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The information as to where and when a mRNA is present in a given cell is essential to
bridge the gap between the DNA sequence of a gene and its physiological function.
Therefore, a major component of functional genomics is to characterize the levels and the
spatio-temporal domains of gene expression. Currently, there is just a few specialised public
databases available storing the data on gene expression while they are needed as a resource
for the field. Moreover, there is a need to develop and assess computational tools to compare
and analyse expression profiles in a suitable way for biological interpretation. Here we
describe our recent work on developing a database on gene expression for the frog Xenopus
laevis, and on setting up and using new tools for the analysis and comparison of gene
expression patterns. We used histogram clustering to compare expression profiles at both
gene and tissue levels using a set of data coming from the characterization of the expression
of genes during early development of Xenopus. This enabled us to draw a tree of tissue
relatedness and to identify coexpressed genes by in silico analysis.

1   Introduction
During embryonic development, a single cell, the fertilized egg, gives rise to a
number of tissues, each comprised of many cell types organised in a characteristic
spatial arrangement. The processes controlling cell fate, morphogenetic movements
and pattern formation involve the control of expression of different sets of genes at
different levels. Each differentiation state of a cell can thus be characterized by a
specific set of gene transcripts.
The description and analysis of gene expression patterns is crucial to elucidate the
physiological functions of genes and to understand the network of genetic
interactions that underlies the process of normal development. Knowing the patterns
of expression of large numbers of genes should be a means allowing the
identification of promoters having particular specificity, of marker genes used to
monitor cells in a specific state and of genes which are tightly coregulated.
Recent technical advances in gene expression monitoring have permitted global
surveys of gene activity at high resolution during development and differentiation.
Surveys done in yeast, rat, Xenopus and human cells produced the kind of data



necessary to analyse gene expression patterns and revealed whole groups of genes
which are both coregulated and functionally interacting1,2,3.
Embryonic gene expression patterns in vertebrates are currently compiled using
existing data in mouse, in a collaborative effort between the MRC Edinburgh and
the Jackson Laboratories4. The frog Xenopus laevis, while being a model organism
in embryology since decades, is lacking a centralized database like Flybase for
Drosophila, ACEDB for the nematode or MGD for the mouse. During our large-
scale in situ hybridization screen, we developed a database using ACEDB as the
software engine3,5. Such a database should provide a major source of information to
allow the easy identification of genes based on their expression patterns, facilitating
the elucidation of gene interactions during development.
We wanted to apply a gene expression clustering method to classify genes based on
their expression patterns and to compute the relatedness of tissues using gene
expression profiles on our dataset3. This would enable to tackle the question : What
are those genes responsible for the making of this given tissue?
Here we describe our recent work on developing a database on gene expression for
the frog Xenopus laevis and on using histogram clustering for the analysis of gene
expression patterns.
The clustering of genes or tissues based on mRNA levels is an instance of the
general problem of how to cluster arbitrary objects. Such objects may come as
vectors in some high dimensional space or one is merely given distances among the
objects. In the case of the quantified mRNA levels we are given a matrix of values
which we take at face value for our current purposes, although the scale has been
arbitrary. The matrix has one row per gene and one column per tissue. Thus, each
row can be seen as a vector associated to a gene and each column can be seen as a
vector of much larger dimension associated to a tissue. Consequently, both genes
and tissues can be clustered.

2   Axeldb

2.1  System environment

Axeldb was implemented using ACEDB (A Caenorhabditis elegans database) as the
database software5. ACEDB version 4.5e for Unix was used along with Perl 5.004,
CGI.pm 2.42, AcePerl 1.54 and a tailored AceBrowser 2.01. The whole database is
accessible on the World Wide Web at <http://www.dkfz-
heidelberg.de/abt0135/axeldb.htm>.
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Figure 1.  (Previous page) Browsing pictures in Axeldb. Example of a script enabling the query of
Axeldb based on gene names, expression domains, gene class or life stage. The output of a search on
genes encoding receptors is shown. Both pictures and gene names are hyperlinks.

2.2  Data sources

Actually, all informations available in Axeldb are coming from the study performed
in our laboratory, with the notable exception of litterature references extracted from
Medline. Since our large scale gene expression study combined mRNA in situ
hybridization and cDNA sequencing, we had to cope with sequence data, gene
expression patterns and picture documentation.
The expression patterns are described by using a comprehensive list of 17 anatomical
terms for the tailbud stage embryos, and by a short textual description for all stages
studied. A score between 0 (no expression detected) and 4 (very strong expression
detected) was attributed for each structure.

2.3  Representation of expression patterns

The basic of Axeldb is to link expression pattern information to pictures, cDNA
clones, genes and sequence. On top of that, information concerning genes, such as
their usefulness as differentiation markers, their functional category based on
sequence informations and their appartenance to a synexpression group is integrated.
This allow to display all informations available for any given gene (Fig. 1). We
incorporated modifications in the original description of object classes in ACEDB to
meet our special needs, our models.wrm file is available at http://www.dkfz-
heidelberg.de/abt0135/axeldb/misc.html. At present comprehensive informations on
273 genes is available.

2.4  Query interfaces

The combination of AcePerl and AceBrowser interfaces allows complex queries to be
be passed on Axeldb server transparently for the end-user, and to display information
in a comprehensive way6. On top of simple searches and ACEDB-like queries, we
developed a script to display only the pictures documenting the expression pattern of
a given gene fulfilling a search criterias, enabling to select any set of gene and see
the results of whole-mount in situ hybridization (Fig. 1).



3   Distance calculation

3.1  Clustering of the tissues

Clustering data into a hierarchical tree rests upon the idea that there is some kind of
either a hierarchical structure in the data or that there is a branching process that has
given rise to the data and that can be depicted as a tree. In the case of the tissues
there is no apparent reason to believe in a hierarchic structure. There is, however,
good reason to believe that a developmental, branching process has given rise to
these data. Thus it seems reasonable to aim at reconstructing a tree structure for the
tissue vectors.
To this end, a distance matrix needs to be computed for the tissue vectors. Since
these data are not really numerical data it is dangerous to naively compute some kind
of geometric or correlation distance. Instead we base our distance computation on an
intermediate step of the computation of a similarity matrix which allows us to
define a similarity score in a way that is appropriate for the data. Our similarity
matrix assigns scores to matching the different intensities. For example, when a
gene is highly expressed in two tissues this should yield a good similarity score.
When the same gene is absent in two tissues, this seems to be less convincing a
signal of a similarity between the two tissues although not a signal for their being
different either. The most dissimilar situation would be when a gene is strongly
expressed in one tissue and absent in the other. Based on this intuition we have used
the following (symmetric) similarity matrix:

0 1 2 3 4
0 4 3 2 1 0
1 5 4 3 2
2 6 5 4
3 7 6
4 8

The similarity scores range between 0 and 8, with 0 standing for strong dissimilarity
while 8 signifies strong similarity. Once the 0 is fixed as the lowest score, the
scores in the first row are assigned in increasing order in steps of 1 all the way to the
left where the (0/0) entry is then assigned a 4. Scores further rise in steps of 1 along
the main diagonal while decreasing to the right along each row.
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Figure 2. Tree of tissue relatedness. The distance matrix computed as described in the text was used to

draw a tree using the kitsch program. Tissues marked with an a are derived from the ectoderm, those

marked with a b are derived from the neurectoderm and those marked with a c are derived from

mesoderm.



Once the individual similarity scores are chosen one can compute a similarity score
for a pair of tissue vectors by adding up the individual similarity scores for each
gene. This results in a similarity matrix. This matrix, however, has mathematically
very awkward features since the row-sums differ widely. This is due to different
tissues showing different overall amounts of expressed genes. Using this matrix
directly for clustering purposes is very difficult but it can be converted into a
distance matrix with comparatively little effort. Each tissue has a certain similarity
value to any other tissue. The overall weight of a row is irrelevant when one
focusses on how a single tissue distributes its affinities to the others. Thus, it
makes sense to normalize the rows by their sum, i.e. to convert each row into a
histogram.
While this operation makes the matrix asymmetric it now allows to define distances
among the tissues as the distances among these histograms which each characterizes
a tissue. We subsequently apply a standard distance measure to these histograms,
namely relative entropy (also known as Kulback-Leibler distance).
Since relative entropy is an asymmetric measure it needs to be symmetrized. This is
achieved by first introducing a midpoint defined by the arithmetic average between
two histograms. Then the distance between the two histograms is defined as the sum
of the two relative entropies between either of the histograms and the midpoint. In
the end this results in a distance matrix which has 0 on the main diagonal, otherwise
positive and is symmetric.
This distance matrix can now be used to analyze it for a possible tree structure. We
applied several programs and looked for consistent features in their respective output.
Splitstree (Fig.3) is a very conservative program in that it only shows splits in the
data that are very strong. In terms of actual tree construction programs we used
results generated by the Phylip7 programs fitch, kitsch and neighbor, where the
latter program was used to compute both a neighbor joining tree and a UPGMA tree.
Splitstree8 which models the distance data as a so-called split-metric, suggests a
fairly linear structure of the data. They can be enumearted starting with the
neurectodermal derivatives through a group consisting of pronephros, proctodeum,
epidermis, lateral plate and blood to the other end of the spectrum which is formed
first by somites, then notochord and hatching gland and finally cement gland.
The actual tree building programs tend to follow this outline in that  they roughly
divides the data into the three groups of i) brain, spinal cord, ear vesicle, nasal
placode, branchial arches, tailbud and ii) epidermis, blood, lateral plate, pronephros,
proctodeum and iii) notochord, somites, hatching gland, cement gland. Tree-likeness
is indeed not perfect since, e.g., Neighbor Joining Algorithm results in some
negative edges.



3.2  Clustering of the genes based on their expression patterns

The difficulty in analyzing the tissue data lies largely in the fact that some tissues
have many genes active at high levels while others are "weakly populated".
However, it seemed a reasonable assumption to normalize each gene by the sum of
its own intensities across all tissues. This immediately lets us transform the rows of
our data matrix into histograms such that the same algorithms for derivation of a
distance matrix can be used.
For a distance matrix of that size it is impractical to apply any sophisticated tree
building algorihtm, all the more since there is no interpretation of these data as
having developed by some kind of branching structure. Therefore we used the simple
hierarchical clustering method UPGMA to compute a tree for the genes. Here, the
tree serves merely to group more similarly behaving genes together. The result is
shown in Fig.3.

4.   Discussion
In vertebrates, some hundred expression patterns have been characterised in each of
the embryos from the mouse, zebrafish or frog. There is some laboratories engaged
in large-scale in situ hybridization screening9. Due to these and other non-systematic
efforts we expect a dramatic increase in the number of characterised gene expression
patterns in the future. The development of specialised databases will therefore be
imperative to manage and interpret these biological informations. Axeldb was
developed to be one such example for the frog Xenopus laevis. We consider that this
kind of knowledge base for gene expression patterns will be more important in the
future.
We used ACEDB for the software engine of Axeldb. ACEDB appeared as an
excellent compromise between simplicity of set-up, evolvability and capabilities.
Moreover, a powerful scriptable interface is available6. For those outside the field of
Xenopus laevis, the database would provide expression patterns of homologous
genes from other species. The scheme of Axeldb would allow to build gene
expression databases, and to cross-reference the data produced by other large-scale in
situ hybridization screen. This would enable to link the data of expression patterns
concerning known orthologous genes. These have proven predictable power for the
other species, including man, where such analyses are not easily feasible but highly
desirable. As a long term goal Axeldb may be made open for outside entries to serve
as a resource for the Xenopus field, acquiring, managing and releasing data about the
biology of the frog.
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Figure 3. (Previous page) Clustering of genes. a: Tree representing the clustering of 268 genes based
on their spatial expression profiles in the tailbud stage embryo of Xenopus. The region drawn is shown
in more details in b. c: In situ hybridization results on tailbud stage embryos viewed laterally, anterior to
the left. The probe used are from the clustered genes shown in b. 11E2, 21E1.1, 4.46 are expressed in
pronephros, lateral plate mesoderm and blood islands. 16E2, 22C5.1 are expressed in lateral plate and
blood. 26G5.1 and 32E11.1 are expressed only in the blood region. 8F9 is expressed mainly in cells
from the lateral plate.

Ontogenesis is largely governed by lineage relationships between cell populations in
the body parts. This means that a tree can be traced depicting this relationship
between body parts and their embryological origins. Cellular differentiation occurs
by the differential expression of the genetic programme, a mechanism known to be
mainly due by the regulation of transcription. We wanted to compute the relatedness
of tissues using gene expression profiles, to reconstruct this kind of tree. The result
of the splitstree analysis indicates that the lineage relationships between the tissues
are not strong enough to light-up a tree-like structure in the data. The linear order
between the tissues suggests more the advance in the differentiation program of the
respective tissues. On one extreme, the brain and most neuroectodermal derivatives
are not as advanced in differentiation than the cement gland, which is fully
differentiated since stage 28 of development. The inspection of the tree produced by
the tree building programs suggests a superimposition of the lineage relationships
between tissues. Therefore the observed tree represents an average between the
lineage relationships and the advance in differentiation. The input from genes acting
as differentiation markers counterbalance the ontogenetic relationships between
tissues.
The comparison of gene expression patterns using clustering methods should help to
identify those genes called differentiation markers used to monitor specific cell types
or developmental mechanisms and should highlight those genes which are tightly
coregulated. To our knowledge, this is the first study clustering spatial gene
expression patterns. The spatial gene expression profiles cluster mainly according to
the number of tissues showing expression. Genes that can act as markers are far
from those expressed in a number of tissues (Fig. 2). The comparison between our
previous categorization of genes from a manual inspection of data3 and this
clustering indicates the usefulness of this latter approach to identify genes
coexpressed in one or a few structures. Sets of genes that are tightly coexpressed in
many structures, that we previously called synexpression groups3 are not nicely
showing up in the tree, although they cluster together. We think that it is
essentially because they are expressed in one of the neurectodermal derivatives that
alone are domains of expression of many genes. Moreover, regionalized expression
in the embryonic structures we scored is not apparent in the data, while it holds
important informations to put together genes in a synexpression group.
Many large-scale studies of gene expression relies on the use of DNA arrays. While



these methods produce numerical data reflecting the levels of mRNA in homogenates
of cells, they do not capture spatial information. To decipher the processes occuring
during early development requires the knowledge of the spatial distribution of
transcripts in situ on small subsets of cells, or eventually at a cellular resolution.
The method of choice to study spatial distribution of transcripts is in situ
hybridization to whole-mounts embryos, or isolated organs. The results of such
experiments is hard to express by numerical values reflecting objective
measurements, and hence needs other algorithms to be analysed, different from those
used to look the data from gene expression monitoring using DNA arrays.
With clustering being one of the main approaches to expression data analysis, the
corresponding methods of distance computation are becoming centrally important. In
time series-like data correlation coefficients adequately grasp what is important,
namely the relative changes  in expression strength along the time axis. Other kinds
of data or other kinds of experiments do not lean themselves to this interpretation. In
the in situ hybridization data we have observed a situation where the overall amount
of signal is not important. What counts is the distribution over the different objects
or domains. This has led us to convert the data into histograms. Having done this,
(symmetrized) relative entropy takes the role of the correlation coefficient in order to
derive a distance matrix.
Similarly, one also needs to distinguish to which end one wishes to compute a
clustering. Is the clustering intended to simply yield an overview of the data by
sorting things into similar bins, or are we aiming at reconstructing some tree-like
process? Classical data analysis methods provide ways of clustering objects into bins
and also provide error measures describing the quality of this clustering. If one
suspects a tree-like process having generated the data, one can look for tree-likeness
in the distance matrix. A program like Splitstree8 can give the user a first
impression of what are the strong, obvious features of a data set. A dedicated tree
construction program will enforce a tree no matter whether it is in the data or not. In
our case, split decomposition has shown the strong trend, while tree construction
programs refined this information. On the other hand, where there is no tree-like
structure at all there is still the possibility of low-dimensional representation of the
data.
We are currently exploring the application of correspondence analysis to the in situ
expression data.  
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