Working with NGS Data

10th August 2012

Overview

Common file format for sharing sequencing read data

\$ head SRR094861.fastq @SRR094861.1 HWI-EAS206 23 30H0YAAXX:5:1:709:724 length=36 ACCTCCCGCCCCNACNGCNCCCCCGTGCACCTCCC +SRR094861.1 HWI-EAS206 23 30H0YAAXX:5:1:709:724 length=36 55555555555551%515515555555\$555(.\$2.2 @SRR094861.2 HWI-EAS206 23 30H0YAAXX:5:1:1460:1251 length=36 AAACAAGCTAACATGACTAACACCCTTAATTCCATC +SRR094861.2 HWI-EAS206 23 30H0YAAXX:5:1:1460:1251 length=36 55555555555555555555555555555555555121-11 @SRR094861.3 HWI-EAS206 23 30H0YAAXX:5:1:899:1936 length=36 AACAGTCTGATTAAAAAATGGGCCAAAGAGCTTAAC

- sequence id
- sequence content 2.
- + (placeholder)
- 4. quality string

Simple but not well specified!

The reported quality indicates the probability of an error

 $Q = -10 \times log(P)$ or $P = 10^{-Q/10}$

Q = 10 \rightarrow P = 10 $^{-1}$ = 1/10 (one in ten)

Q = 40 \rightarrow P = 10⁻⁴ = 1/10000 (one in ten thousand)

FASTQ: encoded as character (e.g. '5' = 53 - 33)

Range not defined!

Paired end in FASTQ

- There is no standardized way so save paired end data in FASTQ files!!
- Two possibilities:
 - Use two files: reads_1.fq and reads_2.fq
 - Use one file
- Most programs don't check the reads names to find a matching pair
- Simple to convert. You just have to know what the program you are using expects.

Working with FATSQ files

- Lots of tools:
 - ► fastx
 - ► fastqc
 - •

Þ

Ask google!

- A quality control tool for high throughput sequence data
- Written in Java: runs on Linux/Windows/Mac/...
- Easy to use
- GUI and command line mode
- http://www.bioinformatics.babraham.ac.uk/projects/fastqc/

Per base sequence quality

Quality scores across all bases (Illumina 1.5 encoding)

Processing sequencing data

- Arranging two or more sequences such as to maximize the length of the common regions between the two
- Well developed field of research
- High throughput sequencing poses special constraints: a very large number of very short reads – traditional methods were not feasible

Alignment concepts

AGCAAGTATGTAAGGGCGCAGAAAAGCAAAG

NOTE: mismatches or indels can be longer than 1 base!

It gets complicated very quickly

Alignment scoring depends on mismatch scoring (different across bases!), gap open, gap extension penalties

Repetitive and low complexity regions

Short Read Mappers (aligners)

- Using heuristics to quickly identify locations (hits) where the reads match
- Heuristics -> not all hits will be found
- Tradeoff:

resource usage vs speed vs accuracy vs usability

 In addition: sequencing technologies develop extremely fast (e.g. read length) BWA, bowtie(2), SOAP2, Shrimp, BFAST and many others

There is no single best tool, the issues to consider:

- 1. documentation \rightarrow can we figure out how it works
- 2. input features \rightarrow what type of input can it handle
- reporting features → will it produce the type of output that we can use
- 4. performance \rightarrow is it feasible to run on my resources

- Some cannot handle indels -> these tools are typically extremely fast and will run on a laptop for even large genomes (bowtie)
- May or may not use the quality score during the alignment
- Reporting alignment:
 - Unique alignments only
 - Best alignment above a cutoff
 - All possible alignment (slow)

CPU time to align 1 million reads

Example

- Computer: 4 cores
- Human genome
- 66 mio, 36bp (small dataset)
 - Shrimp2: ~30h
 - Stampy: IIh
 - BWA: Ih

Read placement for 2 million reads from the human genome

from: http://www.massgenomics.org/short-read-aligners

- Very popular
- Stable (well tested)
- Based on Burrows-Wheeler transformation
 - Fast
 - But: can handle only a small number of differences between the reads and the reference
- Well suited for genomes with a low number of polymorphisms (e.g. human)

Aligning reads with BWA

Three step process (this is different for each aligner):

- Index the genome this only needs to be done once for each genome → bwa index ...
- 2. Create the alignment \rightarrow bwa aln ...
- 3. Report the alignment \rightarrow bwa samse ...

Aligning reads with BWA

Index

D

- Alignment
- Output (single end)

SAM: Sequence Alignment format

Published: The Sequence Alignment/Map format and SAMtools by Heng Li et al Bioinformatics 25, Volume 25, Issue 16, 2009

- SAM: A TAB-delimited text format consisting of a header section, which is optional, and an alignment section
- <u>BAM</u>: compressed version of SAM (same information)
 Smaller but not human readable

The structure of a SAM file

Þ

Se smallsam (C/k) Ele Edit Gode Start Page pr 1 @SQ 2 @SQ 3 @SQ 4 @SQ 5 @SQ 6 @SQ 7 @SQ 8 @SQ 9 @SQ	rgwin\home\jabert\docs\web\bi <u>View Project Toolbox</u> socess-gff.sh run.sh small. SN:chr01 SN:chr02 SN:chr03 SN:chr04 SN:chr05 SN:chr06 SN:chr07 SN:chr08	ioinfo-courses\source\597D-201 Tools Window Help Sam X LN:23022 LN:81316 LN:31662 LN:15319 LN:57682 LN:27010 LN:10909 LN:56264	L8 34 20 933 74 51 940 13	Header	s	ments	
9 @SQ 10 @SQ	S> smallsam (C:\cygwin\home	e\ialbert\docs\web\bioinfo-cou	rses\source\597D-2011\	dawn\lecture-6\temp) - Komodo Edit 5.2	Sec. 2.1		<u> </u>
∢ m Ready	<u>File Edit Code View</u>	Project Toolbax Iools V	<u>Mindow</u> <u>H</u> elp				
	Start Page process-grf.st	n runsn small.sam X	1.040000	-			
	17 @SQ	SN: chrmt	LN:948000				
	18 @SO	SN:2-micron	LN:6318				
	19 @PG	ID:bwa PN:bwa	VN:0.5.9	-r16			
	20 HWI-ST40	7_110218_0088_	B81H3VABXX	:1:1:1238:1946#0	4	*	0
	21 HWI-ST40	7_110218_0088_	B81H3VABXX	:1:1:1351:1878#0	0	chr06	207504
	22 HWI-ST40	7_110218_0088_	B81H3VABXX	:1:1:1304:1890#0	16	chr14	418820
	23 HWI-ST40	7_110218_0088_	B81H3VABXX	:1:1:1343:1901#0	16	chr01	90406
	24 HWI-ST40	7_110218_0088_	B81H3VABXX	:1:1:1323:1923#0	0	chr04	1512959
	ST40	/ 110218 0088	RETHRVARY	·1·1·1777·1940#0	16	chr06	137036
	Ready			CP1252	Ln: 20 Col: 49	Sel: 48 ch, 1 li	n Text 🛊 🔐

1.4 The alignment section: mandatory fields

Each alignment line has 11 mandatory fields. These fields always appear in the same order and must be present, but their values can be '0' or '*' (depending on the field) if the corresponding information is unavailable. The following table gives an overview of the mandatory fields in the SAM format:

Col	Field	Type	Regexp/Range	Brief description
1	QNAME	String	[!-?A-~]{1,255}	Query template NAME
2	FLAG	Int	[0,2 ¹⁶ -1]	bitwise FLAG
3	RNAME	String	* [!-()+-<>-~][!-~]*	Reference sequence NAME
4	POS	Int	[0,2 ²⁹ -1]	1-based leftmost mapping POSition
5	MAPQ	Int	[0,2 ⁸ -1]	MAPping Quality
6	CIGAR	String	* ([O-9]+[MIDNSHPX=])+	CIGAR string
7	RNEXT	String	* = [!-()+-<>-~][!-~]*	Ref. name of the mate/next segment
8	PNEXT	Int	[0,2 ²⁹ -1]	Position of the mate/next segment
9	TLEN	Int	$[-2^{29}+1, 2^{29}-1]$	observed Template LENgth
10	SEQ	String	* [A-Za-z=.]+	segment SEQuence
11	QUAL	String	[!-~]+	ASCII of Phred-scaled base QUALity+33

Example

(a)											
(~)	coor	1	23456	5789	9012	234 567890	123	3456	57896	0123456789012345	
	ref	A	GCAT	GTTA	AGAT	FAA**GATAGC	TGI	rgc1	AGT/	AGGCAGTCAGCGCCAT	
							_				
	r001+	-		TTA	AGAT	FAAAGGATA*C	T <mark>G</mark>				
	r002+	÷	ä	aaaA	AGAT	ГАА*GGATA					
	r003+	+	gco	:ta/	AGC 1	ΓΑΑ					
	r004+	+				ATAGC	г			TCAGC	
	r003-						ŧ	tag	sct T/	AGGC	
	r001-									CAGCGCCAT	
(b)											
()	@SQ_S	SN:r	ef LM	V:45	5					(
	r001	163	ref	7	30	8M214M1D3M	=	37	39	TTAGATAAAGGATACTA *	
	r002	0	ref	9	30	3S6M1P1I4M	*	0	0	AAAAGATAAGGATA *	
	r003	0	ref	9	30	5H6M	*	0	0	AGCTAA * NM:i:1	
	r004	0	ref	16	30	6M14N5M	*	0	0	ATAGCTTCAGC *	
	r003	16	ref	29	30	6H5M	*	0	0	TAGGC * NM:i:0	
	r001	83	ref	37	30	9M	=	7	-39	CAGCGCCAT *	

Working with SAM files

- Samtools
- Commands: view, index, sort, merge, flagstat, fixmate, ...
- Example: View
 - Convert between SAM and BAM
 - Filter SAM and BAM files
- Another popular tool: picard tools
 - Written in java, sometimes faster (e.g. sort SAM file)
 - http://picard.sourceforge.net/command-line-overview.shtml

Samtools: Examples

How many reads where aligned:

```
$ samtools view -S -F 0x4 SRR094861.sam | perl -F'\t' -ane 'print
if(/NM\:i\:0/)' | wc -l
17727982
```

How many reads mapped to only one position:

\$ samtools view -S -F 0x4 SRR094861.sam | perl -F'\t' -ane 'print if(/NH\:i\:1[\t\n]/)' | wc -l 7736878

• Convert SAM to BAM:

\$ samtools view -bS SRR094861.sam > SRR094861.bam

\$ samtools sort SRR094861.bam SRR094861.sorted

\$ samtools index SRR094861.sorted.bam

Summary

SAM format:

- http://samtools.sourceforge.net/SAMI.pdf
- Most important tools:
 - mapper: bwa, bowtie(2), stampy
 - samtools
 - picard tools
 - ▶ fastx
 - fastqc
 - IGV (genome browser written in java)

Resources

Most slides were taken from:

- http://evop.bioinf.uni-leipzig.de/?page_id=7
- http://www.personal.psu.edu/iual/courses/2011/2011-analyzing-highthrougphut-sequencing-data

Others:

http://www.bits.vib.be/index.php/training/124-linux-for-bioinformatics

BIOINFORMATICS: Short Read Archive

Task:

 Find and download the run SRR094861 of the experiment with the accession SRX038963 from the Short Read Archive (SRA) and safe it in your folder.

81	NCBI Resour	ces 🕑 How To 🗹		
SR	A	SRA	: SRR0	14861 wrth Limits Advanced
Dis	alay Settings: 6	🛛 Full		Send to:
<u>Ct9</u>	RNAseg			
Sub Star San Libr Pro Spo Spo Tot	mission: SRAD dy semmary: G pole: <u>SRB15673</u> any: CI9 RNAse form: Ilumina cessing: any calls: Base usity source: So t descriptor: toreard al: 1 run, 12 2M Download and	29279 by NIAAA/N iene expression prof in 1 22 mone, j 49 fb (more, j 10 fb (more, j) 12 mone, j 12 mone, j 13 more, j 13 more, j 14 more, j 15 more, j 16 more, j 17 more, j 18 more, j 19 more, j 10 more, j 1	IH Ne in postmorten ery analysis is, 80x1 IS f in use (464-414)	hippocampus using RNAseq for addicted human samples (SRP005408) • <u>Study</u> •
1.3	Run RR094861	# of Spots 12.152.742	# of Bases 437.5M	

BIOINFORMATICS: Short Read Archive

Task:

 Convert SRA format data into FASTQ using the SRA toolkit (http://www.ncbi.nlm.nih.gov/books/NBK47540/)

\$ fastq-dump SRR094861.sra

Library preparation:

Library preparation

(also a 5' adapter is ligated, but due to simplicity, it's not shown here; it will not be sequenced anyway):

3' adapter ligation

ACCTCCCGCCCCCTACCGCACCCCGATCGGAAGAGCTCGTATGCCGTCTTCTGCTTG

AAACAAGCTAACATGACGATCGGAAGAGCTCGTATGCCGTCTTCTGCTTG

AACAGTCTGATTAAAAAATGGGCCAAAGGATCGGAAGAGCTCGTATGCCGTCTTCTGCTTG

Sequencing:

exact 36 nucleotides are sequenced (defined by your machine; here Illumina)

ACCTCCCGCCCCTACCGCACCCCGATCGGAAGAGCTCGTATGCCGTCTTCTGCTTG

AAACAAGCTAACATGACGATCGGAAGAGCTCGTATGCCGTCTTCTGCTTG

AACAGTCTGATTAAAAAATGGGCCAAAGGATCGGAAGAGCTCGTATGCCGTCTTCTGCTTG

Data you get from the sequencing machine:

adapter: GATCGGAAGAGCTCGTATGCCGTCTTCTGCTTG

reads: ACCTCCCGCCCCTACCGCNCCCCGATCGGAAGAGC AAACAAGCTAACATGACGATCGGAAGAGCTCGTATG AACAGTCTGATTAAAAAATGGGCCCAAAGGATCGGAA

Align adapter to reads:

adapter: GATCGGAAGAGCTCGTATGCCGTCTTCTGCTTG ACCTCCCGCCCCCTACCGCNCCCCCGATCGGAAGAGC

adapter: GATCGGAAGAGCTCGTATGCCGTCTTCTGCTTG AAACAAGCTAACATGACGATCGGAAGAGCTCGTATG

adapter: GATCGGAAGAGCTCGTATGCCGTCTTCTGCTTG AACAGTCTGATTAAAAAATGGGCCCAAAGGATCGGAA

Clip adapter sequence:

ACCTCCCGCCCCCTACCGCNCCCC AAACAAGCTAACATGAC AACAGTCTGATTAAAAAATGGGCCCAAAG

Task:

Find out what the sequence of the used adapter is?

Problem:

D

- If the adapter sequence is not mentioned in the study summary, you can try to
 - find it on the manufacturers' website (here Illumina).
 - google it.
 - predict it yourself (e.g. with segemehl using the –Y parameter).

Sequences for Illumina Library Preparation:

Adapter 5' P-GATCGGAAGAGCTCGTATGCCGTCTTCTGCTTG

Task:

 Clip the adapter sequence using the fastx-toolkit (http://hannonlab.cshl.edu/fastx_toolkit/)

\$ fastx_clipper -a GATCGGAAGAGCTCGTATGCCGTCTTCTGCTTG -Q 33 -1 15 -n -i SRR094861.fastq -o SRR094861.clipped.fastq

-a	ADAPTER string
-Q	quality scores offset
-1	discard sequences shorter than N nucleotides
-n	keep sequences with unknown (N) nucleotides
-0	FASTA/Q output file

SAM: Bitwise flags

D

2. FLAG: bitwise FLAG. Each bit is explained in the following table:

Bit	Description
0x1	template having multiple segments in sequencing
0x2	each segment properly aligned according to the aligner
0x4	segment unmapped
0x8	next segment in the template unmapped
0x10	SEQ being reverse complemented
0x20	SEQ of the next segment in the template being reversed
0x40	the first segment in the template
0x80	the last segment in the template
0x100	secondary alignment
0x200	not passing quality controls
0x400	PCR or optical duplicate

Bit 0x4 is the only reliable place to tell whether the segment is unmapped. If 0x4 is set, no assumptions can be made about RNAME, POS, CIGAR, MAPQ, bits 0x2, 0x10 and 0x100 and the bit 0x20 of the next segment in the template.

SAM: Bitwise representation

- 1 = 00000001 \rightarrow paired end read
- 2 = 00000010 \rightarrow mapped as proper pair
- 4 = 00000100 \rightarrow unmappable read
- 8 = 00001000 \rightarrow read mate unmapped
- 16 = 00010000 \rightarrow read mapped on reverse strand

The flag 11 \rightarrow 1 + 2 + 8 = 0001011 (conditions 1, 2 and 8 satisfied)

It is used to save space – but it does make things a bit more difficult. Usually very few flags are needed in practice – 0, 4, 16 are the most generic ones

If you need to construct a more complex flag search for explain SAM flags:

http://picard.sourceforge.net/explain-flags.html

Mapping Quality definition

 Phred score, identical to the quality measure in the fastq file. quality Q, probability P:

P = 10 ^ (-Q / 10.0)

If **Q=30**, **P=1/1000** → on average, one of out 1000 alignments will be wrong

As good as this sounds it is not easy to compute such a quality.

Details of the mapping quality computation

- The repeat structure of the reference. Reads falling in repetitive regions usually get very low mapping quality.
- The base quality of the read. Low quality means the observed read sequence is possibly wrong, and wrong sequence may lead to a wrong alignment.
- The sensitivity of the alignment algorithm. The true hit is more likely to be missed by an algorithm with low sensitivity, which also causes mapping errors.
- Paired end or not. Reads mapped in pairs are more likely to be correct.

(from the MAQ manual)

BWA specific high scores

A read alignment with a mapping quality 30 or above usually implies

- The overall base quality of the read is good.
- The best alignment has few mismatches.
- The read has few or just one `good' hit on the reference, which means the current alignment is still the best even if one or two bases are actually mutations or sequencing errors.

BWA specific low scores

Surprisingly difficult to track down the exact behavior

- Q=0 → if a read can be aligned equally well to multiple positions, BWA will randomly pick one position and give it a mapping quality zero.
- Q=25 → the edit distance equals mismatches and is greater than zero

Visualizing the results

IGV

https://www.broadinstitute.org/igv/

