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Main Types of Phylogenetic Methods

Data Method Evaluation
Criterion

Maximum Parsimony Parsimony

Characters
(Alignment)

 Statistical Approaches:

Likelihood, Bayesian


Evolutionary

Models

Distances Distance Methods
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Substitution Models

Evolutionary models are often described using a substitution rate matrix
R and character frequencies Π. Here, 4 × 4 matrix for DNA models:
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From Substitution rates to probabilities

. . . R and Π are combined into the instantaneous rate matrix Q

Q =

0BB@
•A aπC bπG cπT

aπA •C dπG eπT

bπA dπC •G fπT

cπA eπC fπG •T

1CCA
•A = −(aπC + bπG + cπT )

•C = −(aπA + dπG + eπT )

•G = −(bπA + dπC + fπT )

•T = −(cπA + eπC + fπG)

(where the row sums are zero).

Given now the instantaneous rate matrix Q, we can compute a substitution
probability matrix P

P (t) = eQt

With this matrix P we can compute the probability Pij(t) of a change i → j
over a time t.
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Computing ML Distances Using Pij(t)

The Likelihood of sequence s evolving to s′ in time t:

L(t|s → s′) =
m∏

i=1

(
Π(si) · Psis

′
i
(t)

)
Likelihood surface for two sequences
under JC69:

GATCCTGAGAGAAATAAAC
GGTCCTGACAGAAATAAAC
Note: we do not compute the probability of

the distance t but of the data D = {s, s′}.
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Likelihoods of Trees (Single column
C
G
C , given tree)
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Likelihoods of nucleotides at inner nodes:

LU(i) = [PiC(10) · L(C)] · [PiG(10) · L(G)]

LW (i) =
[∑

u=
ACGT

Piu(tU) · LU(u)
]
·

[∑
v=

ACGT
Piv(tV ) · LV (v)

]
Site-Likelihood of an alignment column k:

L(k) =
∑
i=

ACGT

πi · LW (i) = 0.024323
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Likelihoods of Trees (multiple columns)
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Considering this tree with n = 3 sequences of
length m = 3 the tree likelihood of this tree
is

L(T ) =
m∏

k=1

L(k) = 0.0475542 · 0.024323

= 0.000055

or the log-likelihood

lnL(T ) =
m∑

k=1

lnL(k) = −9.80811
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Adjusting Branch Lengths Step-By-Step

To compute optimal branch lengths do the following. Initialize the branch
lengths.

Choose a branch (A.). Move the virtual root to an adjacent node (B.).
Compute all partial likelihoods recursively (C.). Adjust the branch length
to maximize the likelihood value (D.).

A. B. C.
D.

Repeat this for every branch until no better likelihood is gained.
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Number of Trees to Examine. . .
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Finding the ML Tree

Exhaustive Search: guarantees to find the optimal tree, because all trees
are evaluated, but not feasible for more than 10-12 taxa.

Branch and Bound: guarantees to find the optimal tree, without searching
certain parts of the tree space – can run on more sequences, but often
not for current-day datasets.

Heuristics: cannot guarantee to find the optimal tree, but are at least able
to analyze large datasets.
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Build up a tree: Star Decomposition
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Build up a tree: Stepwise Insertion
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Local Maxima

What if we have multiple maxima in the likelihood surface?

Tree rearrangements to escape local maxima.
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Tree Rearrangements
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ML programs: DNAML (PHYLIP), fastDNAml

• Build tree with stepwise insertion

• after each insertion optimize using NNI/local rearrangement (default,
but user-adjustable gradually up to SPR; only fastDNAml)

• after the last insertion optimize using SPR/global rearrangement (in
DNAML; in fastDNAml user-adjustable gradually down to NNI)

• repeat rearrangements until no better tree found.
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ML programs: MOLPHY

• Build tree with star decomposition

• after the last insertion optimize using SPR/global rearrangement (in
DNAML; in fastDNAml user-adjustable gradually down to NNI)

• repeat rearrangements until no better tree found.
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ML programs: (R)AxML family

• Descendant on fastDNAml, but . . .

• Starting with MP tree.

• Many smart algorithmic and numerical optimized ML computation.

• Uses lazy rearrangements, i.e., only the 3 insertion branches are
optimized.

• (Several versions with slightly different algorithms, e.g., Simulated
Annealing.)
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ML programs: PHYML

• Start with BioNJ tree.

• Do fastNNIs to optimize trees, i.e., evaluate all NNIs simultaneously and
then accept all best ones which are non-conflicting.

• Repeat until no better tree found anymore.
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ML programs: PHYML-SQP

• Start with BioNJ tree.

• Evaluate SQP by fast non-ML criterion to find best candidates.

• Evaluate the candidate(s) more rigorously with ML and fastNNI.

• Repeat until no better tree found anymore.
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ML programs: IQPNNI

1. Start with BioNJ tree.

2. Do fastNNIs to optimize trees, i.e., evaluate all NNIs simultaneously and
then accept all best ones which are non-conflicting. (after first round,
identical to PHYML).

3. Remove randomly a certain amount of taxa and re-insert them by a fast
and rough quartet-based method. (some randomization)

4. Repeat until stop criterion is met.
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ML programs: Genetic Algorithms (GARLI, MetaPIGA)

• Start with some (random) tree.

• View tree topology, branch lengths, and model parameter as part of a
’genome’.

• Evolve the ’genome’ by mutating (slightly changing) its parts.

• Accept or reject new tree topologies from a pool of suggested trees
according to their likelihood.
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ML programs: Simulated Annealing

• Start with some (random) tree.

• Start a ’hot chain’ to suggest tree topologies (being far away.

• Accept proposals according to their likelihood.

• Cool down the chain, until the suggestions end up in some (local)
optimum.
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Quartet Puzzling

The Quartet Puzzling algorithm implemented in the TREE-PUZZLE
program is a three step procedure:

maximum-likelihood step: compute ML trees for all quartets of an
alignment.

puzzling step: compose intermediate tree from quartet trees
(this is done multiple times).

consensus step: construct a majority rule consensus tree from the
intermediate trees and evaluate the branch lengths.
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Puzzling Step
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Posterior Probabilities and Empirical Bayes

• We can now reconstruct ML trees, but how comparable are the
likelihoods, how reliable the groupings?

• Branch reliability can be checked, support values computed using:

– Bootstrapping, Jackknifing alignment columns + consensus.
– Randomizing input orders in stepwise insertions (TREE-PUZZLE).
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Posterior Probabilities and Empirical Bayes

• Problem: How different are likelihoods? Just from the value of likelihoods
one often cannot tell whether they are significantly different.

• Normalization: Posterior probabilities are computed:

pi =
L1∑
n Ln

• Usage:

– Which sites along an alignment support a tree most?
– Are there sites/partitions not supporting a tree?
– Which model of evolution (e.g. dependent, independent) is supported

by which site/partition? (PAML)
– Is a site fast/medium/slowly evolving? (PAML, TREE-PUZZLE)
– Constructing confidence sets on posterior tree likelihoods (MrBayes)
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Plotting Posteriors: Likelihood Mapping
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Since p1+p2+p3 = 1, 3D points (p1, p2, p3) fall into a triangular (simplex).

If we repeat this for all quartets (or a large random subset) in a dataset we
can assess the amount of phylogenetic signal in the dataset.
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Likelihood Mapping (Cluster Analysis)
(Crenarch.,Bacteria)-(Eucaryota,EF-1a/Tu)

(Crenarch.,EF-1a/Tu)-(Bacteria,Eucaryota) (Crenarch.,Eucaryota)-(Bacteria,EF-1a/Tu)
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The Simplex Plot can visualize the relationship among clusters.
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Likelihood Mapping (Information Content)
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The Simplex Plot can also visualize the information content in an alignment.
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LRT – Likelihood Ratio Test (1)

The Likelihood function offers a natural way of comparing nested
evolutionary hypothesis using the Likelihood Ratio (LR) statistics:

∆ = 2(ln L1 − lnL0)

L1 maximum likelihood under the more parameter-rich, complex model
(alternative hypothesis, HA)

L0 maximum likelihood under the less parameter-rich simple model (Null-
hypothesis, H0)

If the models are nested, i.e., H0 is a special case of HA and the Null-
hypothesis (H0) is correct, ∆ is asymptotically χ2-distributed with the
number of degrees of freedom equal to the difference in number of free
parameters between the two models.
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LRT – Likelihood Ratio Test (2)

• If the LRT is significant (i.e., p < 0.05 or p < 0.01): the use of
the additional parameters in the alternative model HA increases the
likelihood significantly.

• If ∆ is close to zero, that is, p > 0.05: the alternative hypothesis HA

does not fit the data significantly better than H0, that means using the
additional parameters of HA does not explain the data better.

• Only nested models can be tested:
One model (H0, Null-model, constraint model) is nested in another
model (HA, alternative, unconstraint model) if the model H0 can be
produced by restricting parameters in model HA.
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LRT – Typical cases of nested models

• Different levels of evolutionary models:

equal base frequencies

JC69

2 transitions)
(transversions,
3 subst. types 6 subst. types

(4 transversions,
2 transitions)

frequencies
different base

2 subst. types
(transitions vs.
transversions)

frequencies

1 substitution type,

different base

F81

2 subst. types
(transitions vs.
transversions)

HKY85 TN93 GTR

K2P

• rate-homogeneous models (H0) are nested in rate-heterogeneous models (HA)

• A tree assuming molecular clock (H0) are nested its non-clock version (HA)
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How to Compare Tree Topologies

Since tree topologies are no normal parameters, they are generally not
nested in each other. Hence, the χ2 distribution cannot be used.

How do we get distributions of likelihood ratios for testing?

1. non-parametric bootstrap: resample columns from the alignments,
optimize the given tree topologies to get distributions.

2. RELL (Rapid Estimation of Log-Likelihoods): resample directly from the
site-likelihood and use these to compute likelihoods. (saves a lot of time
of the optimization).

3. parametric bootstrap (Monte Carlo): from your best tree on a fixed
parameters simulate datasets. Use those to re-evaluate the original trees.
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How to Compare Tree Topologies: KH-test

Pairwise tests against of pairs of trees (Kishino-Hasegawa test, usually
RELL).

H0: The two trees explain the data equally well, i.e. E(lnL∞ − lnL∈) = ′.

HA: The two trees do not explain the data equally well, i.e. E(lnL∞ −
lnL∈) 6= ′.

Trees must not be taken a priory from an analysis of the same data.

Unfortunately, in most cases KH-test is used to compare the best tree to
other trees, which ist incorrect (Goldman et al., 2000, Syst. Biol.).
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How to Compare Tree Topologies: SH-test

Test designed to correctly test multiple user-defined trees (Shimodaira-
Hasegawa test).The ML tree has to be always among the trees of the
set!

H0: Tree T1 is the true tree.

HA: Some other tree is the true tree.
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Overview over Likelihood-based Analyses

• Comparing hypothesis with Likelihood-Ratio-Test (=LRT)

– different models of evolution (ModelTest)
– testing molecular clock assumption and root position (TREE-PUZZLE)

• Parameter estimation (TREE-PUZZLE, PAUP, ModelTest, . . . )

• Testing for phylogenetic content (TREE-PUZZLE)

• Comparing/testing different tree topologies with Kishino-Hasegawa test,
Shimodaira-Hasegawa test (TREE-PUZZLE), SOWH-test, ELW

• Constructing confidence sets on posterior likelihoods (MrBayes)
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