
Introduction to Linux

Adapted from Eric Bishop 27th April 2016

CIBIV mug shots

Introduction to the UNIX command line

} Plan for today:
} What is Linux/UNIX?
} How to use a shell
} Navigating the file system
} Working with files
} Regular expressions
} Running programs & file permissions

What is Linux?

} An operating system

} Open source

} Linux is a variant of Unix
} So is Mac OS X, so much of this tutorial applies to Macs as

well

Why Linux?

} Linux is free
} It’s fully customizable
} It’s stable (i.e. it almost never crashes)

} But: People are used to Windows/Mac! So why should
they bother?

So why Linux?

} When working with sequencing data you don’t really have
another choice

} It is possible to handle extremely large files without problems

} Most of the software is developed/optimized for Linux

} It is easy to run programs on remote machines

GUI vs. Shell: Windows

} Windows: focus on graphical user interface

GUI vs. Shell: Linux

} Linux: focus on command line interface (GUI just an
„Addon“)

GUI vs. Shell

“Interactive”
“batch mode”

} Show (hidden) files in Download folder

What exactly is a “shell”?

} The shell interprets commands the user types and
manages their execution

} The shell communicates with the internal part of the operating
system called the kernel

} The most popular shells are: tcsh, csh, korn, and bash
} The differences are most times subtle
} For this tutorial, we are using bash

} Shell commands are CASE SENSITIVE!

Connecting to a Unix/Linux system

} Open up a terminal:

Connecting to a Unix/Linux system

} Open up a terminal:

The “prompt”

The current directory (“path”)

The host

User name

Executing a command

}Combine options:
ls –lah /etc

}Long options:
ls -l –-all –human-readable /etc

ls –l –a -h /etc

Command name
Options
(flags)

Arguments

Terminating a running command

} Press Ctrl-C to terminate the command!

Help!

} Endless number of commands/programs and parameters
} Whenever you need help with a command:

} run the command with –h or –help as parameter

} type “man” and the command name

} ask Google!!

} http://stackoverflow.com/

Stackoverflow

Help!

Help!

Help!

Unix/Linux File System

/home/john/portfolio/

/home/mary/

The Path

NOTE: Unix file names
are CASE SENSITIVE!

File System
} Absolute path

} ls /home/john/portfolio

} Relative path
} ls portfolio or ls ./portfolio

} Shortcuts
} Parent directory (..), home directory (~), last directory (-)

} Wildcards
} Zero or more characters (*), exactly one character (?)

} Use tab-completion and avoid spaces in file names

Command: pwd (print working directory)
} To find your current path use “pwd”

Command: cd (change directory)
} To change to a specific directory use “cd”

Command: cd
} “~” is the location of your home directory

Command: cd
} “-” is the location of the last directory

Command: cd
} “..” is the location of the parent directory

Command: ls

} To list the files in the current directory use “ls”

Command: ls

} ls has many options
} -l long list (displays lots of info)
} -t sort by modification time
} -S sort by size
} -h list file sizes in human readable format
} -r reverse the order

} “man ls” for more options
} Options can be combined: “ls -ltr”

Command: ls -ltr

} List files by time in reverse order with long listing

Tabulator key

The most important key when working with a shell

Tab Completion
} The most important thing when working the shell
} If you navigate to a folder just type the first 2-3 letters

and then hit the tabulator key
} If their is just one file/folder that starts with those letters,

bash will complete the name for you
} If there are more it will show you all options
} In that case type some more letters and try tab again
} Works with commands as well
} Avoids typing errors + you don’t have to exactly know

how each command/folder/file is called. You can just
check as you type

Tab completion example

Wildcards

} “*” place holder for zero or more characters
} “?” place holder for exactly one character

Command: mkdir

} To create a new directory use “mkdir”

Command: rmdir

} To remove and empty directory use “rmdir”

We"commonly"need"to"download"data"or"install"a"
new"tool.""You"may"also"need"to"share"your"data"
with"others."

"
"

You#will#need#to#be#very#familiar#with#how##
to#deal#with#compressed#files#(archives)#

#

"

Compressed data formats

Compressed"formats"!"reduce"the"space"requirements.""
Same"informa0on"but"now"op0mized"for"size."Downside"–"needs"to"be"decompressed"to"access"the"content."

"
1.  Compressed#File#!"a"file"reduced"in"size"
2.  Compressed#Archive#!"mul0ple"files"combined"then"

reduced"in"size"

Important"to"remember:"
"
Compression"requires"substan0ally"more"computa0onal"
resources"than"decompression"

Compressed files/archives

• ZIP"!"".zip"""!"zip/unzip""
Used"if"you"keep"seeing"Windows"people"
"

• GZIP"!".gz"!"gzip/gunzip""
The"standard"compression"format,"best"tradeoff"between"speed"vs"compression"
"

• BZIP2"!".bz/.bz2"!""bzip2/bunzip2"
Used"by"programming"prima"donnas:"“Look"how"special"I"am,"I’m"even"using"a"different"
compression"format!”"

• Compress"!".Z""!"compress/uncompress"
Used"by"people"that"don’t"know"what"they"are"doing"

Three major compression formats

• .zip"file"!"may"contain"one"or"mul0ple"files"or"en0re"
directory"trees"

• .gz#!"always"is"uncompressed"to"a"single"file"

In"the"Unix"world"to"compress"mul0ple"files"you"would"
need"to"create"an"archive"then"compress"that"archive."
"
Extensions:".tar.gz"or".tgz#
#

See#the#code#archive#for#lecture#7#for#details.#

Archives

hZp://www.xkcd.com/1168/"

Using tar commands

The#tar"command"can"collect"mul0ple"files/directories"into""one"file."

tar$<commands>$output/file$$<input$files>$

Commands:"create,"extract,"gzip,"file,"list,"verbose"

tarcvfmyfile.tar$sample1.fq$sample2.fq$

Major#annoyance:"accidentally"lis0ng"the"file"name"as"the"archive"name"will"destroy"the"
file"that"you"are"trying"to"archive!"

Creating archives with tar (tape archive)

• Goes"through"and"collects"everything"and"packs"it"into"one"file,"
then"compresses"the"file"

• Always"check"the"file"extensions,"it"will"tell"you"what"it"is"

• Sign"of"a"inexperienced"so`ware"developer"##
tarPbomb#!#a"tarball"whose"contents"“explode”"over"your"
directory"(see"tarbomb.tar.gz"on"the"website)."

Defensive"measures:"
"

– List"the"content"of"the"archive"and"make"decision"
– Create"a"new"directory,"expand"the"file"there"(this"is"what"Mac/

Windows"does"by"default"regardless"what"is"in"the"archive)"

Tar can handle entire directories

Exercises 1-6

Displaying a file
} Various ways to display a file in Unix

} cat
} less
} head
} tail

Command: less
} “less” displays a file, allowing forward/backward

movement within it
} return scrolls forward one line, space one page
} y scrolls back one line, b one page
} Navigate with cursor keys (up/down/left/right)

} Use “/” to search for a string
} Press q to quit
} man pages use less

} Example: Check a SAM file
less -S mapped_reads.sam

Program input and output

Redirect program output
} Output of programs can be redirected to a file:
} program_a > file.txt

} program_a’s output is written to the file called “file.txt”
} If file exists, it will be overwritten

} program_b >> file.txt
} program_b’s output is appended to the file called “file.txt”
} If ”file.txt” doesn’t exist, it will be created

} “>” and “>>” redirect standard output
} “2>” and “2>>” redirect standard error
} “&>” and “&>>” redirects both

Input/Output Redirection

Input/Output Redirection

Piping

} Programs can take their input directly from another
program

} Example:
} program_a | program_b

} Allows to combine an arbitrary number of tools!

Command: cat
} Dumps an entire file to standard output
} Good for displaying short, simple files and for

concatenating files

} Example: Concatenate three FASTQ files

cat SRA0001.fq SRA0002.fq SRA0003.fq > SRA000_all.fq

Command: head
} “head” displays the top part of a file
} By default it shows the first 10 lines
} -n option allows you to change that

} Example: Display the first 10 sequences of the dataset

head –n 40 SR012310.fq

Command: head
} Here’s an example of using “head”:

Command: tail
} Same as head, but shows the last lines

Creating and editing files in Unix/Linux

} Requires the use of an Editor
} Various Editors:

1) nano / pico
2) vi
3) emacs

Editing a file using pico or nano
} Type “pico” or “nano” at the prompt

Editing a file using pico
} To save use “ctrl-o”
} To exit use “ctrl-x”

File Commands
} Copying a file: cp
} Move or rename a file: mv
} Remove a file: rm

Command: cp
} To copy a file use “cp”

Command: mv
} To move a file to a different location use “mv”

Command: mv
} mv can also be used to rename a file

Command: rm
} To remove a file use “rm”

Command: rm
} To remove a file “recursively”: rm –r
} Used to remove all files and directories

} Be very careful, deletions are permanent in Unix/Linux

Exercises 7-18

Regular expression
A regular expression (regex) is a special text string for

describing a search pattern.

A regular expression provides concise and flexible means
to "match" (specify and recognize) strings of text, such as
particular characters, words, or patterns of characters.

} Examples:
} ATG matches ATG
} A[TU]G matches ATG and AUG
} A.G matches AAG, ABG, ACG, ADG, …

Regex: Metacharacters

? The ? (question mark) matches the preceding character 0 or 1 times only,
for example, colou?r will find both color (0 times) and colour (1 time).

* The * (asterisk or star) matches the preceding character 0 or more
times, for example, tre* will find tree (2 times) and tread (1 time) and
trough (0 times).

+ The + (plus) matches the previous character 1 or more times, for
example, tre+ will find tree (2 times) and tread (1 time) but NOT trough
(0 times).

{n} Matches the preceding character, or character range, n times exactly.

{n,m} Matches the preceding character at least n times but not more than m
times, for example, 'ba{2,3}b' will find 'baab' and 'baaab' but NOT 'bab' or
'baaaab'. Values are enclosed in braces (curly brackets).

Regex: Ranges
[] Match anything inside the square brackets for ONE character position once

and only once, for example, [12] means match the target to 1 and if that does
not match then match the target to 2 while [0123456789] means match to any
character in the range 0 to 9.

- The - (dash) inside square brackets is the 'range separator' and allows us to
define a range, in our example above of [0123456789] we could rewrite it as
[0-9].
You can define more than one range inside a list, for example, [0-9A-C] means
check for 0 to 9 and A to C (but not a to c).

^ The ^ (circumflex or caret) inside square brackets negates the expression
(we will see an alternate use for the circumflex/caret outside square brackets
later), for example, [^Ff] means anything except upper or lower case F and [^a-
z] means everything except lower case a to z.

Regex: Metacharacters

^ The ^ (circumflex or caret) outside square brackets means look only at the
beginning of the target string, for example,^Win will not find Windows
in STRING1 but ^Moz will find Mozilla.

$ The $ (dollar) means look only at the end of the target string, for example, fox$
will find a match in 'silver fox' since it appears at the end of the string but not
in 'the fox jumped over the moon'.

. The . (period) means any character(s) in this position, for example,ton. will
find tons, tone and tonneau but notwanton because it has no following
character.

() The ((open parenthesis) and) (close parenthesis) may be used to group (or
bind) parts of our search expression together.

| The | (vertical bar or pipe) is called alternation in techspeak and means find
the left hand OR right values, for example,gr(a|e)y will find 'gray' or 'grey' and
has the sense that if the first test is not valid the second will be tried, if the
first is valid the second will not be tried.

Regex: Character classes
[:digit:] Only the digits 0 to 9

[:alnum:] Any alphanumeric character 0 to 9 OR A
to Z or a to z.

[:alpha:] Any alpha character A to Z or a to z.

[:blank:] Space and TAB characters only.

[:xdigit:] Hexadecimal notation 0-9, A-F, a-f.

[:punct:] Punctuation symbols . , " ' ? ! ; : # $ % & ()
* + - / < > = @ [] \ ^ _ { } | ~

[:print:] Any printable character.

[:space:] Any whitespace characters (space, tab, NL,
FF, VT, CR). Many system abbreviate as \s.

[:graph:] Exclude whitespace (SPACE, TAB). Many
system abbreviate as \W.

[:upper:] Any alpha character A to Z.

[:lower:] Any alpha character a to z.

Regex: Extensions
Character Class Abbreviations
\d Match any character in the range 0 - 9 (equivalent of POSIX [:digit:])

\D Match any character NOT in the range 0 - 9 (equivalent of POSIX [^[:digit:]])

\s Match any whitespace characters (space, tab etc.). (equivalent of POSIX [:space:]
EXCEPT VT is not recognized)

\S Match any character NOT whitespace (space, tab). (equivalent of POSIX [^[:space:]])

\w Match any character in the range 0 - 9, A - Z and a - z (equivalent of POSIX
[:alnum:])

\W Match any character NOT the range 0 - 9, A - Z and a - z (equivalent of POSIX
[^[:alnum:]])

Positional Abbreviations
\b Word boundary. Match any character(s) at the beginning (\bxx) and/or end (xx\b) of

a word, thus \bton\b will find ton but not tons, but \bton will find tons.

\B Not word boundary. Match any character(s) NOT at the beginning(\Bxx) and/or end
(xx\B) of a word, thus \Bton\B will find wantons but not tons, but ton\B will find both
wantons and tons.

Command: grep

} To search files for a specific string use “grep”

Command: sed
} sed is a stream editor for filtering and transforming text
} Powerful but complicated => useful for substitution

File permissions
} Each file in Unix/Linux has an associated permission level
} This allows the user to prevent others from

reading/writing/executing their files or directories
} Use “ls -l filename” to find the permission level of that file

Permission levels
} “r” means “read only” permission
} “w” means “write” permission
} “x” means “execute” permission

} In case of directory, “x” grants permission to list directory
contents

File Permissions

User (you) Group

File Permissions

User (you)

File Permissions

Group

File Permissions

“The World”

Command: chmod
} If you own the file, you can change it’s permissions with

“chmod”
} Syntax: chmod [user/group/others/all]+[permission] [file(s)]
} Below we grant execute permission to all:

Running a program (a.k.a. a job)
} Make sure the program has executable permissions
} Use “./” to run the program

} Example:

wget http://www.cibiv.at/~philipp/files/bwa.tar.gz

tar xvfz bwa.tar.gz

chmod u+x bwa

./bwa

ssh, scp

} ssh is used to securely log in to remote systems, successor to telnet
} ssh [username]@[hostname]
} Try:

ssh yourusername@localhost
Type “exit” to log out of session

} Scp is used to copy files to/from remote systems, syntax is similar to cp:
} scp [local path] [usernme]@[hostname]:[remote file path]

} Try:
} scp hello.txt yourusername@localhost:scp-test.txt

Running a program: an example
} Running the sample perl script “hello_world.pl”

Summary: most important tools
} ls, cd, mkdir, rm, mv, cp
} less, head/tail, cat
} grep
} tar/g(u)zip/unzip
} ssh/scp
} cut
} sort
} wc
} du
} awk

} Additional commands:
} top
} clear
} find
} history
} time

Exercises 19-28

Unix Web Resources
} http://www.ee.surrey.ac.uk/Teaching/Unix/

} http://www.ugu.com/sui/ugu/show?help.beginners

} http://en.wikipedia.org/wiki/Unix

Command: wc
} To count the characters, words, and lines in a file use

“wc”
} The first column in the output is lines, the second is

words, and the last is characters

Command: top
} To view the CPU usage of all processes:

Command: kill
} To terminate a process use “kill”

Command: ps
} To view the processes that you’re running:

Command: diff
} To compare to files for differences use “diff”

} Try: diff /dev/null hello.txt
} /dev/null is a special address -- it is always empty, and anything

moved there is deleted

Line%oriented%

1. Tries%to%match%the%paSern%to%the%line

2. If%it%is%a%match%execute%the%ac9on

3. Automa9cally%split%the%data%by%whitespace

4. No%paSern%means%match%everything.

!!!!awk!‘!pattern!{!action!}!‘!

AWK

%

%%%%Awk%automa<cally'splits%the%input%by%
whitespace%(spaces%and%tabs)%and%assigns%
names%to%them:%

%
% % %$0%the%en9re%line%
% % %$1%first%field%
% % %$2%second%field%
% % %…%

%%%%%% % %NF%the%number%of%fields%
% %NR%the%number%of%the%current%line%

Special variables

%

• +'E'*'/'for%numerical%context%
%

• >''<'%for%comparison%
%

• %%%modulo%division%(remainder%of%division)%
%

• <space>''string%concatena9on%
%

• ==,'!='''equal,%not%equal%
%

• ~,'!~''''''match,%no%match%(regular%expressions)%

Operators

%

matching% ac9on%

AWK program in action

%

Write%one%step%at%a%9me%

List the gene names and sizes

%Full program

%

• Many%tools%will%auto&split%by%whitespace%!%this%was%
thought%to%be%convenient%but%is%also%the%source%of%
extremely%subtle%errors%!%leads%to%a%column%shiN%in%a%
tab%file%if%a%field%contains%spaces%
%

• Always'specify'the'character'to'be'split'by!'

• This%refers%to%programming%languages%as%well!%%
%
Do%not%use%the%split()%methods%with%their%default%
behavior%(Python%,%Perl%etc)%unless%you%perfectly%
understand%what%they%do)%%

The whitespace curse: spaces and tabs

alias!awk="awk!4F!'\t'!4v!OFS='\t'"!
Tip:%you%can%add%this%to%the%.profile'or'.bashrc'file%in%your%root%folder%so%that%%
it%is%ac9vate%all%the%9me%
%
Note:%file%names%that%start%with%a%dot%.%are%only%listed%if%you%do%a%ls'Ea'

Use tabs as input and output separator

%
• BEGIN%!%before%the%stream%starts%

• END%!%aNer%the%stream%ends%

Special patterns

%

• condi9onals%:%if'
• loops:%for,%while'
• break,%con<nue'
• associa<ve'data'structures'(hash,'dic<onary)'

You%can%do%all%that%though%at%that%point%%
it%is%probably%beSer%to%learn%Python%

%
But%you%can'do'a'lot'with'just'basic'awk!%

%
Awk’s'power'comes'from'its'simplicity'–'more'complex'programming'

is'done'with'specialized'programming'languages%
%

Advanced AWK

