provides libraries with ample complexity

I However, certain projects require very deep coverage from a
single sample - i.e. SNP discovery, mammalian assembly, cancer
resequencing

I When dozens of lanes are required, library complexity becomes
very important
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Adapter contamination

I If there are fragment smaller than the read length,

I Align adapters to reads
I If overlap large enough, remove adapter and everything that
follows
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Example: Adapter contamination
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Finding the correct adapter sequence

If adapters are not mentioned in the study summary:

I Illumina documentation

I FASTQC Overrepresented sequences
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Removing adapter sequence

I Several tools available

I Example: cutadapt
(https://code.google.com/p/cutadapt/)
$ cutadapt -m 15 -a GATCGGAAGAGCACACGTCTGAACTCCAGT-

CACACAGTGATCTCGTATGCCGTCTTCTGCTTG SRR501544.fastq >

SRR501544_cutadapt.fastq

I -a Sequence of an adapter that was ligated to the 3’ end
I -m Discard trimmed reads that are shorter than LENGTH

I Cutadapt can also remove low-quality ends (-q <quality cut
off>)

I Cutadapt doesn’t handle paired-end data well. Use
trimmomatic or other tools instead

18
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Trimmomatic
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Trimmomatic: quick start
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Summary

I Understand plots that you see
I Don’t just look at the first plot and move on
I Methods that rely on counting reads (RNA-Seq, ChIP-Seq) are
sensitive to duplication rates

I Methods that rely on assembling unknown
genomes/transcriptomes are sensitive to base calling errors

I It is possible to overcorrect!
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