Notes
Maximum likelihood methods in molecular phylogeny
An Introduction

Heiko A. Schmidt

Center for Integrative Bioinformatics Vienna (CIBIV)
Max F. Perutz Laboratories (MFPL)
Vienna, Austria
heiko.schmidt@univie.ac.at
September 2008

Heiko A. Schmidt ML Introduction

Recap: Phylogenetic Reconstruction

Heiko A. Schmidt ML Introduction

Main Types of Phylogenetic Methods

Data	Method	Evaluation Criterion
	Maximum Parsimony	Parsimony
$\begin{gathered} \text { Characters } \\ \text { (Alignment) } \end{gathered}$	Statistical Approaches: Likelihood, Bayesian	Evolutionary Models
Distances	Distance Methods	

Introductory Example: ML on Coin Tossing

Given a box with 3 coins of different fairness ($\frac{1}{3}, \frac{1}{2}, \frac{2}{3}$ heads)

Notes
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Notes

Three coin case

$L(\theta \mid 7$ heads in 20$)=\binom{20}{7} \theta^{7}(1-\theta)^{13}$
for each coin $\theta \in\left\{\frac{1}{3}, \frac{1}{2}, \frac{2}{3}\right\}$

For infinitely many coins
$\theta=(0 \ldots 1)$
ML estimate: $L(\hat{\theta})=0.1844$ where coin shows $\hat{\theta}=0.35$ heads

From Coins to Phylogenies?

While the coin tossing example might look easy, in phylogenetic analysis, the parameter (set) θ comprises:

- evolutionary model
- its parameters
- tree topology
- its branch lengths

That means, a high dimensional optimization problem.
Hence, some parameters are often estimated/set separately.

Notes
\qquad
\qquad
\qquad
\qquad
\qquad

Substitution Models

Evolutionary models are often described using a substitution rate matrix R and character frequencies Π. Here, 4×4 matrix for DNA models:

$$
\begin{gathered}
R=\left(\begin{array}{cccc}
A & C & G & T \\
- & a & b & c \\
a & - & d & e \\
b & d & - & f \\
c & e & f & -
\end{array}\right) \\
\Pi=\left(\pi_{A}, \pi_{C}, \pi_{G}, \pi_{T}\right)
\end{gathered}
$$

From R and Π we reconstruct a substitution probability matrix P, where $P_{i j}(t)$ is the probability of changing $i \rightarrow j$ in time t.

Modeling Evolution: Assumptions

- Evolution is usually modeled as a
stationary, time-reversible Markov process.
- What does that mean?

Assumptions on Evolution

Markov Process

The (evolutionary) process evolves without memory, i.e. sequence S_{2} mutates to S_{3} during time t_{n+1} independent of state of S_{1}.

Assumptions on Evolution

Notes

Stationary:

The overall character frequencies π_{j} of the nucleotides or amino acids are in an equilibrium and remain constant.

Time-Reversible

Mutations in either direction are equally likely

$$
\pi_{i} \cdot P_{i j}(t)=P_{j i}(t) \cdot \pi_{j}
$$

This means a mutation is as likely as its back mutation.

$$
\begin{equation*}
P(i \rightarrow j)=P(i \leftarrow j) \tag{JC69}
\end{equation*}
$$

DNA models

Further modification:
rate heterogeneity: invariant sites, Г-distributed rates, mixed.

Protein Models

Generally this is the same for protein sequences, but with 20×20 matrices. Some protein models are:

- Poisson model ("JC69" for proteins, rarely used)
- Dayhoff (Dayhoff et al., 1978, general matrix)
- JTT (Jones et al., 1992, general matrix)
- WAG (Whelan \& Goldman, 2000, more distant sequences)
- VT (Müller \& Vingron, 2000, distant sequences)
- mtREV (Adachi \& Hasegawa, 1996, mitochondrial sequences)
- cpREV (Adachi et al., 2000, cloroplast sequences)
- mtMAM (Yang et al., 1998, Mammalian mitochondria)
- mtART (Abascal et al., 2007, Arthropod mitochondria)
- rtREV (Dimmic et al., 2002, reverse transcriptases)
- ...
- BLOSUM 62 (Henikoff \& Henikoff, 1992) \rightarrow database searching

Notes

Notes

\qquad

Computing ML Distances Using $\mathbf{P}_{\mathrm{ij}}(\mathbf{t})$

Notes
The Likelihood of sequence s evolving to s^{\prime} in time t :
$L\left(t \mid s \rightarrow s^{\prime}\right)=\prod_{i=1}^{m}\left(\Pi\left(s_{i}\right) \cdot P_{s_{i} s_{i}^{\prime}}(t)\right)$
Likelihood surface for two sequences under JC69: GATCCTGAGAGAAATAAAC $=s$ GGTCCTGACAGAAATAAAC $=s^{\prime}$

Note: we do not compute the probability of the distance t but that of the data $D=\left\{s, s^{\prime}\right\}$.

Computing Likelihood Values for Trees

Given a tree with branch lengths and sequences for all nodes, the computation of likelihood values for trees is straight forward.
Unfortunately, we usually have no sequences for the inner nodes (ancestral sequences).
Hence we have to evaluate every possible labeling at the inner nodes:
for every column in the alignment. . . but there is a fast algorithm.

Likelihoods of Trees (Single alignment column, given tree)

For a single alignment column and a given tree:

Likelihoods of nucleotides i at inner nodes:

$$
L_{5}(i)=\left[P_{i C}\left(d_{1}\right) \cdot L(C)\right] \cdot\left[P_{i G}\left(d_{2}\right) \cdot L(G)\right]
$$

$$
L_{6}(i)=\prod_{v=\{2,3,4\}}\left[\sum_{j=\{A C G T\}} P_{i j}\left(d_{v}\right) \cdot L_{v}(j)\right]
$$

Site-Likelihood of an alignment column k :

$$
\begin{aligned}
& L^{(k)}=\sum_{i=\{A C G T\}} \pi_{i} \cdot L_{6}(i)=0.005489 \\
& \quad \text { with all } d_{x}=0.1 \text { and } P_{i j}(0.1)=\left\{\begin{array}{lll}
.91 & i \neq j \\
.03 & \text { ifC) }
\end{array}\right.
\end{aligned}
$$

Notes

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Considering this tree with $n=3$ sequences of
 length $m=3$ the tree likelihood of this tree is

$$
\begin{aligned}
\mathcal{L}(T)=\prod_{k=1}^{m} L^{(k)} & =0.005489^{2} \cdot 0.005489 \\
& =0.0000001653381
\end{aligned}
$$

or the log-likelihood

$$
\ln \mathcal{L}(T)=\sum_{k=1}^{m} \ln L^{(k)}=-15.61527
$$

Heiko A. Schmidt ML Introduction

Adjusting Branch Lengths Step-By-Step

To compute optimal branch lengths do the following. Initialize the branch lengths.
Choose a branch (A.). Move the virtual root to an adjacent node (B.).
Compute all partial likelihoods recursively (C.). Adjust the branch length to maximize the likelihood value (D.)

Repeat this for every branch until no better likelihood is gained.

Number of Trees to Examine. .

(A) - (C)

(A) (E)

(A) (B)

(B) (A)
(A)

(A)

(A)

$B(n)=\frac{(2 n-5)!}{2^{n-3}(n-3)!}$
$B(10)=2027025$
$B(55)=2.98 \cdot 10^{84}$
$B(100)=1.70 \cdot 10^{182}$

Notes

\qquad
\qquad
\qquad
\qquad
■
\qquad
\qquad

Exhaustive Search: guarantees to find the optimal tree, because all trees are evaluated, but not feasible for more than 10-12 taxa.
Branch and Bound: guarantees to find the optimal tree, without searching certain parts of the tree space - can run on more sequences, but often not for current-day datasets.

Heuristics: cannot guarantee to find the optimal tree, but are at least able to analyze large datasets.

Heiko A. Schmidt ML Introduction

Build up a tree: Stepwise Insertion

Local Maxima

What if we have multiple maxima in the likelihood surface?

Tree rearrangements to escape local maxima.

Notes

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Heiko A. Schmidt ML Introduction

Search Strategy of IQPNNI

Concept: BioNJ tree + randomizations + fastNNIs

(1) Start with (fast) BioNJ tree.
(3) Do fastNNIs to optimize trees, i.e., evaluate all NNIs simultaneously and then accept all best ones which are non-conflicting. (during first round, almost identical to original PhyML).
(0 Remove randomly a certain amount of taxa and re-insert them by a fast and rough quartet-based method. (some plausible randomization)
(9) Repeat (2)-(3) until stop criterion is met.

Pro: Can evade local optima, offers automatic stopping criterion, hints when search didn't run long enough, numerically optimized ML computation, offers codon models for reconstructing trees.

Search Strategy of PhyML 3.0

Concept: BioNJ tree + pre-screened SPR-neighborhood + fastNNIs

(1) Start with BioNJ tree.
(2) Evaluate SPR-neighborhood by fast non-ML criterion to find best candidates.
(3) Evaluate the candidate(s) more rigorously with ML and fastNNI.
(9) Repeat until no better tree found anymore.

Pro: compared to the original PhyML, less prone to get stuck on local optima by using the the SPR-neighborhood now, applies aLRT to check for branch support.
More: More information by Olivier Gascuel.

Notes
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Notes

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

(Additional) ML-based programs:

- IQPNNI
- PhyML
- RAxML
- GARLI
- TREE-PUZZLE
- dnaml, proml (PHYLIP)
- fastDNAml
- MetaPiga
- SSA
- nucml, protml (MOLPHY)
- http://evolution.genetics.washington.edu/phylip/ software.html
- Usually programs deliver a single tree, but without confidence values for the subtrees.
- How can we assess reliability for the subtree?

Assessing Confidence: The Bootstrap

Notes
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Notes
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Notes
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Summarizing Trees: Consensus Methods

- Majority-based: (Sorted splits added in descending order)
- Strict consensus: all splits found in all trees
- Semi-Strict consensus: all splits uncontradicted in all trees
- Majority Rule Consensus M_{ℓ} : all splits found in more than fraction ℓ of the trees (typically $\ell=0.5$).
- Relative Majority Consensus: all splits even below 0.5 down to the first incongruence.
- Majority Rule extended (MRe): incompatible splits are discarded and all added that are compatible with incorporated splits.
- Adams consensus: reflects common nestings, places uncertain taxa at the root of subtrees (hard to interpret)

Notes

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Quartet Puzzling

The Quartet Puzzling algorithm implemented in the TREE-PUZZLE program is a three step procedure:
maximum-likelihood step: compute ML trees for all quartets of an alignment.
puzzling step: compose intermediate tree from quartet trees (this is done multiple times).
consensus step: construct a majority rule consensus tree from the intermediate trees and evaluate the branch lengths.

Notes

\qquad
\qquad
\qquad
\qquad

- We can now reconstruct ML trees, but how comparable are the likelihoods, how reliable the groupings?
- Branch reliability can be checked, support values computed using:
- Randomizing input orders in stepwise insertions (TREE-PUZZLE).
- Bootstrapping alignment columns + consensus.
- Jackknifing alignment columns + consensus.
- Trees from Bayesian MCMC sampling + consensus.
- Evaluating the likelihoods of the different resolutions at each branch with aLRT (approximate LRT)
More information by Olivier Gscuel!

Overview over Likelihood-based Analyses

- Comparing hypothesis with Likelihood-Ratio-Test (=LRT)
- different models of evolution (ProtTest, MrModeltest, ModelTest - uses also other comparisons)
- testing molecular clock assumption and root position (TREE-PUZZLE)
- Checking alternative branching patterns with aLRT
- Determining model parameters (almost all methods estimation parameters)
- Testing for phylogenetic content (TREE-PUZZLE)
- Comparing/testing likelihoods of different tree topologies with Kishino-Hasegawa test, Shimodaira-Hasegawa test (TREE-PUZZLE), SOWH-test, AU test, ELW,
- Constructing confidence sets on posterior likelihoods (MrBayes)

Exercises:

Notes

the exercises can be found at
http://www.cibiv.at/~hschmidt/VEME/ML

Notes

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

