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1. INTRODUCTION

Characterizing genomic structural variations
(SV) is vital for understanding the mecha-
nisms behind a wide range of diseases includ-
ing cancer, autism, and schizophrenia. Never-
theless, due to their complexity they remain
harder to detect and less understood than
SNPs. Recently, third-generation sequencing
has proven to be an invaluable tool for detect-
ing SVs. The higher read length allows sin-
gle reads to span a SV and reliable mapping
to repetitive regions of the genome. However,
current technologies show a raw read error
rate of 10% or more consisting mostly of inser-
tions and deletions. Due to this high error rate

current mapping methods fail to find exact
borders for SVs, split up large SVs into several
small ones, or completely fail to detect cer-
tain SVs. Here we present NextGenMap-LR
for long single molecule PacBio and Nanopore
reads which addresses these issues. Using
simulated data, verified SVs from healthy hu-
man samples and human cancer samples we
show how the combination of highly accu-
rate NextGenMap-LR alignments and Sniffles,
a structural variation caller specifically devel-
oped for noisy long-read data, enables the
full characterization of complex SVs even at
low coverage.

2. STRUCTURAL VARIATIONS

Different types of structural variations (SVs) a

aWeischenfeldt, J., Symmons, O., Spitz, F., Korbel, J.O. Phenotypic impact of genomic
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3. EXAMPLE ALIGNMENTS
Example regions containing a 300bp deletion
(left) and a 200bp insertion (right).

SKBR3 breast cancer reads aligned using
BWA-mem with "-x pacbio". Although, BWA-
mem in general produces very accurate align-
ments, larger SVs often cause misalignments.
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NextGenMap-LR comprises four main steps:

1. Identify initial anchors

2. Verify anchors with vectorized Smith-
Waterman algorithm (scores only)

3. Filter anchors and find candidate regions
for the alignments

4. Compute the full alignment between the
read and the respective candidate reference re-
gions

5. CANDIDATE SEARCH

The high-quality anchors retrieved from the
initial k-mer search are used to determine
whether a read spans a large or none linear
SV and has to be split (right) or can be aligned
contiguously (left).

6. ALIGNMENT STEP

To compute the final alignment(s) we use a
Smith-Waterman algorithm. To account for
both the sequencing error (short and ran-
domly distributed indels) and real genomic
variations (typically, longer indels), we em-
ploy a heuristic non-affine gap model (gap de-
cay) that penalizes gap extensions for longer
gaps less than for shorter ones and does not
increase the time complexity of the algorithm.

7. SIMULATED DATA
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Green: correct SV indicated and correct break
points (+/- 10bp) found, Yellow: correct SV in-
dicated, Red: wrong SV indicated, Grey: no
SV indicated

8. SKBR3 DATA
To evaluate NextGenMap-LR we mapped a
full SKBR3 and the genome in a bottle PacBio
data set and compared the results to BLASR
and BWA-MEM alignments:

(1) SVs that were missed with other aligners

(2) SVs that were wrongly characterised

(3) Wrongly called SVs that were caused by
misalignments

9. RUNTIME & MEMORY
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Ten fastq files contining 1 GBp of read data
were aligned using 10 CPU threads.

10. SNIFFLES

To accurately detect
structural variations
in PacBio and Ox-
ford Nanopore data,
NextGenMap-LR is
tuned to work hand
in hand with the
structural variation
caller Sniffles. Us-
ing NextGenMap-

LR alignments, Snif-
fles outperforms all
other SV analysis ap-
proaches in both sen-
sitivity and speci-
ficity.


