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Abstract 

In the recent years phylogenomics opened a new chapter in evolutionary biology. The 
analysis of the genome-scale data sets has the potential of answering the most difficult 
and intriguing questions for evolutionary histories. However, such perspectives come 
with a higher complexity and difficulties for the phylogenomic inference. The focus of 
this thesis is exploring and providing insights into some of the questions arisen from 
theory, algorithms and applications of phylogenomics. 

The main contributions of the thesis deal with phylogenetic terraces, which 
represent sets of species trees in tree space with identical score (likelihood or parsimony). 

Firstly, we provide the rules to detect terraces during the tree search. To this end 
we study the induced partition trees and how topological rearrangements on species tree 
drive changes on partition trees. If the tree rearrangement operation applied to the current 
species tree does not change any of its associated induced partition trees, then the current 
and a new species trees belong to one terrace. We prove three propositions defining the 
rules when Nearest Neighbour Interchange (NNI), Subtree Pruning and Regrafting (SPR) 
and Tree Bisection and Reconnection (TBR) operations change the induced partition 
trees. We further generalize the concept of terraces to partial terraces and study their 
occurrence for real alignments using NNI neighbourhoods. 

Secondly, we provide a phylogenetic terrace aware data structure (PTA) for the 
efficient analysis of concatenated multiple alignments. Using PTA and the rules 
developed to detect (partial) terraces in the presence of missing data one saves 
computational time by avoiding unnecessary recomputations. We implemented PTA in 
IQ-TREE and tested its performance on 11 real alignments. Identification of partial 
terraces speeded up the tree search with IQ-TREE for up to 5 and 6 times compared to the 
standard implementation (terrace-unaware) and RAxML, respectively. PTA is suitable for 
the use with all partition models and all common topological rearrangement operations, 
such as NNI, SPR and TBR.  

Finally, we develop methods for conservation biology and ecology, where 
phylogenomics is used to quantify the evolutionary diversity of the species. We discuss 
the viable taxon selection problem, which incorporates predator-prey interactions to 
define viability constraints. First, we extend the problem to account for Split Diversity 
(SD), a biodiversity measure, which is based on the evolutionary distances between 
species on split networks. Second, to make the viability constraints more realistic we 
extend the viability definition to account for the diet composition of predators. SD with 
the viability constraints is used to prioritize species for the conservation actions. Though 
such optimization problems fall into the area of NP-hard problems, it is possible to solve 
them within reasonable amount of time using Integer Linear Programming (ILP), a well-
known method for the decision-making problems. We provide the ILP formulations for 
all the discussed problems and implement them in the PDA software package. To 
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exemplify the discussed methods we apply them to a real case study – the Caribbean 
Coral Reef community. 
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Zusammenfassung 
 
In der Evolutionsbiologie wurde in den letzten Jahren durch Aufkommen der 
Phylogenomik ein neues Kapitel aufgeschlagen. Mit Hilfe genomweiter Analysen wird es 
zunehmend möglich, schwierige Fragestellungen zur Evolutionsgeschichten zu 
untersuchen, doch diese neuen Perspektiven sind gleichzeitig verbunden mit erhöhter 
Komplexität und anderen Schwierigkeiten bei der Stammbaumberechnung. Der Fokus 
dieser Dissertation ist es, Einblicke in Fragen aus der Theorie der Baumrekonstruktion 
sowie zu Algorithmen und Anwendungen der Phylogenomik zu geben. 

Ein Hauptaugenmerk liegt hierbei auf der Untersuchung phylogenetischer 
Terrassen, dies Speziesbäume mit gleichen Maximum Likelihood oder Maximum 
Parsimonie Werten. Ein Problem bei der Suche nach optimalen Bäumen ist die Größe der 
Terrasse.  Die Größe der Terrassen hängt dabei entscheidend von dem untersuchten 
multiple Sequenz Alignment ab. 

Im Rahmen dieser Arbeit wird zunächst erklärt wie man Terrassen während der 
Baumsuche detektiert. Dazu studieren wir durch Partitionen induzierte Bäume und in 
welcher Weise topologische Umformungen am Speziesbaum Änderungen an den 
Partitionsbäumen bedingen. Sollte eine Änderung der Verzweigungsstruktur  eines 
Speziesbaum keine Änderung an den mit ihm assoziierten induzierten Partitionsbäumen 
hervorrufen, gehören sowohl der gegenwärtige als auch der geänderte neue Speziesbaum 
zur selben Terrasse.  

Es werden drei Propositionen bewiesen, die Kriterien definieren nach welchen 
verschiedene Umformungsoperationen, namentlich NNI (Nearest Neighbour 
Interchange), SPR (Subtree Pruning and Regrafting) und TBR (Tree Bisection and 
Reconnection), sich die induzierten Partitionsbäume verändern. Weiters wird das Konzept 
von Terrassen erweitert, in dem partielle Terrassen definiert werden und ihr Auftreten für 
echte Alignments unter NNI Umformungsoperationen untersucht wird. 

Im zweiten Teil wird die Datenstruktur, PTA, (phylogenetic terrace aware data 
structure) vorgestellt, die eine effiziente Analyse verknüpfter multipler Alignments unter 
Berücksichtigung phylogenetischer Terrassen ermöglicht. Mit Hilfe von PTA und den 
Kriterien zur Erfassung (partieller) Terrassen ist es möglich, überflüssige 
Neuberechnungen der Maximum Likelihood oder Maximum Parsimonie Werte zu 
vermeiden und so die für die Baumsuche benötigte Rechenzeit zu verringern. Durch die 
Identifizierung partieller Terrassen wird im Vergleich zur Standardimplementierung eine 
bis zu 5-fache Beschleunigung von IQ-TREE festgestellt und nach der Implementierung 
der Terrassenidentifikation ist IQ-TREE in der Lage bis zu 6 Mal schneller Maximum-
Likelihood-Bäume zu finden als RAxML. Die Datenstruktur PTA eignet sich für den 
Einsatz mit allen Partitionsmodellen und für alle üblichen topologischen Umformungen 
wie NNI, SPR und TBR. 

Im Schlussteil dieser Arbeit werden Methoden für den Einsatz in 
Naturschutzbiologie und -ökologie eingeführt und diskutiert, wobei Phylogenomik 
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herangezogen wird, um die evolutionäre Diversität verschiedener Spezies zu 
quantifizieren. Wir diskutieren die Aufgabe der Auswahl überlebensfähiger Taxa, ein 
Optimierungsproblem unter Einbeziehung von Räuber-Beute-Interaktionen. Zuerst wird 
dabei der Rahmen der Aufgabenstellung erweitert, um auch die Splitdiversität (SD) zu 
erfassen, ein Biodiversitätsmaß welches auf der evolutionären Distanz zwischen 
verschiedenen Spezies in Splitnetzwerken basiert. Danach erweitern wir die Definition 
von Lebensfähigkeit um die Nahrungszusammensetzung des Räubers miteinzubeziehen 
und so die Modellierung realistischer zu gestalten. Mit Hilfe der SD und unter 
Berücksichtigung eines realistischen Modells werden Spezies für Naturschutzmaßnahmen 
priorisiert. Obwohl derartige Optimierungsaufgaben in den Bereich NP-schwerer 
Probleme fallen, zeige ich, dass sie mit Hilfe von ILP (Integer Linear Programming) in 
überschaubarer Zeit gelöst werden können. In dieser Arbeit werden ILP-Ansätze für alle 
darin diskutierten Problemstellungen beschrieben sowie eine Implementierung im 
Software Paket PDA bereitgestellt. 
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/ British Ecological Society, 6, 83-91. (DOI: 10.1111/2041-210X.12299) 

und in einem Buchkapitel 

(iii). Chernomor, O., et al. (2016) Split diversity: measuring and optimizing 
biodiversity using phylogenetic split networks. In Pellens, R. and Grandcolas, P. 
(eds), Biodiversity Conservation and Phylogenetic Systematics Springer 
International Publishing, im Druck. 
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CHAPTER 1 
  
Introduction 
 
One of the fundamental questions in evolutionary biology is the reconstruction of 
evolutionary relationships of a set of species. To solve this problem molecular 
phylogenetics estimates evolutionary history from genetic sequences arranged in the so-
called multiple sequence alignment. The input for traditional analysis is the alignment 
containing sequences for a single gene.  But nowadays the gigantic amount of sequences 
available in the databases has transitioned phylogenetics to a genome scale, initiating by 
this the era of phylogenomics (Delsuc, et al. 2005; Liu, et al. 2015; Rannala and Yang 
2008). 

In general, phylogenomics denotes the inference of evolutionary relationships 
from more than one locus. The extensions of phylogenetic tree reconstruction approaches 
to phylogenomic alignments are jointly called sequence-based methods (Fig. 1.1). These 
are the supertree and the supermatrix approaches. The supertree methods are typically 
divided into one- and two-steps approaches. In the former one the species tree and the 
gene trees are estimated concurrently, which involves the use of multispecies coalescent 
models (Liu, et al. 2009). In the two-steps methods one first separately reconstructs gene 
trees using traditional phylogenetic methods (distance, parsimony or likelihood-based 
methods (Yang 2006)) and then combines them into one species tree (Sanderson, et al. 
1998). A different strategy is used in the supermatrix method. Here, the gene alignments 
are first concatenated into one supermatrix, which then serves as an input for traditional 
tree reconstruction inferences (de Queiroz and Gatesy 2007). 

The extension of well-developed techniques to larger data sets is a natural step. 
Nevertheless, the genome scale of phylogenomics provides a base for the development of 
new techniques, which infer evolutionary relationship based on the whole-genome 
features (e.g. gene order, gene content, distributions of DNA strings across genome or 
intron positions, for review see Delsuc, et al. (2005)). Such techniques are still at an 
immature state, but have a lot of potential to provide the resolution of molecular evolution 
on a different scale. 

In this thesis we mainly focus on the supermatrix method, which nowadays 
remains the most widely used technique for the phylogenomic analysis of large data sets 
(e.g., Burleigh, et al. 2015; Dell'Ampio, et al. 2014; Fabre, et al. 2009; Goodheart, et al. 
2015; Hedtke, et al. 2013; Jonsson, et al. 2015; Soltis, et al. 2013; von Haeseler 2012). 
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heterogeneous evolution caused by heterotachy (Kolaczkowski and Thornton 2008), i.e. 
when the evolutionary rates vary over time (Lopez, et al. 2002). Thus, partition models 
are more realistic for multi-gene alignments.  

The supermatrix method makes one general assumption, that the evolutionary 
process of multiple genes can be well described by only one tree. Therefore, using a 
supermatrix for the datasets that clearly violate this assumption might lead to inconsistent 
estimates of the species tree (Kubatko and Degnan 2007; Roch and Steel 2015). 

In general, a tree can be viewed as a good and useful approximation of the 
evolutionary past. The rational for this is the fact that a vertical evolution, that is the flow 
of genetic material to an organism from its ancestor, is the primary mechanism for the 
inheritance of genetic information. However, one tree cannot perfectly display all 
complex evolutionary scenarios of multi-gene data sets. Even for a single gene it is 
questionable whether a tree is a good representation of the evolution (Morrison 2014). 
There is a lot of evidence of non-tree like reticulate evolution (Sneath 1975) (e.g., 
hybridization, horizontal or lateral gene transfer), especially among prokaryotes 
(Bapteste, et al. 2009). It is therefore suggested, that phylogenetic networks (Huson and 
Bryant 2006) could better resemble evolutionary process even on a single-gene scale. 

Apart from the afore-mentioned theoretical complications related to the 
phylogenomic analysis, nowadays multi-gene data sets pose also a complex 
computational problem. The drastic increase of the input size challenges the state-of-the-
art phylogenetic software from the memory usage and computational time. The data sets 
with more than thousands of genes are no longer exceptions in contemporary analysis 
(e.g., Dell'Ampio, et al. 2014; Gonzalez, et al. 2015; Goodheart, et al. 2015). Therefore, 
more than ever it is important to have highly optimized programs, which take into 
account intrinsic features of particular data sets to speed up the computation and to reduce 
the memory consumption. 

Further development of theoretical methods and subsequent improvement of 
existing algorithms and software are of paramount importance for future phylogenomic 
applications. Ranging from forensics and pharmaceutics to studies of music, tale and 
language evolution, phylogenetics has a variety of successful applications also outside of 
the common molecular evolution framework (e.g., Brown, et al. 2014; Chambers, et al. 
2000; Nakhleh, et al. 2005; Tehrani 2013).  

One of the interesting applications is found in conservation biology and ecology. 
Here, evolutionary history is used to study and quantify the diversity of species (Faith 
1992). Diversity measures are further used to prioritize species for conservation actions, 
which is an important problem in the world of limited resources (Monastersky 2014; 
Tollefson and Gilbert 2012). Advances in molecular evolution and computational 
techniques open new opportunities for decision-making problems in such applications 
(Pellens and Grandcolas 2016; Purvis, et al. 2005). 

In this thesis we provide insights into several questions arising from different 
aspects of phylogenomic inference, covering particular problems from theory, algorithms 
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and applications. Chapter 2 contributes to the theoretical understanding of phylogenomic 
inference and discusses how to detect phylogenetic full and partial terraces for all the 
common topological rearrangements. In Chapter 3 we show how the particular features of 
the tree space can be used for the efficient supermatrix inference in the presence of 
missing data. Chapter 4 discusses several problems from conservation biology to promote 
the application of phylogenomics in ecology and biodiversity studies. 

1.1 BACKGROUND 
 
In this section we briefly introduce the basic concepts and definitions important for the 
following chapters. 
 

1.1.1     Representation of evolution 
 
In this thesis we mainly work with phylogenetic trees. However, the methods developed 
for the application of phylogenomics in conservation biology (Chapter 4) also involve 
phylogenetic networks. Here, we provide the basic ideas of evolutionary trees and 
networks. 

It is common to represent evolutionary history by trees, where the tree leaves 
denote contemporary species and the internal nodes are the ancestors. The branching 
order reflects the speciation events and it is typically assumed that the speciation results 
in two daughter species (i.e. the degree of inner nodes is 3; such trees are called 
bifurcating). The edges reflect the descent with modification and the edge length is the 
expected number of substitutions per site. Evolutionary trees can be rooted or unrooted. 
In the following we only discuss bifurcating unrooted trees. 

When trees for the same species set exhibit different topologies (i.e. the trees are 
incongruent), phylogenetic signals from these trees can be represented by a split system. 
Each edge on the tree defines a split of taxa in two non-overlapping non-empty subsets. A 
split system is a union of all such bipartitions from corresponding incongruent trees.  

A split network is a representation of the split system (Fig. 1.2). The conflicting 
signals are represented in the split network by the parallelograms and cubes. To obtain a 
bipartition from the network one cuts either a single edge or parallel edges.  Instead of 
edge lengths, split networks use split weights. They can be computed, for example, as the 
sum of corresponding tree edge lengths weighted by the alignment lengths used to 
reconstruct these trees.  

When the trees have exactly the same species sets, no particular algorithm is 
needed to reconstruct a split system from them. One simply collects all the splits from 
these trees. For the algorithm to construct a split system and its corresponding network 
from the trees with overlapping species sets see Huson, et al. (2004). 
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unrooted one. This is called a pulley principle (Felsenstein 1981). In such a way, time-
reversibility substantially reduces the computational effort, since one only has to explore 
the space of unrooted trees.	  

The nucleotide models differ from each other in the assumptions about stationary 
base frequencies and substitution rates. For example, the simplest time-reversible 
nucleotide model, Jukes-Cantor (JC69; Jukes and Cantor 1969), assumes that nucleotides 
have uniform stationary frequencies (0.25) and the same substitution rate, 𝜇. In contrast, 
the most general time-reversible (GTR) model of nucleotide substitution (Tavare 1986) 
assumes different frequencies of nucleotide occurrence and different substitution rates for 
each pair of nucleotides. The nucleotide frequencies for GTR are typically computed 
from the input alignment and are equal to the observed base frequencies. The substitution 
rates for all nucleotide models in maximum likelihood are optimized during the tree 
reconstruction. In Bayesian inference they are sampled from parameter distributions. 

For protein models the evolutionary rates are pre-estimated from the empirical 
data (for example, see Whelan and Goldman (2001)), while the amino acid frequencies 
can either be set to !

!"
 or computed from the input alignment.  

Additionally substitution models can be augmented to account for the site rate 
heterogeneity by using the invariable-sites plus a discrete gamma distribution of rate 
variation (Gu, et al. 1995; Yang 1994). 

Apart of substitutions, evolutionary process also exhibits such mutations as 
insertion and deletion of characters (“indels”). Therefore, multiple sequence alignments 
also contain gaps, denoted by “-”, which are commonly treated as missing data. In 
likelihood-based inferences one simply sums up the likelihood over all possible states for 
each gap. 

 
1.1.3     Maximum likelihood (ML) inference 

 
All the phylogenomic analyses presented in this thesis were carried out with ML. In this 
section we provide its general description. 

ML is a well-established statistical method introduced to phylogenetics by Joseph 
Felsenstein (1981). ML aims to find a tree and model parameters that best explain the 
data – multiple sequence alignment. To this end, it maximizes the log-likelihood function 

𝐿 𝐷 𝑇,𝑀 , 

where 𝐷  is the alignment, 𝑇  denotes the tree with its edge lengths and 𝑀  is the 
substitution model. Since in phylogenetics the sites of the alignment are generally 
assumed to evolve independently, the log-likelihood is equal to the sum of per-site log-
likelihoods 

𝐿 𝐷 𝑇,𝑀 = 𝐿(𝐷!|𝑇,𝑀)
!

!!!

, 
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Sanderson, et al. (2011) discovered that in the presence of missing data under partition 
models the tree space might contain such structures as phylogenetic terraces. A 
phylogenetic terrace is a collection of species trees that have exactly the same sets of 
induced partition trees and as a result have identical score (likelihood or parsimony). The 
number of trees on one terrace as well as the number of terraces for sparse supermatrices 
can be very large (Sanderson, et al. 2011). 

 

1.1.5     Evolutionary measures of biodiversity 
 

In Chapter 4 we develop methods for phylogenomic application in conservation biology. 
This application is related to the biodiversity and its evolutionary measures. Here, we 
formally provide their definitions. 

Biodiversity refers to a variety of life, including variations in genes, species and 
functional traits. One way to quantify it is to use the evolutionary distances among 
species. Phylogenetic Diversity (PD; Faith 1992) is computed on phylogenetic tree and is 
equal to the sum of the edge lengths of the (sub)tree spanned by the species of interest.  

Another diversity measure, called Split Diversity (SD; Minh, et al. 2009), is 
computed from phylogenetic split systems and is equal to the sum of split weights 
separating at least two taxa from the species set of interest. SD generalizes PD to account 
for incongruences in phylogenetic signals from multiple genes. 
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1.2 MAIN CONTRIBUTIONS OF THE THESIS 

1.2.1     Theoretical insights into analysis of supermatrices 

In Chapter 2 we answer the question of how to quickly detect terraces during tree search. 
To this end we prove three conditions (Propositions 2.1-2.3) under which most common 
topological rearrangements, such as Nearest Neighbour Interchange (NNI), Subtree 
Pruning and Regrafting and Tree Bisection and Reconnection (Felsenstein 2004), change 
the topology of the corresponding induced partition trees. We also discuss the specific 
features of different partition models in ML and how they influence edge length 
optimization of induced partition trees. Moreover, we generalize the concept of terraces 
to partial terraces and study their occurrence for the real alignments using NNI 
neighbourhoods. Overall, our results provide theoretical insights into the structure of tree 
spaces, imposed by the missing data, as well as how to identify problematic cases like 
(partial) terraces during tree search. 

1.2.2     From theory to algorithms: efficient data structure for phylogenomic 
inference from supermatrices 

Contributing to the algorithms for phylogenomics, in Chapter 3 we introduce a 
phylogenetic terrace aware data structure (PTA) for the efficient phylogenetic inference 
from supermatrices. This data structure can be used in combination with the rules 
developed in Chapter 2 to speed up the tree search algorithms in the presence of missing 
data for all types of partition models. We implemented PTA data structure in IQ-TREE 
(Nguyen, et al. 2015) and tested its performance on 11 real alignments. Accounting for 
(partial) terraces PTA speeded up the tree reconstruction for all types of partition models 
with a maximum speed up of 5. We also compared the results with RAxML (Stamatakis 
2014) and observed that PTA implementation outperformed RAxML for the majority of 
the alignments with a maximum speed up of 6. PTA data structure is a valuable 
contribution for phylogenomic inferences from supermatrices under partition models.  

1.2.3     The application of phylogenomics: the development of computational 
techniques for conservation prioritization 

We promote the application of phylogenomics in conservation biology by providing the 
easy to use techniques for viable taxon selection (Moulton, et al. 2007) problem 
accompanied by Split Diversity. Viable taxon selection aims at prioritizing subsets of 
species for conservation actions accounting for their predator-prey relationships. We 
modelled this problem in terms of Integer Linear Programing (ILP; Gomory 1958), a well 
known method for decision-making problems. To make the concept of viability more 
realistic we generalized it to account also for the species diet composition. We 
implemented both problems in PDA (Minh, et al. 2009), which uses GUROBI (2012) 
library to solve the corresponding ILP problems. To exemplify the use of viable taxon 
selection and its generalization, we applied these problems to a real case study: Caribbean 



10 Chapter 1. Introduction 

 
coral reef community. The combination of molecular evolution and predator-prey 
interactions as well as the use of flexible ILP method makes PDA software a good 
complementary to the existing conservation prioritization tools. 
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CHAPTER 2 
 
Consequences of Common Topological 
Rearrangements for Partition Trees in 
Phylogenomic Inference 
 
 
 

In phylogenomic analysis the collection of trees with identical score (maximum 
likelihood or parsimony score) may hamper tree search algorithms. Such collections are 
coined phylogenetic terraces. For sparse supermatrices with a lot of missing data the 
number of terraces and the number of trees on the terraces can be very large. If terraces 
are not taken into account, a lot of computation time might be unnecessarily spent to 
evaluate many trees that in fact have identical score. To save computation time during the 
tree search it is worthwhile to quickly identify such cases. 

The score of a species tree is the sum of scores for all the so-called induced 
partition trees. Therefore, if the topological rearrangement applied to a species tree does 
not change the induced partition trees, the score of these partition trees is unchanged.  

Here, we provide the conditions under which the three most widely used 
topological rearrangements (Nearest Neighbouring Interchange, Subtree Pruning and 
Regrafting, and Tree Bisection and Reconnection) change the topologies of induced 
partition trees. During tree search these conditions allow us to quickly identify whether 
we can save computation time on the evaluation of newly encountered trees. We also 
introduce the concept of partial terraces and demonstrate that they occur more frequently 
than the original “full” terrace. Hence, partial terrace is the more important factor of 
timesaving compared to full terrace.  

Therefore, taking into account the above conditions and the partial terrace concept 
will help to speed up the tree search in phylogenomic inference. 

 
  



12 Chapter 2. Consequences of NNI, SPR and TBR for Partition Trees 

 
2.1 INTRODUCTION 
 

In phylogenomics one aims to reconstruct a phylogenetic species tree from 
multiple genes.  One popular approach is to infer the trees from the concatenated gene 
alignment, the so-called supermatrix (de Queiroz and Gatesy 2007; Sanderson, et al. 
1998). Here, if a gene sequence is not available for some taxon, it is represented by the 
sequence of unknown characters and is referred to as missing data. Several studies 
(Hedtke, et al. 2013; Nyakatura and Bininda-Emonds 2012; Pyron, et al. 2011; Pyron and 
Wiens 2011; Springer, et al. 2012; van der Linde, et al. 2010) use quite sparse 
supermatrices in their analysis and the percentage of missing data sometimes constitutes 
up to 95% (Peters, et al. 2011). 

Recently it has been shown that missing data can hamper the tree search via 
existence of phylogenetic terraces (Sanderson, et al. 2011), a collection of trees with 
exactly the same likelihood or parsimony score. Terraces occur in the analysis with 
partitioned data, i.e. when distinct blocks of a supermatrix are treated differently (for 
example, when each gene corresponding to one block evolves under its own evolutionary 
model). Two trees are said to belong to one terrace if the collections of their induced 
partition trees are exactly the same. Here, the induced partition tree is obtained by 
pruning the taxa on species tree, which have no sequence for the corresponding partition 
block.  

Since the number of trees on one terrace can be quite large (Sanderson, et al. 
2011), accounting for terraces in tree search algorithms can potentially save a lot of 
computation time. During the tree search one explores the tree space by moving from one 
candidate tree to another by means of topological rearrangements. If the topological 
rearrangement does not change any of the induced partition trees, then the two trees 
belong to the same terrace and a recomputation of objective function (maximum 
likelihood or maximum parsimony) used in the tree search is not necessary in order to 
evaluate a new tree.  

Here, we first specify the conditions under which the topological rearrangements 
applied to the species tree change the corresponding induced partition trees. Using these 
conditions one can quickly identify whether it is necessary to recompute the objective 
function for a given partition or not as a consequence of one of the three widely used 
rearrangements: Nearest Neighbour Interchange (NNI), Subtree Pruning and Regrafting 
(SPR) and Tree Bisection and Reconnection (TBR) (Felsenstein 2004).  

We further generalize the concept of terrace to partial terrace, which is even more 
useful in practical phylogenetic analysis. We analyse several published alignments by 
examining NNI neighbourhoods of random trees and trees encountered during the tree 
search using IQ-TREE (Nguyen, et al. 2015). We show that for large number of taxa 
partial terraces are mainly determined by the missing data and less dependent on the 
actual tree topology analysed. By taking into account partial terraces it will be possible to 
speed up the tree search algorithms even in the absence of terraces.  
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The outline of the chapter is the following. We first introduce the notations and 

then discuss the important features of NNI, SPR and TBR. Next, we specify the 
conditions when these topological rearrangements do not change the topology of induced 
partition trees. We further elucidate why such conditions are helpful even in the absence 
of terraces and define the concept of partial terrace. We analyse several published 
alignments to point out that partial terraces do occur in practice. Finally, we discuss the 
additional practical advantages of using induced partition trees in the maximum 
likelihood framework. 

 

2.2 BACKGROUND 
 

2.2.1     Basic definitions and Notations 
 

In this section we provide basic definitions and notations used throughout the chapter. For 
a complete overview see chapters 2, 3 and 6 in Semple and Steel (2003). 

 
Definition 2.1: Let 𝑋 be a taxon set. A phylogenetic tree 𝑇 of 𝑋 is a leaf-labelled 
tree with a bijection map from 𝑋 into the set of leaves of 𝑇.  

 
In the following we work only with bifurcating phylogenetic trees, i.e. all internal nodes 
have exactly three adjacent edges. 

 
Definition 2.2: A split, denoted by 𝐴|𝐵, is a bipartition of 𝑋 into two non-empty, 
non-overlapping sets 𝐴 and 𝐵, where 𝐴 ∪ 𝐵 = 𝑋. 
 

Note that 𝐴|𝐵 and 𝐵|𝐴 are equivalent. Every edge of 𝑇 is associated with a split. When 
cutting an edge 𝑒 of 𝑇 we obtain two subtrees with leaf labels 𝑋! and 𝑋!, then a split 
corresponding to 𝑒 is defined as 𝑋!|𝑋!. We denote this with 𝑒 = 𝑋!|𝑋!. We denote by 
𝛴(𝑇) a collection of all splits corresponding to edges of 𝑇. 

The symmetric difference of two sets 𝐴 and 𝐵, denoted 𝐴∆𝐵, is given by (𝐴\𝐵) ∪ (𝐵\𝐴), 
or the union of taxa present in 𝐴 but not 𝐵, and vice versa. 

 
Definition 2.3: Let 𝑇! and 𝑇! be the two leaf-labelled trees with the same label set 
𝑋 and 𝛴(𝑇!) and 𝛴(𝑇!) be the collections of splits of 𝑇! and 𝑇!, respectively. Then 
the Robinson–Foulds (RF) distance (Robinson and Foulds 1981) between 𝑇! and 
𝑇! is equal to |𝛴(𝑇!)∆𝛴(𝑇!)|. 
 

If for two trees the RF-distance between them is 0, then they have the same collection of 
splits, and from Splits-Equivalence theorem (Semple and Steel 2003; p.43) the trees are 
equivalent. 
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We next specify the condition when an SPR changes the topology of partition tree. 

Proposition 2. Let tree 𝑇 be in the form shown in Figure 2.2 and a new tree 𝑇!"# is 
obtained with SPR by pruning subtree below edge 𝑎 and regrafting it onto 𝑏!. Then for a 
partition with a taxon set 𝑌 the following is true 

(i) the topologies of 𝑇|𝑌 and 𝑇!"#|𝑌 are different, if 𝑌 has at least one representative in 
𝐴 and in at least another three subsets from 𝐵!,𝐵!,… ,𝐵!; 

(ii) this SPR will correspond to an SPR on 𝑇|𝑌 obtained by pruning the subtree below 
edge with a split 𝐴 ∩ 𝑌|(𝐵! ∪…∪ 𝐵!) ∩ 𝑌 and regrafting it onto edge with split 
𝐵! ∩ 𝑌|(∪!∈{!,..,!}\! 𝐵! ∪ 𝐴) ∩ 𝑌, where 𝑘 = max!!!!!   𝑖     𝐵! ∩ 𝑌 ≠ ∅}. 

Proof. (i) The symmetric difference 𝛴 𝑇   ∆  𝛴 𝑇!"#  consists of the following splits 

𝐴 ∪ 𝐵! ∪…∪ 𝐵!|𝐵!!! ∪…∪ 𝐵!, ∀𝑥   ∈    1,… ,𝑛 − 2 ,
𝐵! ∪…∪ 𝐵!|𝐵!!! ∪…∪ 𝐵! ∪ 𝐴, ∀𝑥   ∈    2,… ,𝑛 − 1 . 

As a consequence for the induced partition trees 𝑇|𝑌 and 𝑇!"#|𝑌 the symmetric difference 
of 𝛴 𝑇|𝑌   and 𝛴 𝑇!"#|𝑌  consists of 

(𝐴 ∪ 𝐵! ∪…∪ 𝐵!) ∩ 𝑌|(𝐵!!! ∪…∪ 𝐵!) ∩ 𝑌, ∀𝑥   ∈    1,… ,𝑛 − 2 ,
(𝐵! ∪…∪ 𝐵!) ∩ 𝑌|(𝐵!!! ∪…∪ 𝐵! ∪ 𝐴) ∩ 𝑌, ∀𝑥   ∈    2,… ,𝑛 − 1 . 

It is easy to see, that if 𝐴 ∩ 𝑌 = ∅, then all these splits would be shared by both partition 
trees, i.e. 𝛴 𝑇|𝑌   ∆  𝛴 𝑇!"#|𝑌 = ∅ and the RF-distance between 𝑇|𝑌 and 𝑇!"#|𝑌 would 
be 0. Therefore, 𝑌 must have at least one representative in 𝐴. 

For 𝑇|𝑌 and 𝑇!"#|𝑌 to have different topologies an SPR on 𝑇 should correspond to at 
least an NNI on 𝑇|𝑌 . Hence, 𝑇|𝑌  must have a corresponding quartet structure and 
together with 𝐴 at least another three subsets from 𝐵!,𝐵!,… ,𝐵! should have at least one 
representative in 𝑌. W.l.o.g. assume that together with 𝐴 also 𝐵!,𝐵! ,𝐵! (1 ≤ 𝑚 < ℎ <
𝑘 ≤ 𝑛) have at least one representative in 𝑌 while 𝐵! ∩ 𝑌 = ∅ ∀𝑗 ∈ 1,… ,𝑛 ∖ {𝑚, ℎ, 𝑘} 
(for example see Fig. 2.5). Then  

𝛴 𝑇|𝑌   ∆  𝛴 𝑇!"#|𝑌 = 𝐴 ∪ 𝐵! ∩ 𝑌 𝐵! ∪ 𝐵! ∩ 𝑌, 𝐵! ∪ 𝐵! ∩ 𝑌 𝐵! ∪ 𝐴 ∩ 𝑌 . 

Thus the RF-distance between 𝑇|𝑌 and 𝑇!"#|𝑌 is 2. 

(ii) Let 𝐼 = {𝑖!, . . , 𝑖!} be the set of all indices, such that ∀𝑖 ∈ 𝐼:  𝐵! ∩ 𝑌 ≠ ∅ and let 
1 ≤ 𝑖! < ⋯ < 𝑖! ≤ 𝑛.  

For edge 𝑎 = 𝐴|𝐵! ∪…∪ 𝐵! its corresponding split on the partition tree 𝑇|𝑌 is equal to  

𝐴 ∩ 𝑌| 𝐵! ∪…∪ 𝐵! ∩ 𝑌 = 𝐴 ∩ 𝑌| ∪!∈! 𝐵! ∩ 𝑌 . 

Similarly for 𝑒!!!! its corresponding split on 𝑇|𝑌 

𝐴 ∪ 𝐵! ∪…∪ 𝐵!!!! ∩ 𝑌 𝐵!! ∪…∪ 𝐵! ∩ 𝑌 = ∪!∈!∖!! 𝐵! ∪ 𝐴 ∩ 𝑌 𝐵!! ∩ 𝑌, 

and for 𝑒!!!!
!"#  its corresponding split on the partition tree 𝑇!"#|𝑌 

𝐵! ∪…∪ 𝐵!!!! ∩ 𝑌 𝐵!! ∪…∪ 𝐵! ∪ 𝐴 ∩ 𝑌 = ∪!∈!∖!! 𝐵! ∩ 𝑌 𝐵!! ∪ 𝐴 ∩ 𝑌. 
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We now discuss TBR and the topological change of a partition tree as a consequence of 
TBR on species tree. 
Proposition 3. Let tree 𝑇 be in the form shown in Figure 2.3 and a new tree 𝑇!"# is 
obtained by cutting edge 𝑒 and reconnecting 𝑏! and 𝑐! with a new edge. Then for a 
partition with a taxon set 𝑌 the following is true 

(i) the topologies of 𝑇|𝑌 and 𝑇!"#|𝑌 are different, if at least one of the following 
conditions is satisfied  

− 𝑌 has at least one representative in at least one subset from 𝐵!,𝐵!,… ,𝐵! and in at least 
another three subsets from 𝐶!,𝐶!,… ,𝐶!, 

− 𝑌 has at least one representative in at least one subset from 𝐶!,𝐶!,… ,𝐶! and in at least 
another three subsets from 𝐵!,𝐵!,… ,𝐵!; 

(ii) this TBR will correspond to a TBR on 𝑇|𝑌 obtained by cutting the edge with split 
(𝐵! ∪…∪ 𝐵!) ∩ 𝑌|(𝐶! ∪…∪ 𝐶!) ∩ 𝑌  and reconnecting edges with splits 
𝐵! ∩ 𝑌|(∪!∈ !,..,! \! 𝐵! ∪ 𝐶! ∪…∪ 𝐶!) ∩ 𝑌  and 𝐶! ∩ 𝑌|(∪!∈ !,..,! \! 𝐶! ∪ 𝐵! ∪…∪
𝐵!) ∩ 𝑌,  where 𝑘 = max!!!!!   𝑖     𝐵! ∩ 𝑌 ≠ ∅}  and ℎ = max!!!!!   𝑗     𝐶! ∩ 𝑌 ≠
∅}. 

Proof. (i) The symmetric difference 𝛴 𝑇   ∆  𝛴 𝑇!"#  consists of the following splits 

𝐶! ∪…∪ 𝐶! ∪ 𝐵! ∪…∪ 𝐵!|𝐵!!! ∪…∪ 𝐵!, ∀𝑥   ∈    1,… ,𝑛 − 2 ,
𝐵! ∪…∪ 𝐵!|𝐵!!! ∪…∪ 𝐵! ∪ 𝐶! ∪…∪ 𝐶!, ∀𝑥   ∈    2,… ,𝑛 − 1 ,
𝐵! ∪…∪ 𝐵! ∪ 𝐶! ∪…∪ 𝐶!|𝐶!!! ∪…∪ 𝐶!,
𝐶! ∪…∪ 𝐶!|𝐶!!! ∪…∪ 𝐶! ∪ 𝐵! ∪…∪ 𝐵!,

∀𝑦   ∈    1,… ,𝑚 − 2 ,
∀𝑦   ∈    2,… ,𝑚 − 1 .

 

As a consequence the symmetric difference 𝛴 𝑇|𝑌   ∆  𝛴 𝑇!"#|𝑌  consists of 

(𝐶! ∪…∪ 𝐶! ∪ 𝐵! ∪…∪ 𝐵!) ∩ 𝑌|(𝐵!!! ∪…∪ 𝐵!) ∩ 𝑌, ∀𝑥   ∈    1,… ,𝑛 − 2 ,
(𝐵! ∪…∪ 𝐵!) ∩ 𝑌|(𝐵!!! ∪…∪ 𝐵! ∪ 𝐶! ∪…∪ 𝐶!) ∩ 𝑌, ∀𝑥   ∈    2,… ,𝑛 − 1 ,
(𝐵! ∪…∪ 𝐵! ∪ 𝐶! ∪…∪ 𝐶!) ∩ 𝑌|(𝐶!!! ∪…∪ 𝐶!) ∩ 𝑌,
(𝐶! ∪…∪ 𝐶!) ∩ 𝑌|(𝐶!!! ∪…∪ 𝐶! ∪ 𝐵! ∪…∪ 𝐵!) ∩ 𝑌,

∀𝑦   ∈    1,… ,𝑚 − 2 ,
∀𝑦   ∈    2,… ,𝑚 − 1 .

 

It is easy to see, that if ∀𝑖 ∈ 1, . . ,𝑛 : 𝐵! ∩ 𝑌 = ∅, then all these splits would be shared 
by both partition trees, i.e. 𝛴 𝑇|𝑌   ∆  𝛴 𝑇!"#|𝑌 = ∅ and the RF-distance between 𝑇|𝑌 
and 𝑇!"#|𝑌 would be 0. Therefore, 𝑌 must have at least one representative in at least one 
from 𝐵!,𝐵!,… ,𝐵!. Similarly, 𝑌 must have at least one representative in at least one from 
𝐶!,𝐶!,… ,𝐶!.  

W.l.o.g. assume that 𝐵! ∩ 𝑌 ≠ ∅  and 𝐶! ∩ 𝑌 ≠ ∅ , where 1 ≤ 𝑘 ≤ 𝑛  and 
1 ≤ ℎ ≤ 𝑚. 

Partition trees 𝑇|𝑌 and 𝑇!"#|𝑌 will have different topologies, if a TBR on 𝑇 corresponds 
to at least an NNI on 𝑇|𝑌. Hence, the partition tree 𝑇|𝑌 must have a corresponding 
quartet structure and together with 𝐵!  and 𝐶!  at least another two subsets from the 
remaining 𝐵! and 𝐶! should have at least one representative in 𝑌. 



2.3    Consequences of topological rearrangements applied to a species tree 21 

	  
W.l.o.g. assume that together with 𝐵!  and 𝐶!  also 𝐶!,𝐶!  (1 ≤ 𝑝 < 𝑞 < ℎ ≤ 𝑚) 

have at least one representative in 𝑌 (Fig. 2.6a). Then it is easy to show that  

𝛴 𝑇|𝑌   ∆  𝛴 𝑇!"#|𝑌 = {(𝐵! ∪ 𝐶!) ∩ 𝑌|(𝐶! ∪ 𝐶!) ∩ 𝑌, (𝐶! ∪ 𝐶!) ∩ 𝑌|(𝐶! ∪ 𝐵!) ∩ 𝑌} 

and RF-distance between 𝑇|𝑌 and 𝑇!"#|𝑌 is 2. 

Similarly, one can show that if together with 𝐵! and 𝐶! also 𝐵!,𝐵! (1 ≤ 𝑝 < 𝑞 <
𝑘 ≤ 𝑛) have at least one representative in 𝑌, then RF-distance between 𝑇|𝑌 and 𝑇!"#|𝑌 is 
also 2. 

In contrast, if 𝑌  has at least one representative in 𝐵! , 𝐶!  and also in 𝐵!,𝐶! 
(1 ≤ 𝑝 < 𝑘 ≤ 𝑛 and 1 ≤ 𝑞 < ℎ ≤ 𝑚), then 𝛴 𝑇|𝑌   ∆  𝛴 𝑇!"#|𝑌 = ∅ and RF-distance is 
0 (Fig. 2.6b). 

(ii) Let 𝐼 = {𝑖!, . . , 𝑖!} be the set of all indices, such that ∀𝑖 ∈ 𝐼:  𝐵! ∩ 𝑌 ≠ ∅ and let 
1 ≤ 𝑖! < ⋯ < 𝑖! ≤ 𝑛. Similarly let 𝐽 = {𝑗!, . . , 𝑗!} be the set of all indices, such that 
∀𝑗 ∈ 𝐽:  𝐶! ∩ 𝑌 ≠ ∅ and let 1 ≤ 𝑗! < ⋯ < 𝑗! ≤ 𝑚. Then for edge  

𝑒 = 𝐵! ∪…∪ 𝐵!|𝐶! ∪…∪ 𝐶! 

the corresponding split on 𝑇|𝑌 is 

∪!∈! 𝐵! ∩ 𝑌  | ∪!∈! 𝐶! ∩ 𝑌. 

For edge  

𝑒!!!! = 𝐶! ∪…∪ 𝐶! ∪ 𝐵! ∪…∪ 𝐵!!!!|𝐵!! ∪…∪ 𝐵! 

its corresponding split on tree 𝑇|𝑌 is  

𝐶! ∪…∪ 𝐶! ∪ 𝐵! ∪…∪ 𝐵!!!! ∩ 𝑌| 𝐵!! ∪…∪ 𝐵! ∩ 𝑌 = 

= ∪!∈! 𝐶! ∩ 𝑌 ∪ ∪!∈!∖!! 𝐵! ∩ 𝑌 |𝐵!! ∩ 𝑌. 

Similarly for the corresponding edge on 𝑇!"#  𝑒!!!!
!"# = 𝐵! ∪…∪ 𝐵!!!!|𝐵!! ∪…∪ 𝐵! ∪

𝐶! ∪…∪ 𝐶! its split on 𝑇!"#|𝑌 is 

𝐵! ∪…∪ 𝐵!!!! ∩ 𝑌| 𝐵!! ∪…∪ 𝐵! ∪ 𝐶! ∪…∪ 𝐶! ∩ 𝑌 = 

= ∪!∈!∖!! 𝐵! ∩ 𝑌 | 𝐵!! ∩ 𝑌 ∪ ∪!∈! 𝐶! ∩ 𝑌 . 

For edges  

𝑧!!!! = 𝐵! ∪…∪ 𝐵! ∪ 𝐶! ∪…∪ 𝐶!!!!|𝐶!! ∪…∪ 𝐶! 

and  

𝑧!!!!
!"# = 𝐶! ∪…∪ 𝐶!!!!|𝐶!! ∪…∪ 𝐶! ∪ 𝐵! ∪…∪ 𝐵! 

their corresponding splits on 𝑇|𝑌 and 𝑇!"#|𝑌 are 

∪!∈! 𝐵! ∩ 𝑌 ∪ ∪!∈!∖!! 𝐶! ∩ 𝑌 |𝐶!! ∩ 𝑌 

and  





2.4    Partial Terraces 23 

	  
2.4 PARTIAL TERRACES 
 

2.4.1     Definition of partial terraces 
 

In this section we discuss partial terraces that generalize the terrace concept (Sanderson, 
et al. 2011), which we call full terrace for clarity. When comparing the two trees in a 
partitioned framework we compare the sets of their induced partition trees. If the sets are 
identical, then the two trees belong to one full terrace. Sanderson, et al. (2011) showed 
that the number of trees on one full terrace can be quite large. Large full terraces pose a 
problem in phylogenetic inference, since they may abort tree search prematurely or even 
if an optimal tree has been found, this tree is by no means unique. To reduce this 
problem, it is possible to reduce the terrace size by, for example, choosing a different 
partition scheme (Sanderson, et al. 2015) or by excluding some taxa from the analysis.  

Now, if two species trees 𝑇!  and 𝑇!  share only a subset of identical induced 
partition trees, then we say that they belong to the same partial terrace. The log-
likelihoods and parsimony scores of identical partition trees 𝑇!|𝑌! and 𝑇!|𝑌! are the same. 
Obviously, partial terraces occur more frequently than full terraces (see below). Large 
partial terraces can be still problematic for tree search algorithms. On the other hand, 
partial terraces provide the potential to reduce computation time.  

 

2.4.2     Occurrence of partial terraces in real data 
 
In this section we evaluate how often partial terraces occur in real alignments. By no 
means we intend to make a full exploration of potential computing time that may be 
saved since the performance of the particular software will depend on the data structures 
and particular implementation used for the tree space exploration. 

To elucidate the occurrence of partial terraces and full terraces we analysed 7 
recently published alignments (Table 2.1). Alignments have different number of taxa 
ranging from 69 to 404 taxa. The number of partitions (here, genes) varies from 11 to 79. 

 

Type and ID No. Species No. Genes Missing Data Source 

DNA1 128 32 30% Stamatakis and Alachiotis (2010) 
DNA2 237 74 72% Nyakatura and Bininda-Emonds (2012) 
DNA3 372 79 66% Springer, et al. (2012) 
DNA4 404 11 60% Stamatakis and Alachiotis (2010) 

AA1 69 31 35% 
De Queiroz, et al. (1995) AA2 70 35 34% 

AA3 72 51 35% 

Table 2.1. The alignments used to study the occurrence of partial terraces during the tree search. 
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For each alignment we performed a maximum likelihood tree search using IQ-TREE 
(Nguyen, et al. 2015) under EUL partition model assuming the GTR+𝛤 (Lanave, et al. 
1984; Yang 1994) and the LG+𝛤 (Le and Gascuel 2008; Yang 1994) models for all 
partitions in the DNA and the AA alignments, respectively. We collected all the 
intermediate trees encountered during the search. For each intermediate tree 𝑇  we 
explored all trees 𝑇!!" in its NNI neighbourhood. We examined partial terraces of each 
𝑇!!" and 𝑇 by computing how many induced partition trees are shared between them.  

Apart from intermediate trees collected during the tree search, we also analysed 
NNI neighbourhoods for 1000 random Yule-Harding (YH) trees (Harding 1971) for each 
tested alignment.  

We defined 12 bins based on the percentage of shared induced partition trees 
between 𝑇 and 𝑇!!" (Table 2.2) and counted how many 𝑇!!" trees fall into each bin.  

 

Name Percentage of shared partition trees  
out of the total number of partition trees 

no Partial Terrace (PT) = 0%, the topologies of all partition trees are pairwise different between 𝑇 and 𝑇!!" 

PT1 (0%, 10%]  
PT2 (10%, 20%] 
PT3 (20%, 30%] 
... ... 
PT9 (80%, 90%] 
PT10 (90%, 100%) 

Full Terrace =100%, 𝑇 and 𝑇!!" belong to one terrace 

Table 2.2. Partial Terrace bins based on the percentage of the shared partition trees between 𝑇 and 𝑇!!". 
 
Table 2.3 shows the mean percentage of 𝑇!!" trees that fall into corresponding bin 

for the intermediate trees. Figure 7 displays the boxplots for the first three alignments 
from Table 2.1 either for the IQ-TREE search trees (left column) or the random YH trees 
(right column) (see Appendix A Fig. A1 - A4 for the remaining alignments). 

 

(%) 
no 
PT 

PT1 PT2 PT3 PT4 PT5 PT6 PT7 PT8 PT9 PT10 
Full 

Terrace 

DNA1 7.14 12.97 4.85 1.80 3.55 32.59 37.11 0 0 0 0 0 
DNA2 0 0 0.02 0.63 1.82 5.07 11.31 8.69 18.19 10.77 41.75 1.75 
DNA3 0 2.75 5.38 9.22 10.06 6.32 4.34 1.33 0.23 6.38 50.36 3.63 
DNA4 0.35 0.26 1.88 4.06 5.20 6.56 8.77 11.34 16.48 23.37 17.68 4.05 

AA1 12.11 10.64 7.47 8.10 6.35 15.42 11.28 8.20 10.50 7.18 2.76 0 
AA2 8.73 11.90 6.77 9.10 11.22 9.08 16.27 10.95 11.63 2.92 1.44 0 
AA3 12.25 11.62 4.07 7.15 3.04 15.47 15.43 10.40 7.55 7.92 4.85 0.26 

Table 2.3. The mean percentage of trees from NNI neighbourhood of intermediate trees falling into 
corresponding partial terrace bin. 
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 Intermediate and random trees have similar percentages of 𝑇!!"  trees across 
different bins (Fig. 2.7, Appendix A Fig. A1-A4). This suggests that the general picture of 
partial terraces is mainly determined by the spread of missing data in the supermatrix and 
is less dependent on the actual tree topology. Moreover, increasing the number of taxa 
tends to decrease the variance of 𝑇!!" percentage within each bin (for both intermediate 
and random trees). 

Figure 2.8 integrates the information from Tables 2.2 and 2.3 and provides with a 
rough estimates of potential computational savings, if accounting for partial and full 
terraces. The green bars reflect the average percentage of identical induced partition trees 
when 𝑇!!" is compared to 𝑇.  

For example, for DNA1 there is no full terrace, but we observe partial terraces 
that may lead to a reduction of about 38% (the percentage of green bars) in computation 
time. 

There is a full terrace for DNA2, but it consists of only 1.75% of the NNI 
neighbourhood. Whereas partial terraces constitute the remaining 98.25% and lead to a 
potential reduction of computations of about 80% (the percentage of green bars). In fact, 
since no 𝑇!!" tree falls into “no PT” bin, we can save some computation time for all the 
trees encountered during tree search. Similar trend is observed for DNA3 and DNA4 with 
the predicted timesaving of 71% for each alignment. 
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Under EUL partition model there is no need to optimize the edge lengths of 
partitioned trees shared between 𝑇 and 𝑇!"#. As a result the log-likelihood of the 
corresponding partition trees is the same. 
 
In contrast to the EUL model, the edges between 𝑇 and partition trees are linked in 

the EL model. That means there is only one set of edge lengths for 𝑇 and partition trees 
with the possibility of rescaling edge lengths of each partition tree by a partition-specific 
evolutionary rate.  Therefore, the optimization of edge lengths is done on the species tree. 
Even if a topological rearrangement on 𝑇 does not change the topology of partition tree, it 
still affects the optimal partition tree likelihood via optimization of edge lengths. This is 
also the reason why full terraces cannot occur under the EL model (Sanderson, et al. 
2015).  

Theoretically, one would need to optimize each edge on the species tree, which 
would definitely influence the partition tree edge lengths and also the likelihood. But in 
practice to save computations, one only optimizes those edges in the vicinity of 
topological changes (Guindon, et al. 2010; Nguyen, et al. 2015; Stamatakis, et al. 2005) 
For example, for an NNI one only re-optimizes the five edge lengths (𝑒, 𝑒!, 𝑒!, 𝑒!, 𝑒!) 
around the swap. Under EL model such particular feature of practical optimization can 
take an advantage when considering the induced partition trees.  

 
Given a partition tree with taxon set 𝑌 and an edge 𝑒 on 𝑇 with the corresponding 
split 𝐴|𝐵, if 𝐴 ∩ 𝑌 = ∅  𝑜𝑟  𝐵 ∩ 𝑌 = ∅, then the optimization of 𝑒 does not affect the 
likelihood of 𝑇|𝑌. 
 
In this case a split 𝐴|𝐵 does not have a corresponding split in 𝛴(𝑇|𝑌) and therefore, 

edge 𝑒 is not linked to any edge on 𝑇|𝑌. This observation can be exploited to save 
computing time. 
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2.6 DISCUSSION 
 
We have shown that it is advantageous to identify and account for full and partial terraces 
during the tree search in phylogenomics. One main advantage is the saving of 
computation time. If two trees belong to the same full or partial terrace, then one needs to 
compute the objective function for the identical partition trees only once. The values of 
objective function will be the same for these partition trees. The larger the number of 
identical partition trees between species trees is the more computation time can be saved. 

From the conditions discussed in the previous sections, the topological 
rearrangement that benefits the most from partial terraces is obviously NNI. It is intuitive 
that NNI applied to the species tree will not change the topology of partition trees more 
often than SPR or TBR. However, in tree searches one typically applies short SPR (e.g., 
RAxML), i.e., the number of edges between the pruning and the regrafting edges are 
much smaller than the number of taxa. The same is true for TBR. And since one also 
expects short SPR and short TBR to result in no change of partition trees quite often for 
sparse supermatrices, partial terraces are also beneficial for these rearrangements.  

Moreover, the use of induced partition trees has another advantage that long SPR 
or TBR on a species tree 𝑇, as a result of missing data, might correspond to a much 
shorter SPR or TBR on 𝑇|𝑌. This leads to computation saving even if SPR or TBR 
change the topology of the induced partition trees. 

Here, we elucidated the frequent existence of partial terraces in practice via NNI 
neighbourhoods, showing that partial terraces are not only a theoretical concept, but also 
have practical implications in phylogenomics. The predicted timesaving for the examined 
real alignments are only the rough estimates, since we treated the alignment lengths per 
partition as equal. If the length of alignment corresponding to the shared partition trees is 
relatively large compared to the whole supermatrix, than one expects even more speed up. 

Another important factor for timesaving is the actual implementation of search 
strategies in the particular software. We plan to implement efficient techniques to take 
full advantage of partial and full terraces in IQ-TREE. A more thorough analysis of such 
techniques will be presented elsewhere. 
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CHAPTER 3 
 
Terrace Aware Data Structure for Phylogenomic 
Inference from Supermatrices 
 
 

In phylogenomics the analysis of concatenated gene alignments, the so-called 
supermatrix, is commonly accompanied by the assumption of partition models. Under 
such models each gene, or more generally partition, is allowed to evolve under its own 
evolutionary model. Though partition models provide a more comprehensive analysis of 
supermatrices, missing data may hamper the tree search algorithms by the existence of 
phylogenetic (partial) terraces.  

Here we introduce the phylogenetic terrace aware (PTA) data structure for 
efficient analysis under partition models. In the presence of missing data PTA exploits 
(partial) terraces and induced partition trees to save computation time.  

We show that an implementation of PTA in IQ-TREE leads to a substantial 
speedup of up to 5 and 6 times compared with the standard IQ-TREE and RAxML 
implementations, respectively. PTA is generally applicable to all types of partition 
models and common topological rearrangements thus can be employed by all 
phylogenomic inference software. 
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3.1 INTRODUCTION 
 

The gigantic amount of sequence data generated by next generation sequencing 
technologies has spurred phylogenomics (Delsuc, et al. 2005; Eisen 1998; Kumar, et al. 
2012). Here, one aims to infer the tree of life from multiple genes, loci, or even whole 
genomes, which provide enough phylogenetic information to resolve difficult branching 
orders (Bininda-Emonds, et al. 1999; Dunn, et al. 2008; Meusemann, et al. 2010; Rokas, 
et al. 2003). 

Phylogenomic inference methods are categorized into supertree and supermatrix 
methods (Bininda-Emonds, et al. 2002; De Queiroz, et al. 1995; Delsuc, et al. 2005; 
Kupczok, et al. 2010; Sanderson, et al. 1998). Supertree methods either combine inferred 
(gene) trees into one “supertree” or concurrently reconstruct gene trees and species tree. 
Supermatrix refers to the concatenation of multiple sequence alignments from different 
genes. Unavailable sequences are substituted in the supermatrix by gaps and constitute 
the so-called missing data. Traditional phylogenetic methods are then used to reconstruct 
the species tree from the concatenated alignment.  

Complex evolutionary scenarios of multi-gene data sets raise additional 
difficulties for phylogenetic inferences from supermatrices. For example, failure to 
account for heterogeneous evolution caused by heterotachy (Lopez, et al. 2002), i.e. when 
evolutionary rates vary over time, leads to systematic errors in phylogenetic 
reconstruction (Kolaczkowski and Thornton 2004; Philippe, et al. 2005). 

To account for different evolutionary scenarios partition models were introduced 
(Yang 1996) that allow genes to evolve with different substitution models. Three types of 
partition models Edge-Unlinked, Edge-Linked-joint and Edge-Linked-proportional are 
implemented in many maximum likelihood (ML) software packages (Table 3.1). 

 
Software EL-joint EL-proportional EUL 

MetaPIGA (Helaers and Milinkovitch 2010) x x  
PhyML (Guindon, et al. 2010)    
GARLI (Zwickl 2006) x x  
RAxML (Stamatakis 2014) x  x 
TreeFinder (Jobb, et al. 2004) x x x 
IQ-TREE (Nguyen, et al. 2015) x x x 

Table 3.1. Availability of partition models in ML tree search software. 
 
The Edge-Unlinked (EUL) partition model, where each partition has its own set of edge 
lengths is the most general. However, due to missing data an EUL model may lead to 
phylogenetic terraces (Sanderson, et al. 2011), where different tree topologies have 
identical score (ML or parsimony). The more restrictive Edge-Linked (EL) partition 
models could be used to avoid terraces, but assuming these models in the presence of 
heterotachy can be misleading (Sanderson, et al. 2015). 
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Large phylogenetic terraces may hamper a thorough exploration of tree space by 

current search algorithms. When encountering a large terrace during the tree search a lot 
of computation time is spent on the evaluation of equally optimal trees. Therefore, it is 
important to detect terraces and to avoid unnecessary computations.  

Recently, we generalized the concept of terraces to partial terraces (Chernomor, 
et al. 2015) and provided conditions to quickly identify their occurrences for a species 
tree and a supermatrix. We also predicted how much time could be saved when 
accounting for (partial) terraces during the tree search. However, an efficient 
implementation of the theoretical results was not provided. 

Here, we first provide the background of phylogenetic partial terraces and the rule 
to quickly detect them. We then formally review the three partition models. Next, we 
describe a phylogenetic terrace aware (PTA) data structure and provide a dynamic 
programming algorithm to build it. We reformulate condition to quickly identify partial 
terraces and discuss additional timesaving features of different partition models in ML 
inference. We implemented PTA and the rule to detect partial terraces in IQ-TREE. We 
finally analyse the efficiency of PTA by examining 11 published alignments and compare 
the results with the standard IQ-TREE implementation and with RAxML. 

 

3.2 BACKGROUND 
 

3.2.1     Partial and full phylogenetic terraces 
 

Let 𝑘 ≥ 2 denote the number of genes, loci, or codon positions of protein-coding DNA in 
a supermatrix. In the following we use “partition” to generally refer to any subset of 
genomic positions. Denote by 𝑌!,𝑌!,… ,𝑌!  the species sets for the k partitions and 
𝑋 = 𝑌! ∪ 𝑌! ∪…∪ 𝑌!  the set of all species. 𝑆!, 𝑆!,… , 𝑆!  denote the corresponding 
alignments and 𝑆 is the concatenated alignment (supermatrix) of 𝑆!, 𝑆!,… , 𝑆!. Stretches 
of unknown characters are added to 𝑆 if a species has no sequence for some partition (i.e., 
when 𝑌! ≠ 𝑋). 

For a species tree 𝑇 and a given partition 𝑌!, the associated induced partition tree, 
denoted 𝑇|𝑌! , is the tree obtained from 𝑇 by pruning species with no sequence for 
partition 𝑌!  (i.e. missing sequences). Hence, for every species tree there is a 
corresponding set of 𝑘 induced partition trees. 

If for two species trees 𝑇! and 𝑇! there exists a set of indices 𝐽 ⊆ 1,… , 𝑘  such 
that ∀𝑗 ∈ 𝐽 the corresponding induced partition trees 𝑇!|𝑌! and 𝑇!|𝑌! are identical then it is 
said that 𝑇! and 𝑇! belong to one partial terrace (Chernomor, et al. 2015). In this context, 
a phylogenetic terrace coined in Sanderson, et al. (2011) is a special case when 
𝐽 = 1,… , 𝑘 . For clarity we call this case a full terrace. For ∀𝑗 ∈ 𝐽 the scores (ML or 
parsimony) of 𝑇!|𝑌! and 𝑇!|𝑌! are equal. Therefore, if during the tree search we identify 
full terrace, one needs to compute the score of 𝑇!|𝑌! or 𝑇!|𝑌! only once ∀𝑗 ∈ 𝐽. 
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3.2.3     Partition models 

 
Partition models allow for different evolutionary scenarios for each partition. More 
formally, each partition 𝑌!   is assumed to evolve under its own substitution model 𝑀! and 
the model parameters of each 𝑀! are optimized separately on the corresponding partition 
tree. 

The log-likelihood of a species tree 𝑇 under a partition model 𝑀 is the sum of 
partition tree log-likelihoods 

ℓ𝓁(𝑇,𝑀  |  𝑆) = ℓ𝓁
!

!!!

(𝑇|𝑌! ,𝑀!   |  𝑆!).       1  

Here, the log-likelihood ℓ𝓁 of the partition trees depends on the topology and the 
edge lengths of each 𝑇|𝑌!. The relation of edge lengths between species tree and partition 
trees is what distinguishes partition models. 

The most general EUL model, denoted by 𝑀!"#, allows each partition tree 𝑇|𝑌! to 
have its own set of edge lengths that are optimized separately per partition tree. We 
denote a length of 𝑒 on 𝑇|𝑌! by 𝜆!(𝑒). The EUL model implies that the species tree 𝑇 has 
no defined edge lengths. However, one can display the edge lengths for 𝑇, for example, as 
the weighted average of corresponding edges on partition trees. 

In contrast to EUL, the more restrictive EL models assume relationships between 
edge lengths of the species tree and all partition trees. The EL-proportional model, 
denoted by 𝑀!!!"#!, assumes one set of edge lengths, 𝜆(. ), for the species tree 𝑇 and 
rescales the partition trees with specific positive rates 𝑟!, 𝑟!,… , 𝑟! such that the weighted 

average rate is 1 (i.e., !!!!
!
!!!

!!!
!!!

= 1, where 𝑤! is the length of partition alignment 𝑆!). The 

partition rates 𝑟! are optimized separately for each partition tree.  

The second EL model, EL-joint, denoted by 𝑀!!!"#$%, is a special case of 𝑀!!!"#! 
with all the partition rates equal to 1 (i.e., 𝑟! = 𝑟! = ⋯ = 𝑟! = 1). This simply means that 
the edge lengths of partition trees are equal to the lengths of corresponding edges on the 
species tree. 

In contrast to 𝑀!"# , which optimizes the edge lengths per partition tree, EL 
models optimize edge lengths, 𝜆(. ), on the species tree. 
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3.3 PHYLOGENETIC TERRACE AWARE DATA STRUCTURE 
 
In this section we introduce the phylogenetic terrace aware (PTA) data structure, which 
facilitates the detection and handling of partial terraces during the tree search and 
provides an efficient analysis of supermatrices. PTA consists of the species tree, the set of 
its induced partition trees and the set of maps, which link edges of the species tree to each 
induced partition tree. In the following we introduce this map and an efficient algorithm 
to build it. 
 

3.3.1     Map from the species tree onto partition trees 
 
Let 𝐸 denote the set of all edges of T and 𝐸! the edge set of 𝑇|𝑌!. We represent each edge 
𝑒 ∈ 𝐸 by its split 𝑒 = 𝐴|𝐵, where 𝐴 and 𝐵 are disjoint complementary non-empty subsets 
of the leaf set 𝑋 with 𝑋 = 𝑛. For every partition 𝑌! we introduce the map 

𝑓!:𝐸 → 𝐸! ∪ 𝜀 , 

𝑓! 𝑒 = 𝐴 ∩ 𝑌!|𝐵 ∩ 𝑌! , if  𝐴 ∩ 𝑌! ≠ ∅  and  𝐵 ∩ 𝑌! ≠ ∅
𝜀,                          otherwise.       (2) 

In supertree terminology, 𝑓!(. ) is the map from supersplits in T to subsplits (or partial 
splits) in 𝑇|𝑌! (Semple and Steel 2003; chap. 6). Every supersplit has no or exactly one 
corresponding subsplit, whereas a subsplit has one or more corresponding supersplits. If a 
supersplit has no corresponding subsplit, we equate its map to 𝜀. Basically, 𝑓!(𝑒), if not 
equal to 𝜀, is an edge on 𝑇|𝑌! corresponding to 𝑒. 

The collection of all maps 𝐹 = 𝑓!,… , 𝑓!  together with the trees  
𝑇,𝑇 𝑌!,… ,𝑇 𝑌!  forms the PTA data structure for partition model analyses. 

 
3.3.2     An efficient algorithm for building 𝑭 

 
We now describe a dynamic programming algorithm to build 𝐹  in linear time for 
unrooted bifurcating trees using a post-order tree traversal. It first assigns 𝑓! for external 
edges and then proceeds towards internal edges of the tree once the two neighbouring 
edges have already been processed. More specifically, let 𝑒 = 𝑥 |𝑋\ 𝑥 ∈ 𝐸  be an 
external edge then 

𝑓! 𝑒 =
𝜀, 𝑥 ∉ 𝑌!

𝑥 |𝑌!\ 𝑥 , 𝑥 ∈ 𝑌!
              (3) 

Obviously, Eq. (3) follows directly from Eq. (2). Now, let 𝑒 be an internal edge and 
𝑒, 𝑒!, 𝑒! are adjacent edges. Then if 𝑒!, 𝑒! have already been processed, we assign 𝑓! 𝑒  as 
follows: 

𝑓! 𝑒 =

𝜀, 𝑓! 𝑒! = 𝑓! 𝑒!
𝑓! 𝑒! , 𝑓! 𝑒! ≠ 𝜀  and  𝑓! 𝑒! = 𝜀
𝑓! 𝑒! , 𝑓! 𝑒! = 𝜀  and  𝑓! 𝑒! ≠ 𝜀

 𝑒!∗, otherwise,

   4  

where 𝑒!∗ is an edge on 𝑇|𝑌! adjacent to 𝑓!(𝑒!) and 𝑓!(𝑒!).  





3.3    Phylogenetic Terrace Aware data structure 37 

	  
The described algorithm builds 𝐹  in 𝑂 𝑛𝑘  time, where 𝑛  and 𝑘  are the number of 
species and partitions respectively. Note that 𝐹 has to be recomputed each time the 
topology of the species tree changed. In the following we present how to update the PTA 
when an NNI is applied to the species tree. 
 

3.3.3     Identifying unchanged partition trees with PTA 
 
For a species tree 𝑇 and a partition 𝑌! condition (*) provides a check whether an NNI 
applied to 𝑒 changes the topology of 𝑇|𝑌!. Using the map notation, (*) is equivalent to 
 

“For a partition with a taxon set 𝑌!  the topologies of 𝑇|𝑌!  and 
𝑇!!"|𝑌! are different iff all 𝑓! 𝑒! , 𝑓! 𝑒! , 𝑓! 𝑒! , 𝑓! 𝑒! ≠ 𝜀.” 

(**) 

 
Condition (**) follows directly from (*) and the definition of 𝑓!(. ).  

When an NNI is applied to 𝑒, one updates each partition tree 𝑇|𝑌! using two rules: 

1. If all 𝑓! 𝑒! , 𝑓! 𝑒! , 𝑓! 𝑒! , 𝑓! 𝑒! ≠ 𝜀 , then 𝑇!!"|𝑌!  will result from 𝑇|𝑌!  by 
swapping the corresponding edges. For example, if 𝑒! and 𝑒! are swapped on 𝑇, 
then 𝑓! 𝑒!  and 𝑓! 𝑒!  are swapped on 𝑇|𝑌!. 

2. Otherwise, the topologies of 𝑇!!"|𝑌! and 𝑇|𝑌! are identical. Thus, we keep the tree 
topology of 𝑇|𝑌! and have to update 𝑓! 𝑒  according to Eq. (4). 

Under the EUL partition model when computing the log-likelihood of 𝑇!!" we only have 
to compute the log-likelihood of 𝑇!!"|𝑌! in the first case. In the second case the optimal 
log-likelihoods of 𝑇|𝑌! and 𝑇!!"|𝑌! are equal. This advantage comes from the fact that 
under EUL model the edge lengths of partition trees are optimized independently. 
Therefore, if the topologies of 𝑇!!"|𝑌! and 𝑇|𝑌! are identical, there is no need to optimize 
edges. Thanks to this, the computing time for the EUL model benefits a lot from partial 
terraces. In fact, when 𝑇!!" and 𝑇 belong to one full terrace, i.e. when for all partitions 
condition (**) is not satisfied, no recomputation is necessary at all. 

More restrictive EL models require additional care. Since under EL models the 
edges of the species tree and partition trees are “linked”, together with the topological 
changes of 𝑇|𝑌! we also have to account for changes of edge lengths. Using the map 𝑓!(. ), 
the edge lengths of partition tree 𝑇|𝑌! are computed as 

𝜆! 𝑒! = 𝑟!   × 𝜆 𝑒
!∈!:!! ! !!!

,          ∀𝑒! ∈ 𝐸! .              (8) 

Therefore, each time map 𝑓!(. ) is changed, the edge lengths on 𝑇|𝑌! will also change.  

If the topology of 𝑇|𝑌! is not changed by the NNI (i.e. condition (**) is not 
satisfied), there are four different cases possible, which lead to varying computational 
timesavings (see Appendix B.2). 

For EL models PTA helps to save computation time during edge length 
optimization. To speedup the optimization of each edge 𝑒 ∈ 𝐸, in Eq. (1) one only has to 
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sum the log-likelihoods over those partitions 𝑌! where 𝑓! 𝑒 ≠ 𝜀. This advantage is a 
result of using induced partition trees instead of complete partition trees (i.e. with a full 
set of species instead of 𝑌!). 

Since NNI changes one split of the species tree, namely, the split of an edge it is 
applied to, 𝐹  is recomputed in 𝑂 𝑘  time. Thus, the extra computations needed to 
maintain 𝐹 are negligible compared to the expensive likelihood computations.  

Although we only reformulated the condition for NNI, we note that a similar 
reformulation can also be applied for SPR and TBR conditions (see Appendix B.1). Thus, 
the PTA can be employed with all common topological rearrangements. 

 

3.4 PERFORMANCE ASSESSMENT ON REAL ALIGNMENTS 
 
We denote by IQ-TREEPTA, the IQ-TREE version 1.3.3 that implements the PTA data 
structure. The performance of IQ-TREEPTA is compared with the standard IQ-TREE 
implementation and with RAxML version 8.1.24. We also tested RAxML with option –U 
(denoted by RAxMLoptU), which disregards missing data and results in memory and time 
saving for gappy alignments (Izquierdo-Carrasco, et al. 2011). Note that RAxML 
implements EUL and EL-joint models, but not the EL-proportional model. Therefore, the 
last model was only examined with IQ-TREE and IQ-TREEPTA. 

We analysed eleven (eight DNA and three AA) alignments (Table 3.2) with the 
percentages of missing data ranging from 30% to 73%.  

 
Type ID Taxa Genes Length Missing data Source 

DNA1 128 34 29,198 30% Stamatakis and Alachiotis (2010) 
DNA2 180 15 14,912 60% van der Linde, et al. (2010) 
DNA3 237 74 43,834 72% Nyakatura and Bininda-Emonds (2012) 
DNA4 298 3 5,074 34% Bouchenak-Khelladi, et al. (2008) 
DNA5 372 79 61,199 66% Springer, et al. (2012) 
DNA6 404 11 13,158 60% Stamatakis and Alachiotis (2010) 
DNA7 435 18 16,016 73% Hinchliff and Roalson (2013) 
DNA8 767 5 5,714 59% Pyron, et al. (2011) 

AA90 69 31 8,546 35% 
Dell'Ampio, et al. (2014) AA10 70 35 11,789 34% 

AA11 72 51 12,548 35% 

Table 3.2. Benchmark Alignments 
 
For all partition models we assumed the GTR+𝛤 (Lanave, et al. 1984; Yang 1994) and 
the LG+𝛤 (Le and Gascuel 2008; Yang 1994) models for all genes in the DNA and the 
AA alignments, respectively. 

For each program we performed 10 independent tree reconstruction runs per 
alignment and per partition model. All computations were carried out on the Vienna 
Scientific Cluster 3. 
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3.4.1     CPU time comparison 

 
For each partition model and each alignment we computed: (i) the average CPU time over 
10 runs for each program; and (ii) the speedup of IQ-TREEPTA compared to other 
implementations: the ratio between the average CPU time of each program and that of 
IQ-TREEPTA. 

Table 3.3 shows the average CPU times for the EUL (panel a) and the EL-joint 
(panel b) models obtained by RAxML, RAxMLoptU, IQ-TREE, and IQ-TREEPTA. The last 
three columns show the IQ-TREEPTA speedups compared to other three programs. 

Under the EUL model IQ-TREEPTA was the fastest program for all alignments 
(Table 3.3a, Fig. 3.3a). On average it runs 3 times faster than the standard IQ-TREE and 
3.26 times faster than RAxML and RAxMLoptU over all alignments. For three alignments 
(DNA4, DNA6, DNA8) IQ-TREE was much slower than RAxML and RAxMLoptU 
(Table 3.3a). However, IQ-TREEPTA achieved a substantial speedup (ranging from 3.52 
to 5.12) for these alignments compared to IQ-TREE and thus bypassed the performance 
of RAxML. 

Under the EL-joint partition model IQ-TREEPTA was on average 1.8 times faster 
than IQ-TREE (Table 3.3b, Fig. 3.3b). The least speedups correspond to alignments with 
the smallest percentages of missing data (DNA1, DNA4, AA9, AA10, AA11). IQ-
TREEPTA was slower than RAxML and RAxMLoptU for DNA4 and DNA6, but was faster 
for the remaining nine alignments. 

Finally, the EL-proportional model was only examined with IQ-TREE and IQ-
TREEPTA. Table 3.4 and Figure 3.3c show that IQ-TREEPTA is on average 1.9 times faster 
than the standard IQ-TREE. 

 
3.4.2     Log-likelihood comparison 

 
Under the EUL model the average log-likelihoods of the best-found trees obtained by 
different programs are quite similar with maximal difference of 50 (Fig. 3.4a) except for 
DNA1, DNA3 and DNA5, where the IQ-TREEPTA ML trees have log-likelihoods, which 
are on average 200, 350 and 100 units higher than RAxML trees, respectively. The log-
likelihoods from 10 IQ-TREEPTA runs have consistently small variance, whereas the other 
programs sometimes show large variances (RAxML for DNA3, RAxMLoptU for DNA3 
and DNA6, IQ-TREE for DNA8). 

Under the EL-joint model the log-likelihoods of the best-found trees obtained by 
different implementations are similar for most alignments (Fig. 3.4b) except for DNA3. 
The DNA3 alignment is also characterized by the largest variance of log-likelihoods over 
10 runs for all implementations with the largest variance of ±250 units for RAxML. 

Under the EL-proportional model the average log-likelihoods for IQ-TREEPTA 
and IQ-TREE runs agree on nine alignments (Fig. 3.4c) while not for DNA5 and DNA8. 
For DNA5 IQ-TREEPTA found trees that have on average 300 units higher log-likelihoods 
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than IQ-TREE, whereas for DNA8 the IQ-TREEPTA trees showed 250 units smaller log-
likelihoods. Finally, for DNA3 and DNA5 both IQ-TREE and IQ-TREEPTA showed large 
variances in log-likelihoods obtained from 10 runs (e.g., ±350 units for IQ-TREEPTA on 
DNA5). 

 

(a) Edge-Unlinked model 

Alignments Average CPU time (hh:mm:ss) 
Average IQ-TREEPTA 
speedup compared to 

Type 
ID 

Missing 
data 

RAxML RAxMLoptU 
IQ-

TREE 

IQ-
TREEPTA 

RAxML RAxMLoptU IQ-
TREE 

DNA1 30% 02:12:33 02:11:09 01:04:17 00:38:24 3.45 3.41 1.67 
DNA2 60% 01:02:23 01:05:58 00:55:53 00:24:41 2.53 2.67 2.26 
DNA3 72% 04:19:19 04:26:17 02:50:54 00:55:15 4.69 4.82 3.09 
DNA4 34% 00:49:21 00:44:56 02:49:42 00:33:10 1.49 1.35 5.12 
DNA5 66% 15:34:02 15:19:25 07:37:15 02:48:47 5.53 5.45 2.71 
DNA6 60% 02:48:11 02:48:29 06:57:02 01:37:18 1.73 1.73 4.29 
DNA7 73% 02:42:19 02:33:19 02:45:00 01:07:42 2.40 2.26 2.44 
DNA8 59% 03:50:31 04:11:34 05:04:20 01:26:21 2.67 2.91 3.52 

AA90 35% 01:56:36 01:58:00 01:32:26 00:36:45 3.17 3.21 2.51 
AA10 34% 03:22:44 03:16:02 02:09:26 00:50:06 4.05 3.91 2.58 
AA11 35% 03:54:05 03:45:19 03:00:17 00:54:22 4.30 4.14 3.32 

(b) Edge-Linked-joint model 

Alignments Average CPU time (hh:mm:ss) 
Average IQ-TREEPTA 
speedup compared to 

Type 
ID 

Missing 
data 

RAxML RAxMLoptU 
IQ-

TREE 
IQ-

TREEPTA 
RAxML RAxMLoptU 

IQ-
TREE 

DNA1 30% 02:12:40 02:06:59 00:51:48 00:40:12 3.30 3.16 1.29 
DNA2 60% 01:03:17 01:04:24 01:05:47 00:35:21 1.79 1.82 1.86 
DNA3 72% 07:12:30 06:24:10 06:37:09 02:25:38 2.97 2.64 2.73 
DNA4 34% 00:35:43 00:39:43 01:13:57 00:59:10 0.60 0.67 1.25 
DNA5 66% 24:28:03 23:18:58 14:50:53 06:41:56 3.65 3.48 2.22 
DNA6 60% 02:50:18 02:48:37 06:35:30 04:30:10 0.63 0.62 1.46 
DNA7 73% 03:29:43 03:35:04 06:34:58 02:16:27 1.54 1.58 2.89 
DNA8 59% 04:08:45 03:55:08 08:12:19 03:21:24 1.24 1.17 2.44 

AA90 35% 02:18:13 02:19:47 01:09:34 00:53:27 2.59 2.62 1.30 
AA10 34% 03:44:36 03:47:51 01:52:57 01:24:03 2.67 2.71 1.34 
AA11 35% 05:01:00 05:22:13 02:18:36 01:40:09 3.01 3.22 1.38 

Table 3.3.  Comparison of average CPU runtimes between standard RAxML and IQ-TREE and their 
implementations accounting for missing data: RAxMLoptU (using -U option) and IQ-TREEPTA.  The speedup 
is computed as ratios of average CPU runtime of the corresponding implementation to IQ-TREEPTA. The 
numbers in bold face correspond to alignments where standard IQ-TREE was slower than RAxML, while 
IQ-TREEPTA substantially improves the runtimes for these alignments. 
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Edge-Linked-proportional model 

Alignments Average CPU time (hh:mm:ss) 
Average IQ-TREEPTA 
speedup compared to 

Type ID Missing data IQ-TREE IQ-TREEPTA IQ-TREE 

DNA1 30% 00:54:13 00:42:15 1.28 
DNA2 60% 01:11:22 00:27:59 2.55 
DNA3 72% 07:02:35 02:12:31 3.19 
DNA4 34% 01:10:33 00:48:59 1.44 
DNA5 66% 15:53:28 09:49:17 1.62 
DNA6 60% 07:54:52 03:55:55 2.01 
DNA7 73% 07:43:49 02:45:11 2.81 
DNA8 59% 08:22:36 03:47:27 2.21 

AA90 35% 01:10:04 00:54:47 1.28 
AA10 34% 01:56:31 01:28:32 1.32 
AA11 35% 02:02:09 01:35:48 1.27 

Table 3.4. Comparison of average CPU runtimes between IQ-TREE standard 
implementation and IQ-TREEPTA for EL-proportional model. The speedup is 
computed as the ratio of average IQ-TREE runtimes to IQ-TREEPTA. 
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Figure 3.3. The CPU time comparison of different implementations under (a) EUL, (b) 
EL-joint and (c) EL-proportional partition models. Each boxplot shows the distribution of 
the runtime ratios for 10 runs between a comparing program and the mean runtime of IQ-
TREEPTA. Boxes above and below the horizontal line mean that the corresponding program 
is faster and slower than IQ-TREEPTA, respectively. 
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Figure 3.4. The log-likelihood comparison of different implementations under (a) EUL, (b) 
EL-joint and (c) EL-proportional partition models. Each boxplot shows the distribution of 
the log-likelihood differences for 10 runs between a comparing program and the mean log-
likelihood of RAxML standard (panels a and b) or IQ-TREE standard (panel c). Boxes 
above and below the horizontal line mean that the corresponding program has higher and 
smaller log-likelihood than RAxML or IQ-TREE, respectively. 
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3.5 CONCLUSIONS 
 
We introduced a phylogenetic terrace aware (PTA) data structure for an efficient 
phylogenomic inference from supermatrices. PTA consists of the species tree, the set of 
its induced partition trees and the set of maps, which link the edges of the species tree to 
the induced partition trees. This mapping enables an easy topological synchronization 
between the species tree and partition trees after each topological rearrangement such as 
NNI presented here. We note that the PTA can also be employed for SPR and TBR 
rearrangements following the conditions of Chernomor, et al. (2015) (see Appendix B.1 
for more details). Thus, the PTA is a general data structure that can be incorporated into 
existing ML software packages. 

In the presence of missing data, to reduce computation time PTA exploits partial 
terraces and avoids unnecessary likelihood recomputation. The use of induced partition 
trees in PTA saves time during edge lengths optimization, which is particularly helpful 
for the EL partition models. The overhead of maintaining the PTA mapping is negligible 
compared with the time-consuming likelihood computation and the observed speed up is 
correlated with the amount of missing data. 

We implemented PTA in IQ-TREE (Nguyen, et al. 2015). Since IQ-TREE applies 
NNIs to search the tree space, we used the rule to identify partial terraces for NNI-based 
searches. Analysis on real alignments showed that accounting for partial terraces, as 
expected from theory, substantially speeds up the tree search under partition models. Our 
analysis also revealed sometimes high variances in log-likelihoods between different runs 
for both RAxML and IQ-TREE. This reinforces the observation (Nguyen, et al. 2015) 
that one should run each program as often as possible to ensure more reliable results. 

As further step, we plan to implement the PTA data structure into the 
phylogenetic likelihood library (Flouri, et al. 2015) and to perform the analysis also with 
SPR. 

While PTA helps to speed up tree search, it would be also interesting to derive a 
tree search strategy that specifically exploits the special structure of large (partial) 
terraces. Here, it is desirable to direct the search to “escape” large partial terraces. 
Otherwise, a lot of computations might be unnecessarily spent to evaluate less promising 
trees. Nevertheless, the PTA data structure developed here can be useful. For example, 
one can choose topological rearrangements on the species tree such that all partition trees 
are changed. The resulting species tree will most likely belong to another partial terrace, 
thus providing the potential to explore another region of the tree space. To the best of our 
knowledge, since the introduction of terrace concept (Sanderson, et al. 2011) no terrace-
aware search strategy has been introduced. Such a search strategy will be essential to 
adequately cope with gappy phylogenomic data. 
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CHAPTER 4 
 
Phylogenomics in Conservation Prioritization 
 
 
 
In this chapter we present the application of phylogenomics to biodiversity and 
conservation biology.  

Phylogenetic Diversity (PD) is a measure of biodiversity based on the 
evolutionary history of species. Here, we discuss the use of PD, and the more general 
measure Split Diversity (SD), in conservation prioritization.  

Depending on the conservation goal and the information available about species, 
one can construct optimization routines that incorporate various conservation constraints. 
Here, we discuss the viable taxon selection problem, which incorporates predator-prey 
interactions between the species in a community to define viability constraints. First, we 
extend the problem to SD. Second, to make the concept of viability more realistic we 
extend the analysis to account for the diet composition of predators. 

Despite such optimization problems falling into the area of NP-hard problems, it 
is possible to solve them in a reasonable amount of time using Integer Linear 
Programming (ILP). We apply ILP to solve viable taxon selection and its extensions, 
incorporating SD as an objective to prioritize candidates for the conservation actions. We 
implemented the discussed problems in PDA, user-friendly software available at 
http://www.cibiv.at/software/pda.  

To exemplify the discussed problems we demonstrate their utility using data from 
the Caribbean coral reef community. 
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4.1 INTRODUCTION 
 
Many important challenges in biodiversity conservation involve the prioritization of 
species, habitats or ecosystems for the allocation of limited conservation funding. These 
problems require techniques that allow the selection of units that maximize a quantity of 
interest, such as species diversity, phylogenetic diversity or ecosystem function, subject 
to some number of constraints (e.g., Purvis, et al. 2005). A basic approach is to focus on 
taxon richness (Gaston and Spicer 2004) in order to maximize the number of taxa 
conserved. However, the assumption that all taxa are equally valuable may make taxon 
richness too simplistic (May 1990).  

One approach to incorporating variation among species is to use indices that take 
into account phylogenetic information (Crozier 1992; Faith 1992; Vanewright, et al. 
1991), the most popular being phylogenetic diversity (PD; Faith 1992). PD is the amount 
of evolutionary history encompassed by a given number of taxa (e.g. species), and is 
often predictive of phenotypic diversity or the ecosystem function provided by a set of 
taxa (Cadotte, et al. 2012; Isaac, et al. 2007; Srivastava, et al. 2012; Winter, et al. 2013). 
Given a phylogenetic tree for a set of taxa, the PD of a taxon subset is calculated as the 
sum of branch lengths of the minimal sub-tree spanned by those taxa. PD depends on the 
availability of a single, reliable phylogenetic tree estimate with branch lengths, and 
cannot readily be calculated when one wishes to use information from multiple trees. The 
single tree may be a species tree reconstructed from many genes that may have different 
evolutionary rates (Graur and Li 2000) or even support different tree topologies (Nei 
1987). One may instead wish to weigh evidence across these gene trees, or across a 
number of candidate trees from bootstrap samples (Felsenstein 1985) or from a Bayesian 
posterior distribution (Yang and Rannala 1997). To resolve this issue, Minh, et al. (2009) 
have recently introduced the concept of split diversity (SD), which generalizes PD by 
combining information from multiple trees. 

Integer Linear Programming (ILP; Gomory 1958) is a widely-used technique to 
solve optimization problems in various scientific disciplines (e.g., Jünger, et al. 2010) 
with great potential for conservation decision-making. ILP solves problems by optimizing 
a linear objective function subject to linear constraints acting on integral variables (such 
as the inclusion or exclusion of species). Theoretically solving ILP is nondeterministic 
polynomial-time hard (NP-hard), meaning that to guarantee an optimal solution it may be 
necessary to evaluate exponentially many subsets of species (e.g., Karp 1972). 

With the advances of state-of-the-art ILP software packages such as CPLEX 
(2012) and GUROBI (2012) (free of charge for academic use) many NP-hard problems 
can be solved within a reasonable time while ensuring optimal solutions (Jünger, et al. 
2010; and references therein). 

ILP was first applied to the minimum representation problem in biodiversity 
conservation (Cocks and Baird 1989). Subsequently, ILP has been applied to more 
complex topics such as minimizing the total land mass protected while maximizing the 
biodiversity (taxon richness or PD) given limited resources (e.g., Haight and Snyder 
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2009; Önal and Briers 2003; Possingham, et al. 2000; Rodrigues and Gaston 2002; 
Underhill 1994). Moreover, ILP also works for the more general SD measure (Minh, et 
al. 2009) and predator-prey relationships (Faller 2010).  

Here, we further show the efficiency and flexibility of ILP to maximize SD for a 
more generalized conservation question, the viable taxon selection problem. To make the 
problem more realistic, we extend it to account for species’ diet compositions and 
introduce the 𝑑%-viability constraint. The approach was implemented in the PDA 
software package (Minh, et al. 2009) and uses the GUROBI library to solve the 
corresponding ILP problems. We first show on simulated data that ILP solves the viable 
taxon selection problem within reasonable time for a various range of input parameters. 
We further exemplify the use of viable taxon selection problems for a real case by 
analysing the data for Caribbean coral reef community.  

 

4.2 METHODS 
 

4.2.1     Taxon selection under viability constraint 
 
The viable taxon selection problem arises when the interactions between species are 
incorporated into conservation decisions. If the candidate species for prioritization depend 
on each other, as in a food web representing the predator-prey relationships among 
community members, our prioritization can account for such information. For example, 
we may wish to select a set of taxa S with maximal diversity under the constraint that 
these taxa form a viable food web (Moulton, et al. 2007). Here, one focuses on the 
bottom-up dependencies represented in food webs, so that a taxon is defined as viable in 
S if it is either a basal taxon in the food web (i.e. a species without prey such as a primary 
producer) or a predator that has at least one prey in S. S is called viable if all its taxa are 
viable. The problem is now formulated as 
 

Problem 1 (Viable taxon selection): Given a food web and a phylogenetic tree, 
choose a viable subset of at most 𝑘 taxa, which maximizes PD.  

 
Problem 1 has been formulated in terms of ILP by Faller (2010). Here, the question of 
interest is to generalize this problem to SD, such that one can account for non-tree like 
evolution. Such an extension of problem 1 is provided by the following statement 

 
Problem 2 (Viable taxon selection under SD): Given a food web and a split 
system, choose a viable subset of at most 𝑘 taxa, which maximizes SD.  

 
Let 𝑋 = {𝑠!, 𝑠!,… , 𝑠!} denote the set of 𝑛 taxa of interest. In order to transform problem 
2 into an ILP framework, we introduce for each taxon 𝑠! ∈ 𝑋 a taxon variable 𝑣!. Then a 
subset 𝑆 ⊂ 𝑋 is represented by a vector (𝑣!,… , 𝑣!), where 𝑣! = 1 if 𝑠! ∈ 𝑆 and 𝑣! = 0 if 
𝑠! ∉ 𝑆. 
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Following the notation of Moulton, et al. (2007), let 𝐷 = 𝑋,𝐴  denote a directed 

acyclic graph representing the food web, where 𝐴 denotes the set of arrows (directed 
edges) represented as a pair of taxa, s.t. 𝑠! , 𝑠! ∈ 𝐴 if taxon 𝑠! feeds on 𝑠!. Let 𝐶! denote 
the set of preys of 𝑠! and if 𝐶! = ∅, 𝑠! is called a basal prey. 

The viability constraint for each species, that is not a basal prey, is then modelled 
by the following inequality 

𝑣!
!∈!!

≥ 𝑣! ,              ∀𝑗:  𝐶! ≠ ∅,                                                                                                (1) 

where variables 𝑣! have to satisfy a binary constraint for all 𝑖 

𝑣! ∈ 0,1 , ∀𝑖 = 1,2,… ,𝑛.                                                                                      (2) 

Viability constraint assures that 𝑣! ∈ 𝑆, only if at least one of its prey taxa is in 𝑆. 
The size of 𝑆 is constrained by the following inequality 

𝑣!

!

!!!

≤ 𝑘.                                                                                                                      (3) 

To introduce SD constraints, we follow the notations of Minh, et al. (2010) by 
denoting an input split system as (𝛴, 𝜆), where 𝛴 is a set of splits (bipartitions of 𝑋) and 𝜆 
the split-weight function. A split 𝜎 ∈ 𝛴 is represented by an 𝑛-element binary vector 
(𝜎!,𝜎!,… ,𝜎!), where 𝑛 is the number of taxa and 𝜎! takes a value of 0 or 1 depending on 
the bipartition that 𝑠!  belongs to. Note that the vector (1− 𝜎!, 1− 𝜎!,… ,1− 𝜎!) 
represents the same split.  

To compute SD of subset 𝑆 of 𝑋 based on the split system (𝛴, 𝜆), let introduce a 
so-called split variable 𝑦! for every split 𝜎, where 𝑦! = 1 if 𝜎 separates at least two taxa 
of 𝑆, and 𝑦! = 0 otherwise. Then 

SD 𝑆 = 𝜆!𝑦!
!∈!

,                                                                                                          (4) 

where split variables 𝑦! have to satisfy binary 

𝑦! ∈ 0,1 , ∀𝜎 ∈ 𝛴                                                                                                  (5) 

and split constraints 

𝜎!𝑣!

!

!!!

≥ 𝑦! ,          ∀𝜎 ∈ 𝛴,                                                                                                (6) 

(1− 𝜎!)𝑣!

!

!!!

≥ 𝑦! ,          ∀𝜎 ∈ 𝛴.                                                                                        (7) 

The resulting solution (𝑣!,… , 𝑣!) that maximizes the objective function, Eq.(4), 
corresponds to a viable subset 𝑆, which is ensured by Eq.(3) to contain at most 𝑘 taxa.  
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In case, it is important that some of the taxa are present in the solution set  𝑆 

irrespective of constraints, one simply sets the corresponding 𝑣! = 1. 

In the next section, the viable taxon selection problems 1 and 2 will be extended 
to a more realistic definition of viability. 

 

4.2.2     Accounting for the diet composition and the extension to 𝒅%-viability 
 
Problems 1 and 2 consider a predator as a viable member of a food web even if only one 
of its prey taxa is conserved. However, if the conserved prey taxon makes up only a small 
fraction of the predator’s diet, the predator is unlikely to maintain sufficient food intake to 
be treated as a viable species. For that reason we introduce a more realistic definition of 
viability that considers the diet composition of predators. To this end, denote by 
𝐷 = (𝑋,𝑊) a weighted food web of the taxon set 𝑋, where 𝑊 is the diet composition 
matrix. Here, the arrow 𝑠! , 𝑠!  of food web is weighted by 𝑤!", the proportion of prey 𝑠! 
in the diet of predator 𝑠!, such that the diet composition for each predator sums up to 
100%, (i.e., 𝑤!"! = 1 for every predator 𝑠!).  

Using (𝑋,𝑊) we compute the total diet of a predator 𝑠! over all of its prey taxa in 
a set 𝑆 as:  

𝛿 𝑠! 𝑆 = 𝑤!"
!!∈!

.                                                                                            (8) 

This allows setting a constraint that each predator must have a minimum 
proportion of its prey composition preserved for a set of taxa to be viable. We define a 
subset 𝑆 of taxa as d%-viable if every predator 𝑠! ∈ 𝑆 has the score 𝛿 𝑠! 𝑆 ≥ 𝑑. 
 

Problem 3 (d%-viable taxon selection under SD): Given a weighted food web 
𝐷 = (𝑋,𝑊) and a split system (𝛴, 𝜆), select a d%-viable subset of at most 𝑘 taxa, 
which maximizes SD.  

 
Problem 3 is again solved with ILP by simply modifying the viability constraint 

given by Eq.(1) to: 

𝑤!"𝑣!
!∈!!

≥ 𝑑𝑣! ,              ∀𝑗:𝐶! ≠ ∅.                                                                        (9) 

Finalizing, the ILP formulations of problem 2 and 3 are summarized in Table 4.1. 
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Table 4.1: ILP formulations. Objective function and constraints of viable (problem 2) and 𝑑%-viable 
(problem 3) taxon selection problems under SD. 

 Problem 2 Problem 3 

Maximize: 
 

𝜆!𝑦!
!∈!

 

Subject to:  

Size constraint 𝑣!

!

!!!

≤ 𝑘 

Viability constraints 𝑣!
!∈!!

≥ 𝑣! ,      ∀𝑗:  𝐶! ≠ ∅ 𝑤!"𝑣!
!∈!!

≥ 𝑑𝑣! ,        ∀𝑗:𝐶! ≠ ∅ 

Split constraints 
 

𝜎!𝑣!

!

!!!

≥ 𝑦! ,          ∀𝜎 ∈ 𝛴 

(1 − 𝜎!)𝑣!

!

!!!

≥ 𝑦! ,          ∀𝜎 ∈ 𝛴 

Binary constraints 
𝑣! ∈ 0,1 , ∀𝑖 = 1,2,… , 𝑛 

𝑦! ∈ 0,1 , ∀𝜎 ∈ 𝛴 

 
 

4.2.3     Methods implementation 
 
We implemented problems 1-3 in the software package Phylogenetic Diversity Analyser 
(PDA; Minh, et al. 2009) using C++. PDA is available as a command-line program for 
Windows, Mac OS X, Unix, and as online web service. For the viable taxon selection 
problems the user inputs a phylogenetic tree or a split network and weighted or non-
weighted dependency network such as food web.  PDA then outputs the optimal taxon set 
and detailed information about the set. More information can be found at 
http://www.cibiv.at/software/pda.

4.3 ANALYSIS OF SIMULATED DATA 
 

4.3.1     Simulations set up 
 
Since ILP is NP-hard (e.g., Karp 1972), to see whether ILP can solve the viable taxon 
selection problem in feasible time, we first tested its performance using simulated data. 

We constructed split systems using splits from random Yule-Harding (Harding 
1971) trees. To vary the complexity, which is determined by the number of splits in the 
system, we varied the number of trees used to build one split system from 1 to 4. These 
random trees had the same (fictional) species sets. Therefore, no algorithm is necessary to 
build a split system from them. We simply collected all bipartitions from 𝑡 generated 
trees (1, 2, 3 or 4). Since the trees are random, they will exhibit a lot of incompatible 
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splits. Therefore, a split system built from splits of several random trees will be 
characterized by a much larger number of splits compared to the number of edges/splits 
from one tree. For convenience, we sometimes refer to split system by its representation, 
namely, split network. 

To generate random food webs we used a Cascade model (Cohen and Newman 
1985). In this model, the species are ranked from 1 to 𝑁, where 𝑁 is the total number of 
species, and the predators are only allowed to feed on the species of lower rank. The 
resulting food web is a non-weighted directed acyclic graph. The complexity of the food 
web, defined as linkage density, is measured by the connectance 𝐶 

𝐶 =
𝐿
𝑁!, 

where 𝐿 denotes the total number of links in the food web. We varied 𝐶 from 0.1 to !!!
!!

, 

where the latter corresponds to fully connected food web with 𝑁2   links.  

 We also varied the number of species in the split network and food web from 10 
to 250. The number 250 well resembles a maximum size of real food webs, since 
resolving a large food web is non-trivial. For each combination (the number of trees to 
construct a split system, the food web connectance and the species number) we generated 
100 instances.  

The size of the optimal subset, 𝑘, was varied from 10% to 90% of the total 
number of species. 

 We summarized all the settings in Table 4.2. 
 
 

Parameters Min Max Step 
Additional 

values 
The number of 

cases 
Number of test 

sets 

Species number, 𝑁 10 250 +10 - 25 

100 per 
combination 

Number of trees used 
to build a Split 

System, 𝑡 
1 4 +1 - 4 

Connectance of the 
Food Web, 𝐶 0.1 0.4 +0.1 

!!!
!!

 (Fully connected) 5 

Subset size, 𝑘 10% 90% +20% - 5  

Table 4.2. Simulations set up 
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4.3.2     Results 

 
To evaluate the performance of ILP, we recorded the CPU time spent by 

GUROBI on solving viable taxon selection problem. For each combination of parameters 
we computed the average CPU time of 100 runs. 

The increase in complexity of a split system caused an increase of run time 
(Fig. 4.1). This is most apparent for the small subset sizes 𝑘 (10% and 30%). In contrast 
to this, the increase in complexity of a food web led to decrease in run time, with the 
smallest average run time obtained for fully connected food webs (bottom plots in 
Fig. 4.1). 

Most importantly, simulations with varying complexities of split system and food 
webs yielded average run times of less than 1.25 seconds on a 2.66 GHz computer, with a 
maximum of 9 seconds1.  

The simulations above were only used to analyse ILP performance in solving 
viable taxon selection problem (problem 2), but as we will see from the analysis of real 
data, also the 𝑑%-viable taxon selection (problem 3) is solved within seconds. We do not 
exclude the possibility that there might be some difficult cases when ILP might become 
time consuming, but it is difficult to predict or describe such cases. From the different 
settings we tested, one could expect that with the current state-of-the-art optimizers the 
majority of ILP problems of viable and 𝑑%-viable taxon selection will be solved within 
plausible time. 

 

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
1 this maximum was obtained for one test set with 𝑘 = 10%,𝐶 = 0.1 and a split system built from splits of 4 random Yule-Harding 
trees 
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4.4 APPLICATION TO CARIBBEAN CORAL REEF COMMUNITY 
 
In this section we will demonstrate on the Caribbean coral reef community data how 
predator-prey interactions can be incorporated in the analysis used for conservation 
prioritization. To our knowledge, the food web representing the relationships between 
species of this community is the largest available. Also, Caribbean Islands are one of the 
world’s biodiversity hotspots (Mittermeier, et al. 2005; Myers, et al. 2000). Therefore, 
this case study combines complex ecological input together with a high value for 
biodiversity studies. 

 

4.4.1     Data description 
 
An input for viable taxon selection problems consists of ecological and phylogenetic 
components. First, lets consider the former one. 

• Food web and diet composition 

The predator-prey interactions of Caribbean coral reef community are represented by a 
well-resolved marine food web (Opitz 1996). 

This data set consists of 250 taxonomic units including 208 fish species, a 
category “unidentified fishes”, 35 non-fish taxa, two aggregated groups of consumers 
(zooplankton and microfauna) and four categories of primary producer: organic matter 
(including particulate organic matter, dissolved organic matter and detritus), benthic 
autotrophs, symbiotic algae and phytoplankton. Since for unidentified fishes phylogenetic 
information is not available, it was removed from the food web, as well as Synodus 
synodus, which only feeds on this group.   

The food web is represented as a weighted directed graph, where the nodes in the 
graph correspond to the taxa and the arrows point from predators to their preys. Arrow 
weights are defined as the fraction a prey contributes to the diet of the predator. The food 
web contained 20 cycles including 11 cases of cannibalism and 9 cycles of two taxa 
(mutual predation). Therefore, 20 arrows were excluded to obtain a directed acyclic 
graph. The reduced food web has 248 nodes and 3281 arrows. Finally, the weights were 
rescaled such that for each predator the diet sums up to 100%. 

Of the 248 nodes in the food web, all but the four basal nodes depend on 
consumption of at least one other taxon, and all but one (tiger shark, Galeocerdo cuvier) 
is prey for at least one other taxon. The food web is characterized by a complex structure 
and extensive omnivory, with food chains of as many as 25 links. Thus, this ecological 
network features extensive and complex dependencies among species that must be 
accounted for if we are to select a viable subset of taxa. 
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• Phylogenomic inference 

For each of the 242 taxa we retrieved if available (Table 4.3) four ribosomal RNA genes 
(12S rRNA, 16S rRNA, 18S rRNA, 28S rRNA), cytochrome c oxidase I (COI) and 
cytochrome b (CYTB) from the NCBI database (Geer, et al. 2010). If the taxa 
corresponded to a genus or family, we chose one representative species having most 
sequences from this genus or family. When none of the genes were available for a given 
species, we substituted this species with its closest relative from the same genus (or 
family).  

 

Genes No. Sequences No. Sites Substitution model 

12S rRNA 115 1328 GTR+G 
16S rRNA 171 2680 GTR+I+G 
18S rRNA 24 2887 TN+G 
28S rRNA 51 4791 GTR+G 
Cytochrome c oxidase I (COI) 218 1641 GTR+I+G 
Cytochrome b (CYTB) 130 1173 TVM+I+G 

Supermatrix 242 14500 GTR+G 

Table 4.3. Sequence data collected for Caribbean coral reef community. 
 
 

For each rRNA gene we aligned sequences using MAFFT L-INS-i v6.935b 
(Katoh and Toh 2008). For COI and CYTB we used TranslatorX (Abascal, et al. 2010) 
and MAFFT to align the translated amino acid sequences and then back translate into 
cDNA alignments.  

Finally, we reconstructed a maximum-likelihood (ML) tree for each gene using 
IQ-TREE (Nguyen, et al. 2015), where the substitution models were selected by the 
Bayesian information criterion (Schwarz 1978). The gene trees served as input to infer a 
split system 𝛴, 𝜆  (Appendix C Fig. C.1) using SplitsTree4 (Huson and Bryant 2006; 
Huson, et al. 2004). We also computed the ML tree 𝑇 (Appendix C Fig. C.2) from the 
concatenated gene alignments (supermatrix).  

The tree 𝑇  and the split system 𝛴, 𝜆  were used to compute PD and SD, 
respectively. The split system 𝛴, 𝜆  contains 558 non-trivial splits (i.e., splits that contain 
at least two taxa on either side), which is 2.3 times more splits than 𝑇. This indicates that 
the 6 gene trees are very incongruent. This incongruence has a number of potential 
causes, including insufficient phylogenetic information, noise in the alignments or even 
non-treelike evolution (Doolittle 1999; Philippe, et al. 2011). 
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4.4.2     Results 

 
We now discuss the optimal taxon sets obtained under different constraints. We require 
that the aggregate trophic groups are always included in the optimal sets, because they are 
at the base of the food web and because they represent taxonomically diverse collections 
of organisms rather than defined taxa.  

• Taxon selection under PD vs. SD 

We first compare the results of taxon selection under PD and SD measures without taking 
into account the food web. Such problems are just the simplifications of problem 1 and 2 
obtained by ignoring viability constraint.  In such a way one can observe the differences 
and the impact of using either measure on the final solution.  

Let 𝑆!" denote a set of 𝑘 taxa having maximal PD and 𝑆!" a set of 𝑘 taxa having 
maximal SD. We obtained 𝑆!" by the greedy algorithm (Minh, et al. 2006), and 𝑆!" using 
ILP (Minh, et al. 2010). For 𝑘 = 24 (10% of the taxa), 𝑆!" (Fig. 4.2: red and blue nodes, 
food web restricted to 𝑆!" contains red and blue arrows) has a relative PD of 36.12% of 
the total branch lengths of phylogenetic tree. That is, 10% of the species in Caribbean 
food web conserves 36.12% of its evolutionary history based on phylogenetic tree. 

In the split system the optimal subset 𝑆!" (Fig. 4.2: green and blue nodes, food 
web restricted to 𝑆!" contains green and blue arrows) with 24 taxa conserves 57.89% of 
the total SD (i.e. the sum of the all split weights).  

𝑆!" and 𝑆!" only share 11 taxa (Fig. 4.2: blue nodes). The other 13 species in 
each set are different and belong to different genera (Fig. 4.2: red and green nodes for 
species exclusively in 𝑆!" and 𝑆!", respectively). 

Note that Synodus foetens (in 𝑆!") and Antennarius striatus (in both sets 𝑆!" and 
𝑆!") have no outgoing arrows in Fig. 4.2 (also indicated by 0 entries for corresponding 
taxa in Table 4.4). This renders 𝑆!" and 𝑆!" inviable, and illustrates the need to include 
information about ecological dependencies in conservation decisions. 
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Table 4.4. List of taxa in optimal sets 𝑺𝑷𝑫, 𝑺𝑺𝑫, 𝑺𝟏, 𝑺𝟐 to preserve 24 (𝟏𝟎%) taxa. The numbers in 
parentheses depict the diversity percentages of the set compared to the total diversity. Table entries show 
the sum of diet proportions for each taxon over other taxa in the same set. Minus signs indicate the absence 
of the taxa from the corresponding set. The entries in red and orange indicate non-viable taxa or taxa with 
small diet composition preserved by their preys in the corresponding set. 

 Taxon name 𝑺𝑷𝑫 
(36.12%) 

𝑺𝑺𝑫 
(57.89%) 

𝑺𝟏 
(57.67%) 

𝑺𝟐 
(56.36%) 

Required to be 
included in all 
optimal sets (see 
main text). 

Organic matter 0 0 0 0 
Benthic autotrophs 0 0 0 0 
Symbiotic algae 0 0 0 0 
Phytoplankton 0 0 0 0 
Zooplankton 1 1 1 1 
Microfauna 1 1 1 1 

Taxa selected by the 
greedy algorithm 
(𝑠!") or ILP (all the 
remaining sets). 

Ophioblennius atlanticus - 1 1 1 
Acanthopleura granulata - 0.84 0.84 - 
Quadrimaera pacifica 1 1 1 1 
Haemulon plumierii - 0.5 0.5 0.5 
Holothuria floridana 1 1 1 1 
Achelia sawayai - 0.2 0.2 0.35 
Sphyraena barracuda - 0.06 0.06 - 
Galeocerdo cuvier - 0.11 0.11 - 
Stegastes planifrons - 0.58 0.58 0.58 
Elacatinus evelynae - - 1 - 
Holacanthus ciliaris - 0.02 0.02 0.98 
Panulirus argus - 0.3 0.3 0.7 
Stenopus hispidus - 0.66 0.66 0.67 
Ophiocoma echinata 1 1 1 1 
Octopus vulgaris - 0.07 0.07 - 
Idotea baltica 1 1 1 1 
Pagurus longicarpus - 0.2 0.2 1 
Callinectes sapidus - 0.81 0.81 0.86 
Carcharhinus leucas - - - 0.3 
Sphyraena picudilla - - - 0.69 
Pinctada radiata - - - 1 
Iotrochota birotulata - - - 1 
Sepioteuthis sepioidea 0.75 - - 1 
Reteporella beaniana 1 - - - 
Synodus foetens 0 - - - 
Fregata magnificens 1 - - - 
Cittarium pica 0.86 - - - 
Synodus intermedius 0.05 - - - 
Loimia medusa 0.93 - - - 
Millepora sp. AMN-2008 1 - - - 
Cephalodiscus gracilis 1 - - - 
Megabalanus californicus 1 - - - 
Oreaster reticulatus 0.83 - - - 
Graptacme eborea 1 - - - 
Gorgonia flabellum 1 - - - 
Antennarius striatus 0 0 - - 
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• Taxon selection under SD vs. viable taxon selection under SD 

Maximizing PD or SD without taking into account the food web leads to inviable sets, 
where Synodus foetens and Antennarius striatus do not find prey (nodes with no outgoing 
arrows in Fig. 4.2). Therefore, in the following we require that the optimal SD set is 
viable (i.e. each predator must have at least one prey in the set, problem 2). 

The resulting optimal set denoted 𝑆! (Fig. 4.3: red and blue nodes) containing 
10% of the taxa has a relative SD of 57.67% compared with the total SD of all taxa (i.e., 
only 0.22% less than the taxon-set chosen solely on SD). This loss in relative diversity is 
due to the replacement of Antennarius striatus (the “non-viable” species in 𝑆!") with 
Elacatinus evelynae. Therefore 𝑆! “repairs” the viability with negligible loss of diversity. 

Lets now look in more detail at the diet composition of the species in 𝑆!. For each 
predator 𝑠! ∈ 𝑆! we compute its proportion of diet conserved in 𝑆!: 𝛿 𝑠! 𝑆! = 𝑤!"!!∈!! , 
where 𝑤!" is the proportion of prey 𝑠! in the diet of 𝑠! (see Methods, section 2). For the 
taxa Galeocerdo cuvier, octopuses, Sphyraena barracuda and Holacanthus ciliaris (Fig. 
4.3: four red nodes) only 11%, 7%, 6% and 2% of their diet is conserved (Table 4.4, 
entries in red), while for pycnogonids, hermit crabs, spiny lobsters and Haemulon 
plumierii the diet proportion conserved ranges between 20% and 50% (Table 4.4, entries 
in orange).  

• Viable vs. 𝑑%-viable taxon selection under SD 

The above observations indicate that the simple viability constraint (conserving at least 
one prey per predator) might result in some predators having an insufficient availability 
and variety of prey. To address this, we applied the 𝑑%-viability constraint, which 
requires that every taxon in the optimal SD set must have at least 𝑑% of its diet 
composition conserved (Methods, problem 3). Note that the 𝑑%-viability constraint 
reduces to the simple viability constraint if we set 𝑑 = 𝜖 (i.e., a very small number). 
Despite this additional constraint, the problem of 𝑑%-viable taxon selection can still be 
solved by ILP.  

As an illustration, for 𝑘 = 24 and 𝑑 = 30%, the optimal set 𝑆! (Fig. 4.3: green 
and blue nodes) has a relative SD of 56.36%, a reduction of 1.31% compared with 𝑆!.  

Set 𝑆! has five species (Fig. 4.3: green nodes) not present in 𝑆!. At the same time 
five taxa (Fig. 4.3: red nodes) are not present in 𝑆!, of which G. cuvier, octopuses, and 
S. barracuda have less than 30% diet conserved by their preys in 𝑆! (Table 4.4). On the 
other hand, pycnogonids, H. ciliaris, and hermit crabs, which have less than 30% diet 
conserved in 𝑆!, now become 30%-viable in 𝑆! (Table 4.4). This is because the newly 
added taxon (bivalves; Fig. 4.3: green node) is a prey of hermit crabs, contributing 80% 
to their diet. Another new taxon (sponges) being a prey of pycnogonids and H. ciliaris 
contributes to their diets 15% and 97% respectively, making them 30% -viable 
(Table 4.4). 
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• Analysis of SD reduction for increasing 𝑑 

As it was discussed above the SD of 𝑆! has a reduction of only 1.31% compared with 𝑆!. 
To see the influence of parameter 𝑑 on the SD of optimal set, we exhaustively computed 
all optimal SD sets 𝑆!"#(𝑘,𝑑) for 𝑘 ∈ 10%, 20%,… ,90%  and 𝑑 ∈ 0%, 1%,… ,90% . 
Figure 4.4 shows the optimal SD of all these sets. For a fixed 𝑘 the changes in the SD of 
𝑆!"#(𝑘,𝑑)  with varying 𝑑  are moderate as indicated by almost horizontal lines in 
Figure 4.4. The largest difference is 4.63% for 𝑘 = 10% and 𝑑 increasing from 0% to 
90%. This means, that even stringent viability constraints with high 𝑑 still provide us 
with almost equally optimal subsets based on SD value.  

 

Figure 4.4. Dependence of SD on the subset size, 𝑘, and the diet portion, 𝑑. SD of the optimal set 
𝑆!"#(𝑘,𝑑) for varying 𝑘 and 𝑑. 
 
 

• Computational time 

98% of the runs with PDA software for different parameters of problems 2 and 3 applied 
to Caribbean coral reef community consumed less than 1 second on a 2.66 GHz 
computer. The maximum run time of the remaining 2% was 3 seconds. 
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4.5 DISCUSSION 
 
In this chapter we presented an application of phylogenomics in conservation 
prioritization. We provided ILP solutions for biodiversity optimization problems that 
incorporate phylogenetic information and also include ecological constraints. Here, one is 
interested in selecting a subset of species, which maximizes PD or SD, subject to the so-
called viability constraints. The viable taxon selection problems are NP-hard. 
Nevertheless, thanks to the powerful GUROBI solver employed, the analyses were 
carried out within seconds. ILP is flexible and allows for modelling various constraints 
while using the same basic formulations. It is computationally efficient and guarantees 
optimal solution. Therefore, the PDA software provided here is complementary to 
existing conservation prioritization tools. 

We exemplified viable taxon selection problems with a large-scale case study: the 
Caribbean reef community. This study demonstrates the usage of viability constraints in 
conservation prioritization thanks to the availability of food web and diet composition 
data. Such food webs allow us to analyse an entire set of species as an interaction network 
rather than as isolated units. We found that in the case of the Caribbean food web, 
including viability constraints results in only small reductions in the amount of 
biodiversity that can be preserved. This is explained by the fact that the most 
evolutionarily distant taxa are concentrated on the low trophic levels of the food web. 
Therefore, by maximizing PD or SD for the Caribbean community we already obtained 
almost viable sets. However, taxon selection based on viability also highlighted which 
representatives of each subclade contribute to viability of the set. In practice, 
incorporating viability constraints has the potential to prevent the use of limited resources 
on specialist taxa unless a sufficient resource base to support them is also preserved.  

While the incorporation of predator-prey links and diet composition gets us closer 
to ecological realism, there are nonetheless many factors that are not accounted for in the 
examples described here. First, we are only considering predator-prey relationships, and 
not other interaction types such as mutualism, facilitation or interference competition 
(Kefi, et al. 2012). This framework should be applicable to other types of interaction 
networks, such as mutualism networks, that allow viability criteria to be specified. For 
example, a viable taxon may require the preservation of at least one mutualist partner 
(i.e., partners sufficient to contribute a certain fraction of mutualist benefit). We also 
consider only the bottom-up dependencies within food webs, not top-down effects of 
predators on their prey (e.g. apparent competition, trophic cascades). The proper 
incorporation of the complexity of interactions that result from top-down effects may 
require a move from a static representation of a food web to a population-dynamic model 
that explicitly includes extinction due to population decline (Ebenman, et al. 2004). 
However, this is beyond the scope of this work.  

One may also need to consider how and if it is appropriate to incorporate diet 
composition to ensure that each taxon has at least d% of its food base preserved. Most 
published food webs contain only a topological representation of predator-prey 
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relationships, and large food webs such as the Caribbean data set that include weights 
representing energy flow or diet composition are rare. However, even in the absence of 
diet composition data, one has the option of assigning the links between a predator and 
each of its n prey a weight of 1/n, assuming that they are of equal importance. This allows 
the application of additional criteria; for example, that a viable predator must have access 
to at least 50% of its prey taxa. Where diet composition data are available, they provide a 
means of indirectly considering taxon abundances, as more abundant taxa will generally 
make up a greater proportion of their predators’ diets. Further, if some prey types are only 
available during certain seasons, one could devise  “seasonal constraints” ensuring that 
some prey taxa are present for every season. Finally, one could consider contributions 
from prey that do not appear in the taxon set (e.g. prey consumed outside the spatial area 
covered by the food web data) by crediting these predators with some proportion of their 
prey intake regardless of the taxon set selected. Such additional constraints can be easily 
formulated under the ILP framework. 

The set of taxa returned by the optimization procedure is a starting point for 
conservation planning, but should be followed by consideration of the biology of the 
selected taxa. A food web is a simplified representation of a community or meta-
community, and lacks information that might bear on the suitability of the taxon set. For 
example, it should be confirmed that the prey taxa predicted to support each predator are 
sufficiently abundant and widespread to do so, or that they can reasonably be expected to 
become more common as a result of conservation action. If the food web contains errors, 
such as a link between taxa that no longer co-occur or the omission of an important link, 
it might lead to sub-optimal taxon selection. Further, taxa may be subject to additional 
constraints that may be difficult to capture in the ILP, so at times it may be necessary to 
reconsider the taxa targeted for conservation action in light of additional biological or 
societal information.   

 The importance of preserving the diversity of life is widely recognized and 
understood. In an ideal world we could ensure the persistence of all levels of biodiversity, 
but with limited resources the prioritization of some taxa or ecosystems is unavoidable. 
We thus need good criteria with which to apply triage, to prioritize the allocation of these 
resources to maximize conservation return under budget constraints (Bottrill, et al. 2008). 
We have demonstrated the utility of the ILP approach to show how sensible and objective 
conservation decisions can be made while accounting for the ecological constraints. The 
evaluation of different future scenarios with the aid of the ILP approach presented here 
will certainly prove to be a valuable contribution to conservation planning in a changing 
world.
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CHAPTER 5 
 
Conclusions 
 
The complexity of phylogenomics raises questions on many different levels of 
phylogenetic inference. A better theoretical understanding as well as the improvement of 
existing algorithms is essential for the accurate and efficient analysis of multi-gene data 
sets. 

 Here, we first focus on developing the rules to detect problematic structures like 
phylogenetic terraces (Sanderson, et al. 2011), which are caused by missing data. To be 
useful in phylogenetic inference tools the identification of terraces should be quick. 
Therefore, the naïve pair-wise comparison of all the induced partition trees associated 
with the two compared species trees is not efficient to be applicable in the tree search 
algorithms. Instead we proposed to detect the changes of induced partition trees as the 
consequences of topological rearrangements applied to a species tree. We concentrated on 
three most common topological operations: NNI, SPR and TBR. 

 Two trees are said to be equivalent if they share all the splits (bipartitions) defined 
by their edges. Therefore, the key point in the derivation of necessary conditions is the 
analysis of different splits between two consecutive species trees. Here, consecutive refers 
to two trees, where one tree is obtained from another by only one topological 
rearrangement. The splits of species tree (supersplits) correspond to induced subsplits on 
associated induced partition trees. The idea is to find the conditions, under which the 
supersplits that are different between two species trees correspond to subsplits that are 
shared by the two associated induced partition trees. In this case, the two partition trees 
are the same, i.e. the rearrangement applied to a species tree did not change the induced 
partition tree. If all the induced partition trees remain unchanged, then two consecutive 
species trees belong to one terrace. 

  In such a way, we provided the rules to quickly identify terraces for NNI, SPR 
and TBR-based tree searches.  

Moreover, we generalized the concept of terraces to partial terraces. As we 
showed with real alignments partial terraces occur more often than full terraces. 
Therefore, accounting for partial terraces is an important aspect for the efficient 
phylogenomic inference in the presence of missing data. 

 Next, we proposed a phylogenetic terrace aware (PTA) data structure, which 
facilitates the detection of (partial) terraces during tree search. PTA consists of the 
species tree, a set of induced partition trees and the maps from the species tree edges into 
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the edges of each partition tree. We provided a dynamic programming algorithm to build 
this data structure. The algorithm is linear in the number of species and the number of 
partitions in the alignment. First it maps all the external edges of the species tree and then 
proceeds towards internal edges. The update and maintenance of PTA requires negligible 
extra computations. 

 In order to use the rules developed for the detection of partial terraces they had to 
be reformulated in terms of PTA maps. 

We implemented PTA in IQ-TREE together with the reformulated rule to detect 
partial terraces for NNI-based tree searches. We analysed 11 real alignments with varying 
amount of missing data. The comparison with the standard implementation and RAxML 
showed that accounting for partial terraces and the usage of induced partition trees led to 
a speedup of up to 5 and 6 times, respectively. PTA can be employed with all the partition 
models (Edge-Linked joint and proportional, and Edge-Unlinked) and all common 
topological rearrangements (NNI, SPR, and TBR). It is therefore a versatile and general 
structure for the efficient supermatrix analysis.  

The implementation of PTA and the corresponding rules to detect partial terraces 
into the phylogenetic likelihood library (Flouri, et al. 2015) could be one of the next steps 
in this project. Further work could also focus on the choice of topological rearrangements 
to be applied for the controlled exploration of the tree space. During tree search one can 
choose topological rearrangements that perturb the species tree the most, such that all 
partition trees are affected by the corresponding operations applied to the species tree. 
From another side, one could be also interested in topological rearrangements applied to 
one or several partition trees with no effect on all the other partition trees. Different 
strategies could potentially improve the exploration of the tree space. 

The last contribution of this thesis was the development of methods for 
phylogenomic application in conservation biology. We discussed the viable taxon 
selection problem and provided Integer Linear Programming (ILP) formulations for two 
extensions of this problem: the generalization to Split Diversity and the extension to 
account for the diet composition of predators. We showed that ILP solves the problems 
within seconds thanks to the powerful GUROBI library. We also analysed the Caribbean 
Coral Reef community data, which provided the largest resolved food web.  

We note that the ILP framework is extensible to other diversity measures provided 
that the measures can be expressed as a linear function. A possible extension to the viable 
taxon selection problems is to choose species under budgetary constraints. Here, each 
species has a conservation cost and the inclusion of the taxon is constraint by the budget. 
Close collaboration between conservation biologists and mathematicians is recommended 
to convert complex conservation problems into an ILP framework. 

In summary, the work presented in this thesis contributes to  

(i). A better theoretical understanding of partial terraces and their detection based on 
the topological rearrangements applied to a species tree; 
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(ii). The improvement of phylogenetic inference from supermatrices, by using the 

intrinsic characteristics of the tree space structure imposed by the missing data to 
save computation time; 

(iii). Phylogenomics application in conservation prioritization, by providing the 
solutions to several viable taxon selection problems and their implementation in 
PDA software package.  
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Figure A.1. Analysis of NNI neighbourhood of intermediate and random trees for DNA4 
 
 
 

 
 

 

 
 

Figure A.2. Analysis of NNI neighbourhood of intermediate and random trees for AA1 
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Figure A.3. Analysis of NNI neighbourhood of intermediate and random trees for AA2 
 
 
 
 
 
 
 
 

 
 

Figure A.4. Analysis of NNI neighbourhood of intermediate and random trees for AA3 
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Condition for TBR. If a TBR is applied to a species tree 𝑇 by cutting edge 𝑒 and 
reconnecting 𝑏! and 𝑐! with a new edge (Figure B.1, panel b), then for a partition with a 
taxon set 𝑌! the following is true 

(iii) the topologies of 𝑇|𝑌! and 𝑇!"#|𝑌! are different, if at least one of the following 
conditions is satisfied:  

− at least one from 𝑓! 𝑏! , 𝑓! 𝑏! ,… , 𝑓!(𝑏!)  and at least another three from 
𝑓! 𝑐! , 𝑓! 𝑐! ,… , 𝑓!(𝑐!) are different from 𝜀; 

− at least one from 𝑓! 𝑐! , 𝑓! 𝑐! ,… , 𝑓!(𝑐!)  and at least another three from 
𝑓! 𝑏! , 𝑓! 𝑏! ,… , 𝑓!(𝑏!) are different from 𝜀; 

(iv) this TBR corresponds to a TBR on 𝑇|𝑌! obtained by cutting the edge 𝑓! 𝑒  and 
reconnecting edges 𝑓!(𝑏!)  and 𝑓! 𝑐! ,  where   𝑘 = max!!!!! 𝑥     𝑓!(𝑏!) ≠ 𝜀}  and 
ℎ = max!!!!! 𝑦     𝑓!(𝑐!) ≠ 𝜀}. 

 

B.2     Applying NNIs for EL partition models 
 
Under EL models together with the topological changes we also have to consider the 
changes of edge lengths on partition trees after the NNI was applied to 𝑇.  

If the central edge 𝑒 has the same corresponding subsplit before and after NNI, the 
edge lengths on partition tree are not changed. Otherwise, from Eq. (8) it follows that the 
corresponding edge 𝑓!(𝑒) before NNI, if not equal to 𝜀, should have its length decreased 
by 𝑟!𝜆(𝑒), and the corresponding edge 𝑓!(𝑒) after NNI, if not equal to 𝜀, should have its 
length increased by the same amount. Here, 𝜆(𝑒) is the length of 𝑒 on species tree 𝑇. 

To save computing time one re-optimizes only edges in the vicinity of topological 
changes (Guindon, et al. 2010; Nguyen, et al. 2015; Stamatakis, et al. 2005), in the 
following we assume that for the NNI one has to optimize five edges: 𝑒 and its incident 
edges 𝑒!, 𝑒!, 𝑒!, 𝑒!. 

There are four different cases depending on the number of edges 𝑒, 𝑒!, 𝑒!, 𝑒!, 𝑒! on 
𝑇 that map to 𝜀 before NNI (Figure B.2). 

In case 1, when one out of 𝑓! 𝑒! , 𝑓! 𝑒! , 𝑓! 𝑒! , 𝑓! 𝑒!  is equal to 𝜀, the two NNIs 
change the corresponding edge lengths and the resulting partition trees, 𝑇!!"!|𝑌! and 
𝑇!!"!|𝑌!, have different edge lengths. In case 2, when the map of two non-incident edges 
is equal to 𝜀, only one NNI changes the edge lengths. For example, in Figure B.2, where 
𝑓! 𝑒! = 𝑓! 𝑒! = 𝜀 , NNI1 does not change the edge lengths, because the 𝑓!(. )  of 
𝑒, 𝑒!, 𝑒!, 𝑒!, 𝑒! is not changed, while after NNI2 𝑓!(𝑒) is equal to 𝜀. In case 3, when the 
map of two incident edges and as a result also 𝑓!(𝑒) are equal to 𝜀, both NNIs change the 
edge lengths, but the induced partition trees resulting from the NNIs have the same edge 
lengths. 

 In case 4, when at least any three out of 𝑓! 𝑒! , 𝑓! 𝑒! , 𝑓! 𝑒! , 𝑓! 𝑒!  are equal to 
𝜀, the map 𝑓!(. ) of all 𝑒, 𝑒!, 𝑒!, 𝑒!, 𝑒! is not affected by the NNI and is equal to 𝜀 before 
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Figure C.1. The split network of six gene trees 
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Figure C.2. The tree reconstructed from the supermatrix of six genes 
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