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Recap: Phylogenetic Reconstruction

Reconstruction
Method

Phylogeny

...TGAAT GTCTG GTTTA ACAAT TTATT...

...CTTGG CTTAT TCCTT TTCCT CCTTA...

...CTCGG CTTAC TTCTC TTCCT TCTCT...

...TTAGG GGCCC TCTTA CTAAT TCTAG...

...TGATT AATTG GAGTA ATTAT TTTAT...

...TGAAA CATTG GAGTA CTTCT ACTGT...

...TGAAA TATTG GTGTG ATCCT CCTAT...

...TGAAA CATCG GAGTA GTCCT GTTCT...

Evolutionary Model

Model Parameters
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Main Types of Phylogenetic Methods

Data Method
Evaluation
Criterion

Maximum Parsimony Parsimony

Characters
(Alignment)

 Statistical Approaches:

Likelihood, Bayesian


Evolutionary

Models

Distances Distance Methods
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Introductory Example: ML on Coin Tossing

Given a box with 3 coins of different fairness
(

1
3 , 1

2 , 2
3 heads

)
We take out one coin an toss 20 times:

H,T ,T ,H,H,T ,T ,T ,T ,H,T ,T ,H,T ,H,T ,T ,H,T ,T

Probability Likelihood

p(k heads in n tosses|θ) ≡ L(θ|k heads in n tosses)

=

(
n

k

)
θk(1− θ)n−k

(here binomial distribution)

Aim: The ML approach searches for that parameter set θ for the
generating process which maximizes the probability of our given data.

Hence, ”likelihood flips the probability around.”
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Introductory Example: ML on Coin Tossing (Estimates)
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Three coin case

L(θ|7 heads in 20) =

(
20

7

)
θ7(1−θ)13

for each coin θ ∈
{

1
3 , 1

2 , 2
3

}
For infinitely many coins
θ = (0...1)

ML estimate: L(θ̂) = 0.1844 where
coin shows θ̂ = 0.35 heads
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From Coins to Phylogenies?

While the coin tossing example might look easy, in phylogenetic analysis,
the parameter (set) θ comprises:

evolutionary model

its parameters

tree topology

its branch lengths

That means, a high dimensional optimization problem.
Hence, some parameters are often estimated/set separately.
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Substitution Models

Evolutionary models are often described using a substitution rate matrix R
and character frequencies Π. Here, 4× 4 matrix for DNA models:
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Π = (πA, πC , πG , πT )

From R and Π we reconstruct a
substitution probability matrix P,
where Pij(t) is the probability
of changing i → j in time t.
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Modeling Evolution: Assumptions

Evolution is usually modeled as a

stationary, time-reversible Markov process.

What does that mean?
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Assumptions on Evolution

Markov Process

The (evolutionary) process evolves
without memory, i.e. sequence S2

mutates to S3 during time tn+1

independent of state of S1.

A A G G C T T C A G... ...=S1

time t n

A A G C T C A G... ...G C=2S

time t n+1

A G C T C A G... ...AGT=3S
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Assumptions on Evolution

Stationary:
The overall character frequencies πj of the nucleotides or amino acids are
in an equilibrium and remain constant.

Time-Reversible:
Mutations in either direction are equally likely

πi · Pij(t) = Pji (t) · πj

This means a mutation is as likely as its back mutation.

P(i → j) = P(i ← j) (JC69)
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DNA models

equal base frequencies

JC69

2 transitions)
(transversions,
3 subst. types 6 subst. types

(4 transversions,
2 transitions)

frequencies
different base

2 subst. types
(transitions vs.
transversions)

frequencies

1 substitution type,

different base

F81

2 subst. types
(transitions vs.
transversions)

HKY85 TN93 GTR

K2P

Further modification:
rate heterogeneity: invariant sites, Γ-distributed rates, mixed.
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Protein Models

Generally this is the same for protein sequences, but with 20× 20
matrices. Some protein models are:

Poisson model (”JC69” for proteins, rarely used)
Dayhoff (Dayhoff et al., 1978, general matrix)
JTT (Jones et al., 1992, general matrix)
WAG (Whelan & Goldman, 2000, more distant sequences)
VT (Müller & Vingron, 2000, distant sequences)
mtREV (Adachi & Hasegawa, 1996, mitochondrial sequences)
cpREV (Adachi et al., 2000, cloroplast sequences)
mtMAM (Yang et al., 1998, Mammalian mitochondria)
mtART (Abascal et al., 2007, Arthropod mitochondria)
rtREV (Dimmic et al., 2002, reverse transcriptases)
. . .
BLOSUM 62 (Henikoff & Henikoff, 1992) → database searching
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Computing ML Distances Using Pij(t)

The Likelihood of sequence s evolving to s ′ in time t:

L(t|s → s ′) =
m∏

i=1

(
Π(si ) · Psi s

′
i
(t)

)
Likelihood surface for two
sequences under JC69:

GATCCTGAGAGAAATAAAC = s
GGTCCTGACAGAAATAAAC = s ′

Note: we do not compute the
probability of the distance t
but that of the data D = {s, s ′}. 0.0 0.1 0.2 0.3 0.4 0.5

−
46

−
44

−
42

−
40

−
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−
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branch length [subst. per site]

lo
g−

lik
el

ih
oo

d(
t)

lnL= −36.42
ααt= 0.1073
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Computing Likelihood Values for Trees

Given a tree with branch lengths and sequences for all nodes, the
computation of likelihood values for trees is straight forward.
Unfortunately, we usually have no sequences for the inner nodes (ancestral
sequences).
Hence we have to evaluate every possible labeling at the inner nodes:
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A CL + · · ·+
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C
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G CL + · · ·+

G

C

C

C
TTL

for every column in the alignment. . . but there is a fast algorithm.
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Likelihoods of Trees (Single alignment column, given tree)

For a single alignment column

and a given tree:
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Likelihoods of nucleotides i at inner nodes:

L5(i) = [PiC (d1) · L(C )] · [PiG (d2) · L(G )]

L6(i) =
∏

v={2,3,4}

 ∑
j={ACGT}

Pij(dv ) · Lv (j)


Site-Likelihood of an alignment column k:

L(k) =
∑

i={ACGT}

πi · L6(i) = 0.005489

with all dx = 0.1 and Pij (0.1) =


.91 i 6= j
.03 i = j

(JC)
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Likelihoods of Trees (multiple columns)

GGC

CCCCCC

2
CCG

0.00548855
0.00548855
0.00548855

6

0.1

0.1

0.1

0.1 0.1

35

1

4

Considering this tree with n = 3 sequences of
length m = 3 the tree likelihood of this tree
is

L(T ) =
m∏

k=1

L(k) = 0.0054892 · 0.005489

= 0.0000001653381

or the log-likelihood

lnL(T ) =
m∑

k=1

ln L(k) = −15.61527
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Adjusting Branch Lengths Step-By-Step

To compute optimal branch lengths do the following. Initialize the branch
lengths.
Choose a branch (A.). Move the virtual root to an adjacent node (B.).
Compute all partial likelihoods recursively (C.). Adjust the branch length
to maximize the likelihood value (D.).

A. B. C.
D.

Repeat this for every branch until no better likelihood is gained.
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Number of Trees to Examine. . .
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Finding the ML Tree

Exhaustive Search: guarantees to find the optimal tree, because all trees
are evaluated, but not feasible for more than 10-12 taxa.

Branch and Bound: guarantees to find the optimal tree, without searching
certain parts of the tree space – can run on more sequences,
but often not for current-day datasets.

Heuristics: cannot guarantee to find the optimal tree, but are at least
able to analyze large datasets.
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Build up a tree: Stepwise Insertion
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Local Maxima

What if we have multiple maxima in the likelihood surface?

Tree rearrangements to escape local maxima.
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Tree Rearrangements: Scanning a Tree’s Neighborhood
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Search Strategy of IQPNNI

Concept: BioNJ tree + randomizations + fastNNIs

1 Start with (fast) BioNJ tree.

2 Do fastNNIs to optimize trees, i.e., evaluate all NNIs simultaneously
and then accept all best ones which are non-conflicting. (during first
round, almost identical to original PhyML).

3 Remove randomly a certain amount of taxa and re-insert them by a
fast and rough quartet-based method. (some plausible randomization)

4 Repeat (2)-(3) until stop criterion is met.

Pro: Can evade local optima,
offers automatic stopping criterion,
hints when search didn’t run long enough,
numerically optimized ML computation,
offers codon models for reconstructing trees.
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Search Strategy of PhyML 3.0

Concept: BioNJ tree + pre-screened SPR-neighborhood +
fastNNIs

1 Start with BioNJ tree.

2 Evaluate SPR-neighborhood by fast non-ML criterion to find best
candidates.

3 Evaluate the candidate(s) more rigorously with ML and fastNNI.

4 Repeat until no better tree found anymore.

Pro: compared to the original PhyML, less prone to get stuck on
local optima by using the the SPR-neighborhood now,
applies aLRT to check for branch support.

More: More information by Olivier Gascuel.
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(Additional) ML-based programs:

IQPNNI

PhyML

RAxML

GARLI

TREE-PUZZLE

dnaml, proml (PHYLIP)

fastDNAml

MetaPiga

SSA

nucml, protml (MOLPHY)

http://evolution.genetics.washington.edu/phylip/
software.html
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How reliable is the reconstructed tree:

Usually programs deliver a single tree, but without confidence values
for the subtrees.

How can we assess reliability for the subtree?
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Assessing Confidence: The Bootstrap
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Summarizing Trees: Consensus Methods
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Summarizing Trees: Consensus Methods

Majority-based: (Sorted splits added in descending order)

Strict consensus: all splits found in all trees
Semi-Strict consensus: all splits uncontradicted in all trees
Majority Rule Consensus M`: all splits found in more than fraction ` of
the trees (typically ` = 0.5).
Relative Majority Consensus: all splits even below 0.5 down to the first
incongruence.
Majority Rule extended (MRe): incompatible splits are discarded and
all added that are compatible with incorporated splits.

Adams consensus: reflects common nestings, places uncertain taxa at
the root of subtrees (hard to interpret)
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Quartet Puzzling

The Quartet Puzzling algorithm implemented in the TREE-PUZZLE
program is a three step procedure:

maximum-likelihood step: compute ML trees for all quartets of an
alignment.

puzzling step: compose intermediate tree from quartet trees
(this is done multiple times).

consensus step: construct a majority rule consensus tree from the
intermediate trees and evaluate the branch lengths.
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Methods to Assess Branch Support

We can now reconstruct ML trees, but how comparable are the
likelihoods, how reliable the groupings?

Branch reliability can be checked, support values computed using:

Randomizing input orders in stepwise insertions (TREE-PUZZLE).
Bootstrapping alignment columns + consensus.
Jackknifing alignment columns + consensus.
Trees from Bayesian MCMC sampling + consensus.
Evaluating the likelihoods of the different resolutions at each branch
with aLRT (approximate LRT)
More information by Olivier Gscuel!
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Overview over Likelihood-based Analyses

Comparing hypothesis with Likelihood-Ratio-Test (=LRT)

different models of evolution (ProtTest, MrModeltest, ModelTest - uses
also other comparisons)
testing molecular clock assumption and root position (TREE-PUZZLE)
Checking alternative branching patterns with aLRT

Determining model parameters (almost all methods estimation
parameters)

Testing for phylogenetic content (TREE-PUZZLE)

Comparing/testing likelihoods of different tree topologies with
Kishino-Hasegawa test, Shimodaira-Hasegawa test (TREE-PUZZLE),
SOWH-test, AU test, ELW, . . .

Constructing confidence sets on posterior likelihoods (MrBayes)
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Exercises:

the exercises can be found at

http://www.cibiv.at/~hschmidt/VEME/ML

Heiko A. Schmidt ML Introduction

Notes

Notes

Notes

http://www.cibiv.at/~hschmidt/VEME/ML

