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Overview

1 General:
1 What is read mapping?
2 Why do we need it?
3 Sequence alignments (optimal)
4 Seed and extend (heuristic)
5 Tree based (heuristic)

2 Seed and extend:
1 How does it work?
2 Hash-table
3 Sequence alignment optimizations
4 Applications
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Making sense of NGS data
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Input data

FASTQ file:
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Read mapping (1)

Finding the region of the reference genome that shows the highest
similarity to a given read
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Read mapping (2)
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Read mapping (3)
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Difficulties

Size of reference genome (human: 3 GB, some plant genomes even
bigger)

Number of reads (> 100, 000, 000)

Differences between read and reference sequence. How to weight
them.

Repeats! Some parts of the genome are unique, some are repeated
thousands of times
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Sequence Alignments

Arranging two or more sequences such as to maximize the length of
the common regions between the two

Operations: insert gap into sequence 1, insert gap into sequence 2,
accept mismatch

Well developed field of research
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Global Alignment: Needleman-Wunsch

Given two sequences A and B and a scoring function for two characters a
and b

S(a, b) =

{
+5 if a = b (match)
−2 if a 6= b (mismatch)
−6 if a or b indel (gap)

to score each alignment column. Then we are looking for that alignment,

that gives us the highest score S(A,B).

For example:
T C G T A
T C A T A
+5+5−2+5+5

T
T

− −
G C

+5−6−6 =11
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Global Alignment: Needleman-Wunsch

Given sequences A and B and scoring function s(a, b) =
{

+5 a = b
−2 a 6= b
−6 a or b indel

Resulting alignment and score:

Initialize an N ×M matrix with the
sequences A and B of length M and N.

Starting at the upper left corner set the
intermediate scoring value σ(i , j) =

max

{
σ(i − 1, j − 1) + s(Ai , Bj ) match/mismatch
σ(i − 1, j) + s(Ai ,−) gap in B
σ(i, j − 1) + s(Bi ,−) gap in A

Optimal score for can be found at σ(N,M).

The optimal alignment is retrieved by
following the best values σ(i , j).
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Local alignment (Smith-Waterman algorithm)

Instead of looking at the total sequence, the Smith-Waterman
algorithm compares segments of all possible lengths and optimizes the
similarity measure

Negative scoring matrix cells are set to zero

Backtracking starts at the highest scoring matrix cell and proceeds
until a cell with score zero

Philipp Rescheneder (CIBIV) Read mapping December 3, 2014 15 / 46



Local alignment (Smith-Waterman algorithm)

Instead of looking at the total sequence, the Smith-Waterman
algorithm compares segments of all possible lengths and optimizes the
similarity measure

Negative scoring matrix cells are set to zero

Backtracking starts at the highest scoring matrix cell and proceeds
until a cell with score zero

Philipp Rescheneder (CIBIV) Read mapping December 3, 2014 15 / 46



Local alignment (Smith-Waterman algorithm)

Instead of looking at the total sequence, the Smith-Waterman
algorithm compares segments of all possible lengths and optimizes the
similarity measure

Negative scoring matrix cells are set to zero

Backtracking starts at the highest scoring matrix cell and proceeds
until a cell with score zero

Philipp Rescheneder (CIBIV) Read mapping December 3, 2014 15 / 46



Local alignment (Smith-Waterman algorithm)

Instead of looking at the total sequence, the Smith-Waterman
algorithm compares segments of all possible lengths and optimizes the
similarity measure

Negative scoring matrix cells are set to zero

Backtracking starts at the highest scoring matrix cell and proceeds
until a cell with score zero

Philipp Rescheneder (CIBIV) Read mapping December 3, 2014 15 / 46



Local alignment (Smith-Waterman algorithm)

Instead of looking at the total sequence, the Smith-Waterman
algorithm compares segments of all possible lengths and optimizes the
similarity measure

Negative scoring matrix cells are set to zero

Backtracking starts at the highest scoring matrix cell and proceeds
until a cell with score zero

Philipp Rescheneder (CIBIV) Read mapping December 3, 2014 15 / 46



Local alignment (Smith-Waterman algorithm)

Instead of looking at the total sequence, the Smith-Waterman
algorithm compares segments of all possible lengths and optimizes the
similarity measure

Negative scoring matrix cells are set to zero

Backtracking starts at the highest scoring matrix cell and proceeds
until a cell with score zero

Philipp Rescheneder (CIBIV) Read mapping December 3, 2014 15 / 46



Using alignments for read mapping

Gives optimal results ⇒ local alignment between read and reference
genome, but:

Alignment matrix: 3, 000, 000, 000 ∗ 100⇒ 600GB of main memory

Assume time needed for alignment is 0.1 seconds

For 100, 000, 000 ⇒ 115 days

We need methods that can map at least 10, 000 reads per second on
standard hardware
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Heuristic approaches

Heuristic refers to experience-based techniques for problem solving
that find a solution which is not guaranteed to be optimal, but good
enough for a given set of goals

Seed and extend (BLAST)
Tree/Trie based approach (suffix/prefix trees, burrows wheeler
transformation, etc.)
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Seed and extend

1 Candidate mapping region search: identification of perfectly matching
sub regions using an index data structure

2 Computation of Smith-Waterman alignment scores for candidates

3 Computation of full alignment only for the highest scoring candidate

Reference sequence:

Read 1:

Candidate 1 Candidate 2

… G A A TA GG CG CGTA G A A AC …A T GC A AG A A TA TC ACGTA G A T GC A CG A T A GG ACGTA G

A T GC A CG A A TA GG GG
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Seed and extend

1 Candidate mapping region search: identification of perfectly matching
sub regions using an index data structure

2 Computation of Smith-Waterman alignment scores for candidates

3 Computation of full alignment only for the highest scoring candidate

Candidate 1 Candidate 2

A T GC A AG A A TA TC GG

A T GC A CG A A TA GG GG

A T GC A CC A A TA GG GG

A T GC A CG A A TG GG G

...
=> Score: 7 => Score: 9
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Seed and extend

1 Candidate mapping region search: identification of perfectly matching
sub regions using an index data structure

2 Computation of Smith-Waterman alignment scores for candidates

3 Computation of full alignment only for the highest scoring candidate

Candidate 2

A T GC A CC A A TA GG GG

A T GC A CG A - TG GG GA

| | || | | | | | || ||
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Suffix tree

Search “GOL” in “GOOGOL”
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Suffix tree: problems

Only for exact matching strings

But, we have mismatches, insertions and deletions
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Prefix tree

Search “LOL” in “GOOGOL”
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Seed and extend vs. Trees

Seed and extend:

High memory usage

Typically slow(er) due to
time consuming alignment
computation

High sensitivity

Can handle a high number
of differences between the
read and the references

Trees:

Fast

Memory efficient

Better handling of repeating
regions

Not well suited for a high
number of mismatches and
insertions/deletions
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Read mapper comparison (1)

Reference genome: A. thaliana

Genomes size: ∼ 110 MB

We simulated 11 data sets with 5 million, 100
bp reads

0 to 10 % difference between sequenced and
reference genome

2% simulated sequencing error

Programs: BWA(-SW), Bowtie2, Stampy

Comparison of runtime and number of correctly
mapped reads
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Read mapper comparison (2)
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Read mapper comparison (2)
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NextGenMap

Read mapping program

Based on seed and extend approach

Uses sequence alignments to get high mapping sensitivity

Goal: as fast or faster then tree based approaches

Optimizations:

Technical
Algorithmic
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Seed and extend

1 Identification of perfectly matching sub regions using an index data
structure: Candidate mapping region (CMR) search

2 Computation of Smith-Waterman alignment scores for candidates

3 Computation of full alignment only for the highest scoring candidate

Reference sequence:

Read 1:

Candidate 1 Candidate 2

… G A A TA GG CG CGTA G A A AC …A T GC A AG A A TA TC ACGTA G A T GC A CG A T A GG ACGTA G

A T GC A CG A A TA GG GG
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Indexing the genome

Objective:
Fast identification of genomic positions given a k-mer
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Hash-table

A hash function maps data (e.g. strings) of arbitrary size to data of
fixed size, with slight differences in input data producing very big
differences in output data.
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Hashing sequencing data
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Hashing sequencing data
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Hashing sequencing data
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Construct hash-table (1)
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Construct hash-table (2)
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Construct hash-table (2)
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Construct hash-table (3)

Advantages:

1 Fast access
(continuous
memory access)

2 Memory efficient
(∼ 3 GB for
human)
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Candidate region search

1 Identification of perfectly matching sub regions using an index data
structure: Candidate mapping region (CMR) search

2 Computation of Smith-Waterman alignment scores for candidates

3 Computation of full alignment only for the highest scoring candidate

Reference sequence:

Read 1:

Candidate 1 Candidate 2

… G A A TA GG CG CGTA G A A AC …A T GC A AG A A TA TC ACGTA G A T GC A CG A T A GG ACGTA G

A T GC A CG A A TA GG GG
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Collect candidate regions
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Collect candidate regions
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Correct candidate regions
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Correct candidate regions
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Account for indels
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Account for indels
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Summarize candidate regions

Multiplication hashing

keyj = (p′j ∗ prim) mod L

prim = 2654435761

Donald E. Knuth,1997

1
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Choosing candidate regions
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Fixed threshold (t = 2) for all reads: 1614 alignment computations

Choose t relative to best matching position: 214 alignment
computations
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Step 2 & 3: alignment computation

1 Candidate mapping region search: identification of perfectly matching
sub regions using an index data structure

2 Computation of Smith-Waterman alignment scores for candidates

3 Computation of full alignment only for the highest scoring candidate

Candidate 1 Candidate 2

A T GC A AG A A TA TC GG

A T GC A CG A A TA GG GG

A T GC A CC A A TA GG GG

A T GC A CG A A TG GG G

...
=> Score: 7 => Score: 9
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Pairwise alignment

Complexity: n ×m
n = 120bp
m = 100bp
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Algorithmic optimizations

1 Banded alignment
Complexity: m × c
m = 100bp
c ∈ {1, . . . , 40}

2 Split score and alignment
computation

3 For score computation
Computations, m × c
Memory, c
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Hardware optimizations
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Hardware optimizations

CPU threads
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Results

divergence [%]

co
rr

ec
tly

 m
ap

pe
d 

[%
]

Bowtie2 BWA−SW

Stampy

BWA

0 2 4 6 8 10

0
20

40
60

80
10

0

Runtime

divergence [%]

ru
nt

im
e 

[m
in

]
Bowtie2

BWA−SW

Stampy

BWA

0 2 4 6 8 10
0

20
40

60
80

10
0

Philipp Rescheneder (CIBIV) Read mapping December 3, 2014 44 / 46



Results

divergence [%]

co
rr

ec
tly

 m
ap

pe
d 

[%
]

Bowtie2 BWA−SW

Stampy

BWA

NextGenMap

0 2 4 6 8 10

0
20

40
60

80
10

0

Runtime

divergence [%]

ru
nt

im
e 

[m
in

]
Bowtie2

BWA−SW

Stampy

BWA

0 2 4 6 8 10
0

20
40

60
80

10
0

Philipp Rescheneder (CIBIV) Read mapping December 3, 2014 44 / 46



Results

divergence [%]

co
rr

ec
tly

 m
ap

pe
d 

[%
]

Bowtie2 BWA−SW

Stampy

BWA

NextGenMap

0 2 4 6 8 10

0
20

40
60

80
10

0

Runtime

divergence [%]

ru
nt

im
e 

[m
in

]
Bowtie2

BWA−SW

Stampy

BWA

NextGenMapNextGenMap

0 2 4 6 8 10
0

20
40

60
80

10
0

Philipp Rescheneder (CIBIV) Read mapping December 3, 2014 44 / 46



Applications

Finding sRNAs in borrelia

Identifying mutations in tumor tissues

Sequencing based test for sepsis in patients

Philipp Rescheneder (CIBIV) Read mapping December 3, 2014 45 / 46



Applications

Finding sRNAs in borrelia

Identifying mutations in tumor tissues

Sequencing based test for sepsis in patients

Philipp Rescheneder (CIBIV) Read mapping December 3, 2014 45 / 46



Applications

Finding sRNAs in borrelia

Identifying mutations in tumor tissues

Sequencing based test for sepsis in patients

Philipp Rescheneder (CIBIV) Read mapping December 3, 2014 45 / 46



Conclusion

Read mapping:
1 Finding the region of the reference genome that shows the highest

similarity to a given read
2 It is one of the central steps in NGS data analysis
3 Size of genome, number of reads and repeating regions make it

difficult to find the correct mapping location in reasonable time
4 Several approaches: sequence alignments (optimal), seed and extend

(heuristic), tree based methods (heuristic)

Seed and extend methods:
1 Hash-table is used to quickly identify regions on the genome that are

similar to a given read
2 Sequences alignments are used to find the region that shows the

highest similarity to a read
3 Exploiting modern hardware reduces runtime required for alignment

computations significantly
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