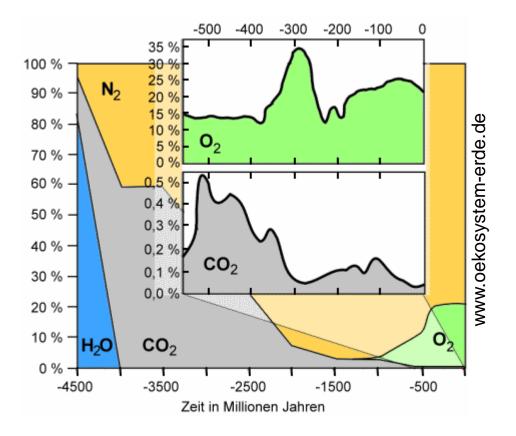
Ökologische Faktoren

Ökologischer Faktor: (variables) Merkmal der Umwelt, das messbaren Einfluss auf die Lebensbedingungen eines Organismus hat → beschreibt <u>für Organismus relevante</u> Umweltzustände

Abiotische Faktoren

- Faktoren aus Umgebung
- wirken <u>einseitig</u> auf Organismus
 ⇒ <u>kaum</u> Rückkopplungen
 - (Sonneneinstrahlung, Temp., pH-Wert, Salzgehalt ...)


Biotische Faktoren

- inter- und intraspezifische Wechselwirkungen
- von Populationsdichte abhängig
- wirken auf Populationsdichte
 - ⇒ Rückkopplungen

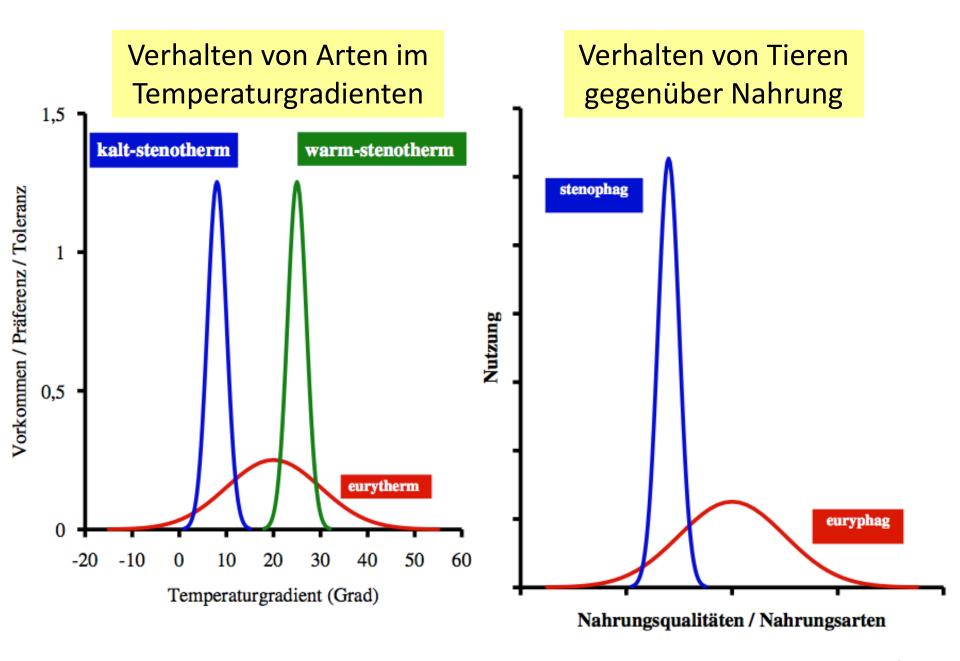
(Nahrungsverfügbarkeit, Fraßdruck, Konkurrenz ...)

<u>Über langen Zeitraum:</u>

- Unterscheidung: abiotische → biotische Faktoren nicht immer eindeutig
- Sauerstoffkonz. in Atmosphäre <u>heute</u> *abiotischer* Faktor
- <u>aber</u>: Produkt lebender Organismen ⇒ *biotischer Ursprung*

Toleranz von Organismen gegenüber ökologischen Faktoren

Spektrum der Randbedingungen irdischen Lebens


- <u>Temp.</u>: absoluter Nullpunkt bis ca 350 °C; <u>pH-Wert</u>: 1–12; <u>Druck</u>: Vakuum bis 1000 bar; <u>Salzkonz</u>.: bis zu gesättigten Lösungen;
- Größe des Toleranzbereiches: zwischen einzelnen Organismen sehr unterschiedlich

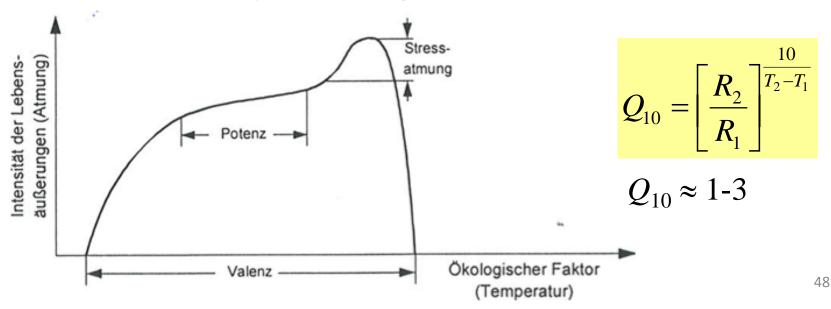
Stenöke Organismen

- geringe Amplitude, "angepasst"
- <u>Extremstandorte</u> überwiegend stenöke Arten
- wenn Randbedingungen <u>stabil</u>

Euryöke Organismen

- breite Amplitude, nirgends "optimal angepasst"
- Bedingungen <u>wechseln</u> oft
 ⇒ optimale Anpassung an <u>einen</u>
 Umweltzustand unmöglich

Bezogen auf spezielle Umweltfaktoren z. B.:

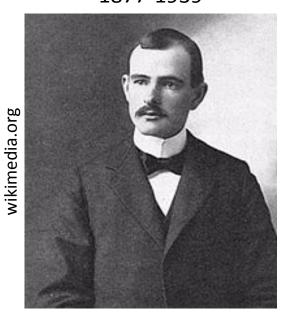

- eurytherm stenotherm = breiter vs. enger Temperatur-Toleranzbereich
- euryhalin stenohalin = breiter vs. enger Toleranzbereich bzgl. Salz

- ➤ euryök/stenök ←→ Randbedingungen, die ein Organismus erträgt
- ➤ Generalist/Spezialist ↔ Breite der Nutzungsmöglichkeiten

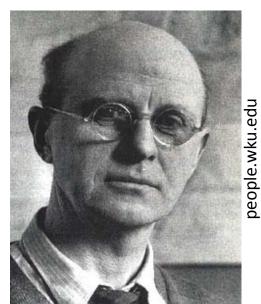
- Evolutiver Trend meist: euryök → stenök ≈ Spezialisierung
- Voraussetzung: Bedingungen dauerhaft erhalten → "Anpassung"

Ökologische Faktoren und Lebensäußerungen

- Lebensäußerungen: Optimumkurven mit Ober- und Untergrenze
- <u>ausserhalb</u> dieser Grenzen \Rightarrow <u>Absterben</u> des Organismus
- Optimum = maximale Lebensäußerung
 bei <u>Temperatur</u>: höchste Lebensäußerung durch <u>Stressatmung</u>
- Ökologische Valenz: gesamte (kurzfristig) <u>für das Individuum</u> <u>ertragbare</u> Schwankungsbreite eines Faktors
- Ökologische Potenz: Schwankungsbreite, innerhalb der langfristig <u>Überleben einer Population</u> möglich ist



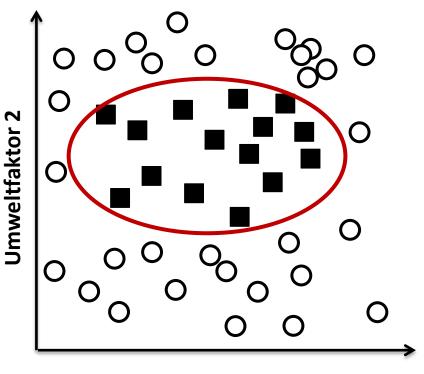
Nischentheorie


- <u>Beobachtung</u>: bestimmte Organismenarten nur an bestimmten Orten
 ⇒ Begriffsbildung: "Ökologische Nische"
- Ursprüngliche Bedeutung

Bezeichnung von Orten, wo man einen bestimmten Organismus antrifft ⇒ im Sinne von "Adresse" (Grinnell 1917) bzw. "Beruf" (Elton 1927)

Joseph Grinnell 1877-1939

Charles Elton 1900-1991



Nischenkonzept von Hutchinson (1957)

Ökologische Nische ist ein hypothetischer Raum, der durch Verknüpfung aller Umweltfaktoren entsteht \Rightarrow Menge aller möglichen Zustände,

unter denen Organismus (dauerhaft) existieren kann

Okologische Nische in 2 Dimensionen

Umweltfaktor 1

■ besiedelt; ○ nicht besiedelt

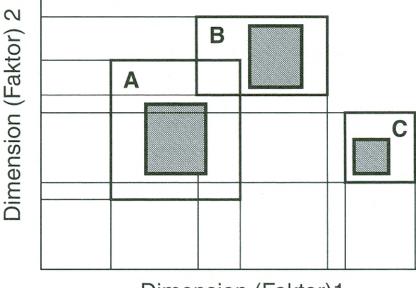
George Hutchinson 1903-1991

Temperatu

3-dimensionale Nische 50

Nischendimensionen und Fundamentalnische

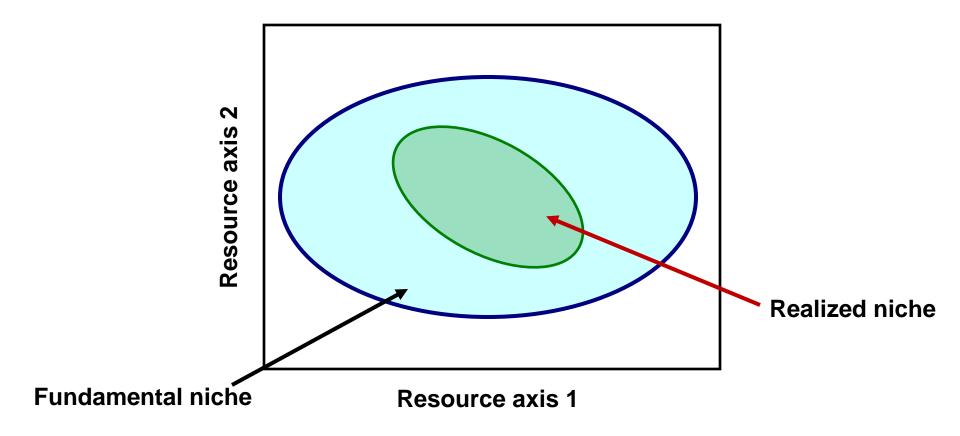
- <u>Jeder</u> (relevante) Umweltfaktor ⇔ eine <u>Dimension</u>
 → Koordinaten-Achse dieses "Hyperraumes"
- Abiotische Randbedingungen (Temperatur, Salinität...)
 UND eigene Achsen für <u>Ressourcen</u>
 UND für biotische <u>Interaktionen</u>
- <u>Fundamentalnische</u>: maximaler Ausschnitt des *n*-dimensionalen Hyperraums, in dem Organismus (dauerhaft) überleben kann ⇔ gesamtes **Überlebenspotential** eines Organismus
- **Breite** und **Lage** der fundamentalen Nische durch <u>physiologische</u> Eigenschaften des Organismus bestimmt

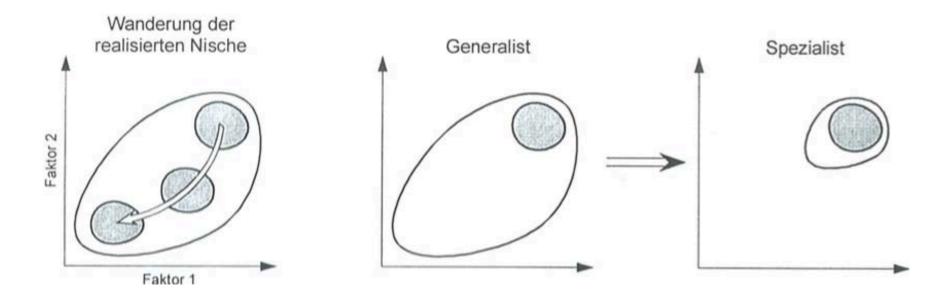

Realisierte (effektive) Nische

Einschränkungen der fundamentalen Nische

- Organismen mit <u>sehr breiter</u> Fundamentalnische
 - ⇒ füllen nicht gesamten Bereich gleichermaßen aus
 - ⇒ Konzentration auf bestimmten Ausschnitt
- Fundamentalnischen verschiedener Organismen <u>überlappen</u>: unkritisch bei abiotischen Umweltfaktoren, entlang **Ressourcen**achsen ⇒ **Konkurrenz**

Realisierte (= effektive) Nische


eingeschränktes Spektrum der Umweltfaktoren und Ressourcen, innerhalb deren ein Organismus auch unter Konkurrenz und Prädation dauerhaft existiert


Dimension (Faktor)1

schattiert = effektive Nische

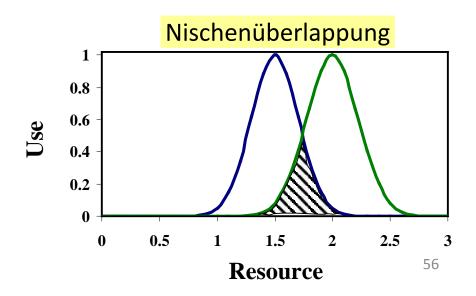
Interaktion (mit Räubern oder Konkurrenten) engt Nische eines Organismus ein

- <u>Verhältnis</u> fundamentaler zu realisierter Nische **variiert** stark
- Generalist: große Fundamentalnische, realisierte N. oft viel kleiner
- lange Zeit <u>stabile</u> Bedingungen ⇒ Verkleinerung der fundamentalen Nische (→ Verlust nicht gebrauchter Eigenschaften → **Effizienz** ↑)
 ⇒ Übergang zu **Spezialisten**
- Spezialist: kleine fundamentale Nische, kaum größer als realisierte N. <u>aber</u>: innerhalb der realisierten Nische → hohe Nutzungseffizienz
- benötigt konstante Bedingungen o. vorhersehbare Schwankungen

Konkurrenz – allgemeine Definition

Konkurrenz: Wechselwirkung zwischen Organismen, die sich um die gleichen Ressourcen bemühen; nachteilige Wirkung auf alle Betroffenen

- **Ressourcen**: alles, was ein Organismus konsumiert und damit anderen Organismen entzogen wird
 - Energie- u. Materialquellen, Raum, Partner ...
 - wirken <u>begrenzend</u>, wenn nicht ausreichend vorhanden


Wichtigste Formen interspezifischer Wechselwirkungen

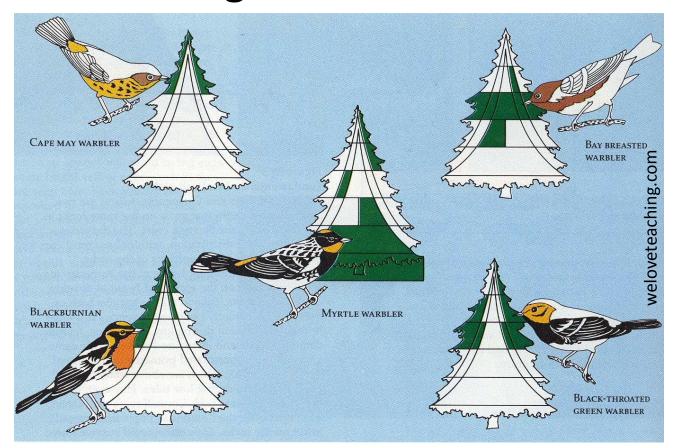
	Wirkung auf Fitness der		
	Art 1	Art 2	
Konkurrenz	-	-	
Episitismus	+	-	Räuber-Beute, Wirt-Parasit
Mutualismus	+	+	Symbiosen i.e.S.

Konkurrenz – einige grundlegende Aspekte

- Konkurrenz real immer zwischen *Individuen* (nicht: Arten) bei Pflanzen auch *intra-individuelle K*. \Rightarrow ein Ast beschattet anderen
- Stärkste Konkurrenz zwischen Individuen <u>derselben</u> Art physiologische Ansprüche ident $\Rightarrow \underline{intraspezifische} K$.
- Sessile Organismen Konkurrenz besonders ausgeprägt
- Wenn Ressourcen-Ansprüche <u>mehrerer</u> Arten <u>überlappen</u> ⇒ <u>interspezifische K.</u>

Interspezifische Konkurrenz – zuweilen nicht (mehr) direkt wirksam, sondern 'the ghost of competition past' (J.H. Connell)

Beispiele:


- nahe verwandte Arten mit getrennter Ressourcennutzung
- <u>oder</u>: hohe Artendichte verknüpft mit enger Einnischung
- Ergebnis konkurrenzgeprägter Auseinandersetzung in Vergangenheit
- aktuelle Konkurrenz wegen enger Einnischung gering

Kritik – empirische **Prüfbarkeit**?

Dominanz der Nischentheorie in der Ökologie

Kontrast – "Neutrale Theorie" (S. Hubbell)

Waldsänger in Koniferen Nordamerikas

Robert MacArthur 1930-1972

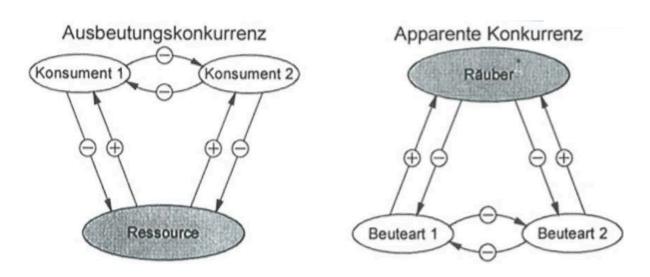
- DAS Lehrbuchbeispiel R. MacArthur, Gattung *Dendroica*
- nutzen unterschiedliche Bereiche für Nahrungssuche
- dadurch: Konkurrenz effektiv vermindert
- <u>aber</u>: wirklich *kausal* mit Konkurrenz verbunden?

Interspezifische Konkurrenz:

Individuen einer Art <u>beschränkt</u> in Überleben, Wachstum, Fitness durch Ausbeutung der Ressourcen oder Störung durch Individuen einer <u>anderen</u> Art

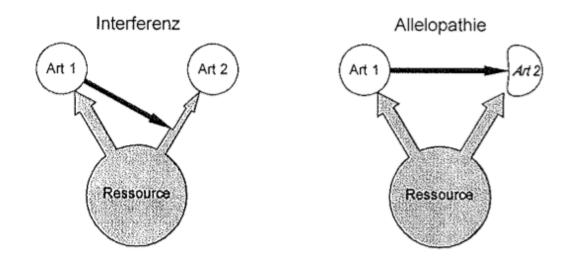
2 Typen der interspezifischen Konkurrenz

Ausbeutung (exploitation):
Verdrängung INDIREKT durch
Verbrauch einer gemeinsamen
Ressource


Interferenz (scramble):
Verdrängung DIREKT –
Hinderung am Verbrauch einer gemeinsamen Ressource

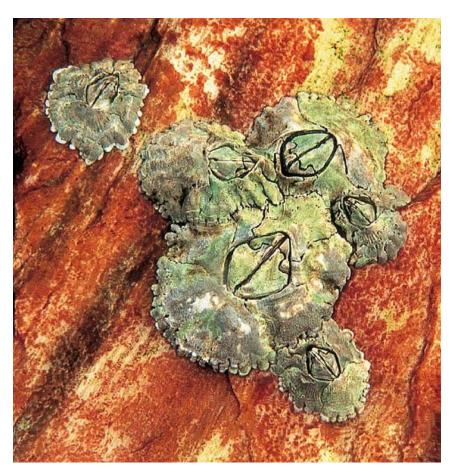
Konkurrenz durch Ausbeutung

eine Art verdrängt andere, indem sie gemeinsame Ressourcen effizienter nutzt \rightarrow ohne direkten Kontakt


<u>Sonderform</u>: **Scheinkonkurrenz (apparente Konkurrenz)**

- 2 Beutearten von gemeinsamem Räuber beweidet
- Populationserhöhung einer Beuteart ⇒ positiv auf Räuber <u>und</u> negativ auf andere Beuteart
- daher: Effekt auf Beutearten wie bei Ausbeutungskonkurrenz

Konkurrenz durch Behinderung


eine Art verdrängt andere, indem sie diese an Ressourcennutzung hindert → physischer Kontakt bzw. stoffliche Interaktion

Sonderfall Allelopathie

- Einwirkung einer Art auf andere durch <u>chemische</u>
 Hemmstoffe
- behindert Etablierung bzw. Fitness der Konkurrenten
- verbreitet: <u>sessile</u> Organismen (Pflanzen, Korallen)

Ein Lehrbuch-Beispiel für Konkurrenz durch Interferenz (*interference*): zwei Seepocken-Arten in der Gezeitenzone

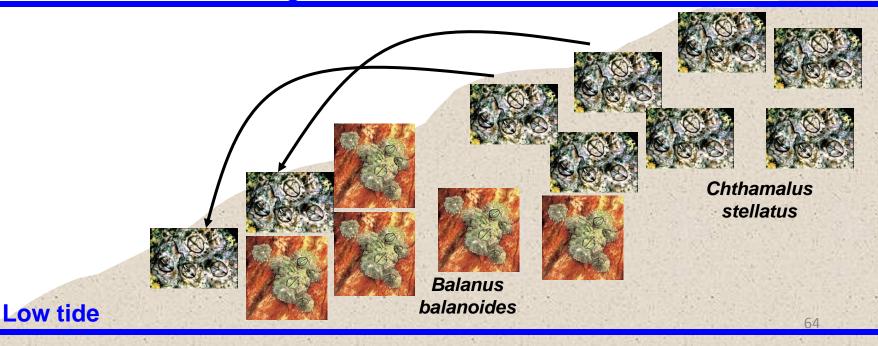
Balanus balanoides

Chthamalus stellatus

Joseph Connell (1923-...)

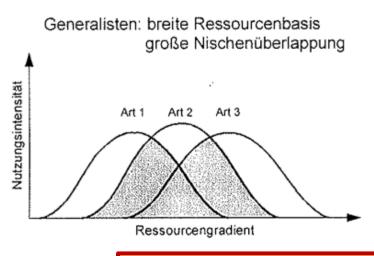
Ecology 42 (1961): 710-723

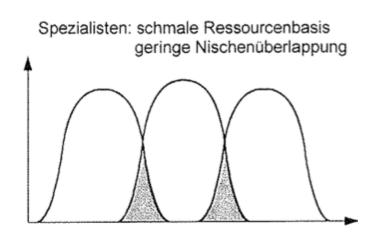
Konkurrenz durch Interferenz


- Chthamalus findet sich meist höher in der Gezeitenzone
- juvenile Chthamalus siedeln auch in niedriger Balanus-Zone

High tide Chthamalus stellatus Balanus balanoides

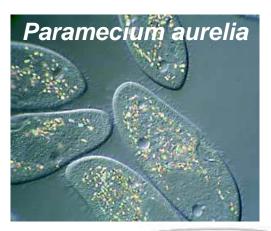
Konkurrenz durch Interferenz

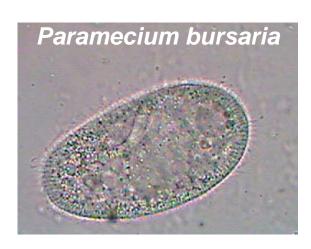

- Balanus verdrängt durch eigenes Wachstum juvenile Chthamalus
 ⇒ Überlebensrate reduziert
- wenn Balanus exprimentell entfernt ⇒ juvenile Chthamalus überleben gut auch in niedriger Gezeitenzone

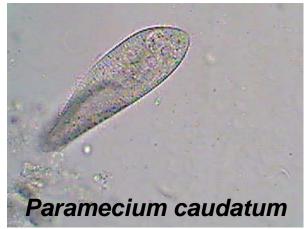

High tide

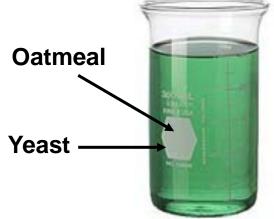
Aufkommen von <u>inter</u>spezifischer Konkurrenz

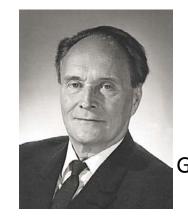
- Nischen<u>überlappung</u> entlang von Ressourcenachsen
- nur wo <u>realisierte</u> Nischen nahe beieinander liegen <u>und</u>
 Ressourcen nicht für alle ausreichend vorhanden
- Ausmaß der Nischenüberlappung ↔ Spezialisierungsgrad

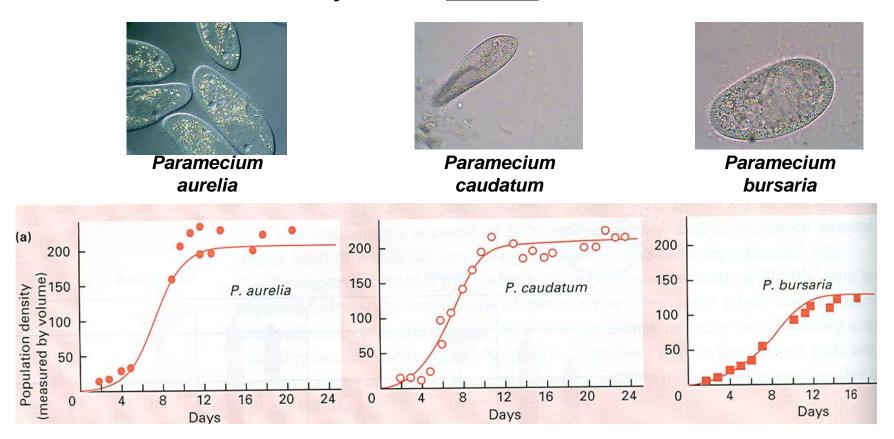

Wieviel Überlappung ist stabil möglich?


Konkurrenz in natürlichen Ökosystemen

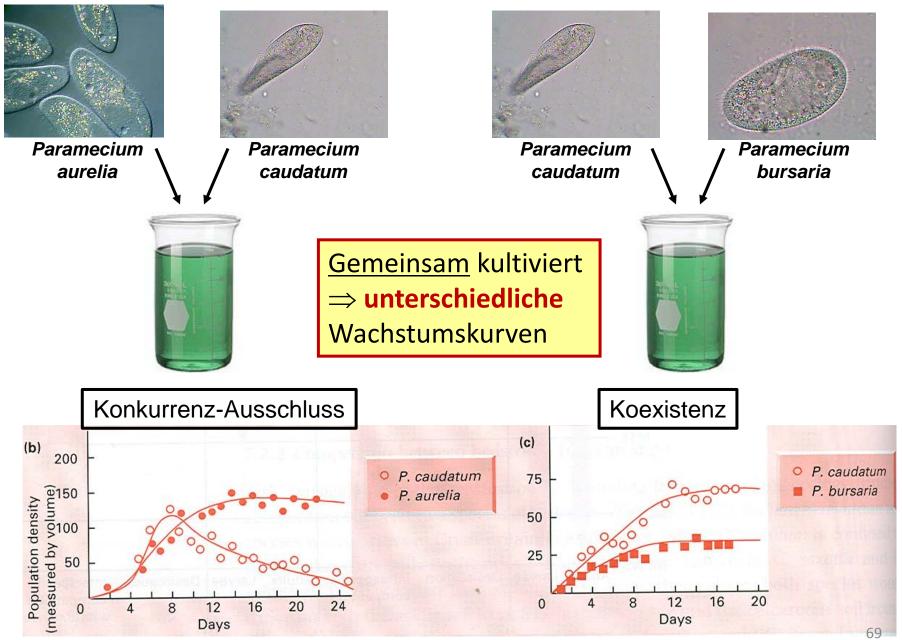

- <u>Einfache Systeme</u>: vorwiegend **Generalisten** mit breitem Nutzungsspektrum und großer Nischenüberlappung
- <u>Unter stabilen Bedingungen</u>: Selektionsdruck erzwingt ständig steigende Nutzungseffizienz ⇒ Spezialisierung
- Generalistische Eigenschaften werden aufgegeben
 - ⇒ Breite des nutzbaren Ressourcenspektrums wird kleiner
 - \Rightarrow Überlappungsbereiche kleiner \Rightarrow <u>aktuelle</u> Konkurrenz **sinkt**
- - ⇒ tatsächlicher Konkurrenzdruck oft größer als in weniger entwickelten Systemen

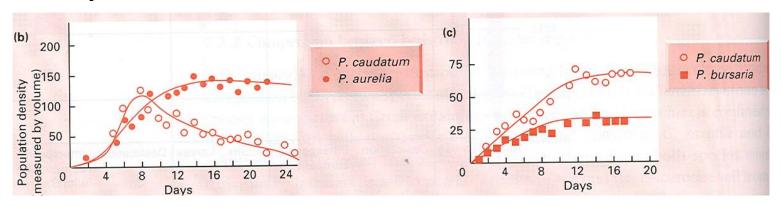

Konkurrenz-Ausschluss-Prinzip


- 2 Arten können <u>nicht koexistieren</u>, wenn sie in ihren Ansprüchen zu einem <u>limitierenden</u> Faktor (Ressource) völlig übereinstimmen
- <u>Mikrokosmos-Experimente</u>: 3 Pantoffeltierchen-Arten (*Paramecium aurelia, P. caudatum, P. bursaria*)



Georgi F. Gause (1910-1986)


Gause kultivierte zuerst jede Art einzeln...


Einzeln kultiviert, wächst Population jeder Art <u>sigmoidal</u>
⇒ füllt ihre aktuelle & spezifische "Umweltkapazität" aus

G. F. Gause (1934, 1935)

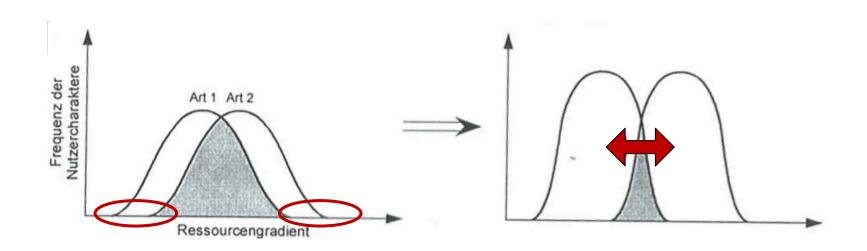
Gause kultivierte weiters Artenpaare gemeinsam...

Populationswachstum in Konkurrenz

- Ausbeutung (exploitation) reduziert Größe der Population
 ⇒ kann zum (lokalen) Aussterben führen
- Bei Konkurrenz leidet (fast) immer eine Art mehr als die andere
 ⇒ Asymmetrie
- Koexistenz Lebensraum bietet Ausweichmöglichkeit (Refugien)
 oder Nischenüberlappung nicht zu groß

Koexistenz trotz ähnlicher Ansprüche

- Konkurrenz nachteilig, weil energieaufwendig
- > daher: Vermeidungsstrategien bieten Selektionsvorteil

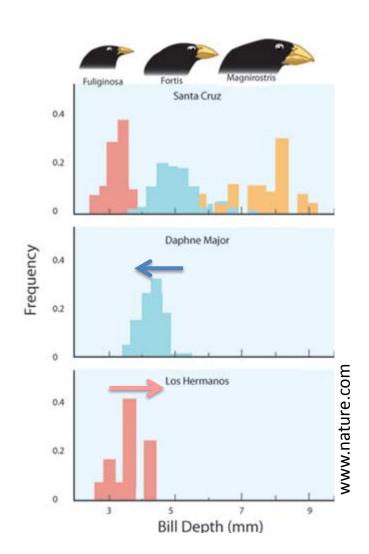

Ein Mechanismus der Konkurrenzvermeidung:

<u>Character displacement</u> (= Kontrast-Betonung)

- Ressource selten in völlig <u>homogener</u> Qualität ⇒ Aufteilung entlang
 Qualitätsgradienten
- jede Art konzentriert sich auf Nutzung eines anderen
 Nischenabschnittes ⇒ ökomorphologische Differenzierung
- realisierte Nischen <u>wandern auseinander</u> \Rightarrow erleichtert **Koexistenz**

Ergebnis: Nischenaufteilung (resource partitioning)

z. B. räumlich (Lebensraumstrukturen), zeitlich (Tageszeit, Saison), ...


Selektionsprinzip bei Nischentrennung

Individuen mit intermediärem Nutzungscharakter

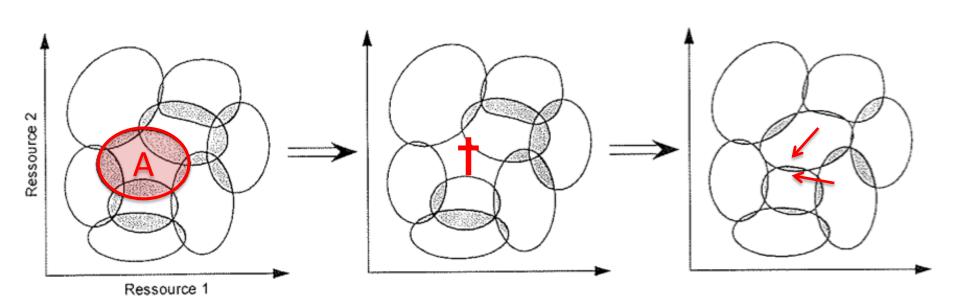
- ⇒ weniger spezialisiert = geringere Nutzungseffizienz
- \Rightarrow geringere Fitness \downarrow
- ⇒ extremere (distinkte) Phänotypen setzen sich durch
- ⇒ ökomorphologische Differenzierung = "Einnischung"

Beispiel für Character displacement

- Darwinfinken (Gattung Geospiza) auf Galápagos
- gemeinsam auf Insel deutliche
 Unterschiede in Schnabelgrößen
 - ⇒ <u>unterschiedliche</u> Ressourcen
- Individuen mit <u>intermediärer</u>
 Schnabelgröße zu wenig spezialisiert
 ⇒ geringere Fitness
- <u>"allein"</u> auf Insel ⇒ rasche Verschiebung der Schnabelgröße (Jahre bis Jahrzehnte)

Konsequenzen der Nischentrennung

Perspektive der Individuen


- Konkurrenz nicht vermieden, sondern verschoben
- intraspezifisch = mehr Individuen mit gleichem Nutzungscharakter
 - \Rightarrow stärkerer Selektionsdruck, Rückkopplung \rightarrow rasche Evolution

Auf Ebene der Gemeinschaften

- Ausweichmöglichkeiten oft gering ↔ kaum "freie Nischen"
- hoch entwickelte Systeme: große Artenvielfalt
 - ⇒ Ressourcenachsen entlang ihrer Gradienten dicht besetzt
 - ⇒ Verschiebungsmöglichkeiten stark eingeschränkt
- Mindestabstand zur Konkurrenzvermeidung ⇒ Niche packing

Niche packing

- Nischen der einzelnen Arten so positioniert, dass sie
- (a) möglichst wenig überlappen
- (b) keinen Ressourcenabschnitt ungenutzt lassen
- Wird Ressourcenabschnitt frei (= A stirbt aus†)
 - ⇒ durch Konkurrenzdruck in Umgebung rücken Nischen zusammen

Mehr Dimensionen – verstärkte Trennung

Ressource **einheitlich** → keine Differenzierung möglich

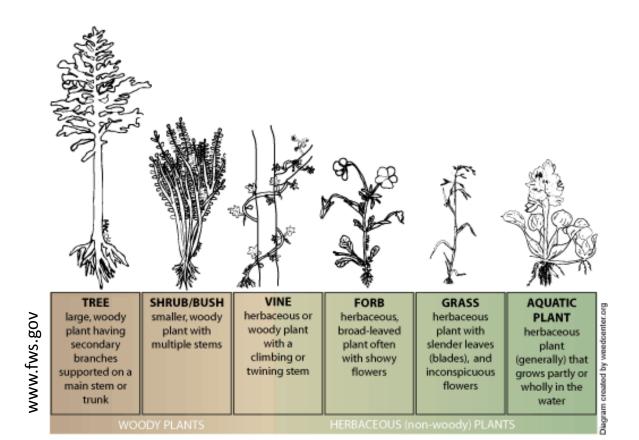
⇒ Nischentrennung entlang Faktoren mit **stärkeren Gradienten**

Beispiel: Korallenriff

- ullet viele Korallen-Arten mit \pm <u>identischen</u> Ansprüchen
 - → Licht (für Algen) + kleine (planktische) Beuteorganismen
- einige wachsen schnell mit fragilen Skeletten
- andere langsam mit massiven Skeletten, dafür Allelopathie (nesseln andere Korallen)
- jede Art hat auf <u>anderer Ressourcenachse</u> einen **Vorteil**
 - ⇒ **Koexistenz** möglich

Funktionell ähnliche Organismenarten

Nischenäquivalente (= Stellenäquivalente)


- gleichartige Nutzungsmöglichkeiten
- in entfernten Systemen oft <u>nicht</u> miteinander <u>verwandt</u>
- ähnliche Funktion ⇒ Analogien (= Konvergenzen)

Funktionelle Gruppen (functional groups)

- Gruppen von Arten mit Übereinstimmungen in Funktion (und Struktur: Ökomorphologie)
- Klassifikation entlang jeder Dimension möglich
- z.B. Pflanzen <u>Wuchsform & Architektur</u>:
 Gräser Kräuter Stauden Sträucher Bäume Lianen

Gilden (guilds)

- Gruppen von (Tier-)Arten, die (im selben Lebensraum) gleiche Ressourcen in ähnlicher Weise nutzen
- <u>Beispiel</u>: Pflanzen fressende (= phytophage) Insekten im Wald Feiner unterteilt: kauende vs. saugende Phytophage <u>oder noch feiner</u>:

Blattfresser – Stängelbohrer – Wurzelfresser – Blütenfresser – Samenprädatoren usw.

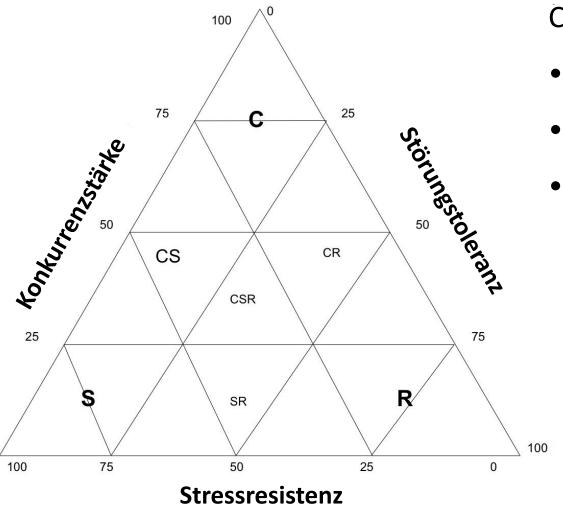
Ausschnitt – Blattfressergilde auf Laubbäumen in mitteleuropäischem Mischwald

Konkurrenz und Lebenszyklus-Strategien

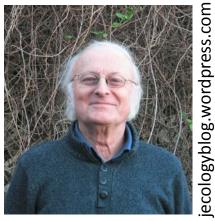
Zwei gegensätzliche Strategien

Kolonisierer (fugitive species)

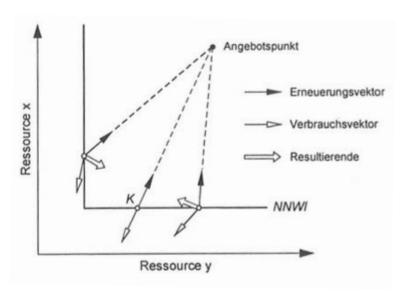
- schwache Konkurrenten
- hohe <u>Nachkommen</u>zahl, effiziente <u>Ausbreitung</u>smechanismen
- konkurrenzfreie Räume
 - ⇒ rasch hohe Populationsdichte


Platzbehaupter

- konkurrenz<u>stark</u> → können andere Arten aus bereits besiedelten Räumen verdrängen
- weniger Nachkommen, geringere Ausbreitung



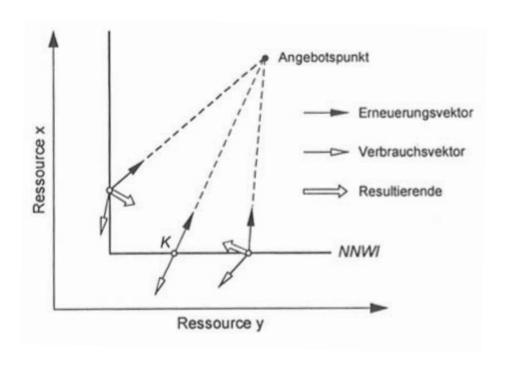
Sessile Organismen (besonders: Pflanzen): drei Dimensionen des Strategietyps


CSR-Dreieck (John P. Grime)

- Competitiveness (K)
- Stress tolerance
- Ruderalism (r)

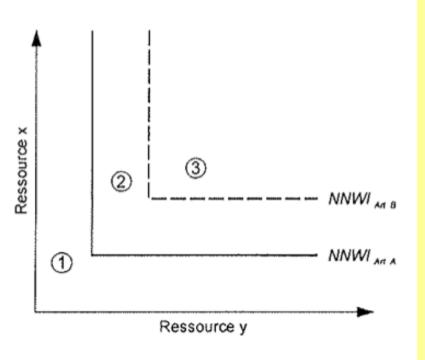
Tilman-Modell der differenzierten Ressourcennutzung

- Berücksichtigt Dynamik der Organismen UND der Ressourcen
- <u>Ausgangspunkt</u>: Art wird von <u>2 essentiellen</u> Ressourcen begrenzt
 (z.B. Kieselalge: Phosphat <u>und</u> Silikat)
- Beide Ressourcen in <u>Phasendiagramm</u> eingetragen → Achsen stehen für (zeitlich <u>variable!</u>) Verfügbarkeit


Netto-Nullwachstums-Isokline (NNWI)

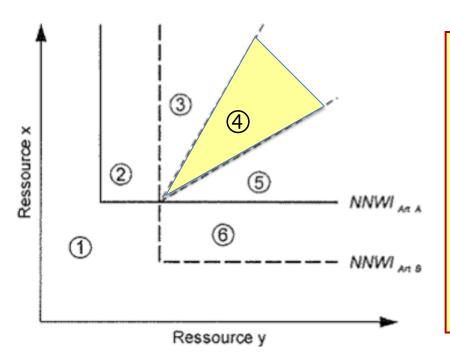
- minimale Ressourcenkonzentration für dauerhaftes Überleben der Population
- über NNWI: Population wächst
- unter NNWI: Population stirbt aus

Auf NNWI: **Population**sgröße <u>konstant</u>; aber **Ressourcen**konzentrationen <u>nicht</u> notwendig <u>konstant</u> → <u>Gleichgewicht</u>: **Konsumation** *vs.* **Erneuerung**


<u>Keine</u> Konsumation ⇒ **Gleichgewicht** einer bestimmten Ressourcenkombination (= **Angebotspunkt**)

<u>Stabiles Nutzungsgleichgewicht</u> muss **2 Bedingungen** erfüllen: **Populationsgröße** = const. \Leftrightarrow muss auf NNWI liegen. **Ressourcen** = const. \Leftrightarrow Vektoren von Konsumation und Erneuerung entgegengesetzt und gleich groß \Rightarrow erfüllt nur in Punkt K

Zwei Arten ⇔ interspezifische Konkurrenz


- NNWIs beider Arten in einem Diagramm; für jede Ressource zwei verschiedene Konsumationsraten, aber weiter nur ein Angebotspunkt ⇒ Konkurrenzkonflikt
- entscheidend: Lage der NNWIs relativ zum Angebotspunkt
- a) Beide NNWI von Art A <u>liegen tiefer</u> als von Art B \Rightarrow A kann bei geringer Ressourcen-Konzentration überleben als B \Rightarrow <u>3 Möglichkeiten</u>

- 1) Angebotspunkt zumindest für eine Ressource <u>unterhalb beider</u> NNWI ⇒ <u>keine</u> der Arten kann <u>überleben</u>
- **2)** Angebotspunkt <u>zwischen</u> NNWI: <u>nur A</u>, deren NNWI unter dem Angebotspunkt liegt, <u>überlebt</u>
- 3) Angebotspunkt oberhalb beider NNWI: Populationen von A & B können wachsen; mit Populationsgröße steigt Konsumation ⇒ Ressourcenkonzentration sinkt unter NNWI von Art B ⇒ nur A überlebt

b) NNWIs <u>beider</u> Arten überlappen – 6 weitere Szenarien:

- 1) NNWI <u>beider</u> Arten <u>über</u> Angebotspunkt ⇒ <u>keine Art überlebt</u>
- 2) NNWI von A <u>unter</u> Angebotspunkt ⇒ B stirbt an Ressourcenmangel x; <u>nur A überlebt</u>; analog (6), hier <u>überlebt B</u>
- 3) beide Arten können <u>anfangs</u> wachsen; Angebotspunkt liegt aber nur wenig über NNWI für Ressource x von B; steigende Konsumation (Populationswachstum) ⇒ Ressourcenkonzentration fällt unter NNWI von B ⇒ <u>B stirbt aus</u>; analog (5), hier <u>stirbt A aus</u>

4) Zunächst wachsen beide Populationen, weil Angebotspunkt <u>über beiden</u> NNWI; Populations<u>wachstum</u> steigert

<u>Konsumation</u> ⇒ reduziert <u>aktuelle</u>

Ressourcen<u>konzentration</u>;

Schnittpunkt der NNWI ⇔

<u>kein Populationswachstum</u>:

Art A ⇒ Mangel an Ressource x

Art B ⇒ Mangel an Ressource y

Konsequenz aus Tilman-Modell der differenzierten Ressourcennutzung

Langfristige Koexistenz zweier Arten nur möglich, wenn

- 1. **Jede** der beiden von <u>einer</u> Ressource stärker begrenzt wird als die andere → deutliche minimale Nischentrennung
- 2. Ressourcen**angebot** in <u>ausgeglichenem</u> Verhältnis zum Angebot
- 3. Sonst: Konkurrenz-Ausschluss als einziges Gleichgewicht

Grenzen der (reinen) Nischen-Theorie

Koexistenz sehr artenreicher Gemeinschaften

- Wie plausibel ist dann Annahme ausreichender Nischentrennung?
- Vor allem: Organismen mit sehr ähnlichen Ressourcenansprüchen

Paradox of plankton

Margalef & Hutchinson; hohe Diversität im Phytoplankton: alle Licht & anorganische Nährstoffe ⇒ warum so hohe Diversität in scheinbar homogenem Medium?

Bäume in tropischen Tiefland-Regenwäldern

hohe Artendichte: alle Licht & anorganische Nährstoffe ⇒ warum so hohe Diversität in scheinbar homogenem Terrain?

- Nicht-Gleichgewichts-Konzepte (Huston, Connell)
 Neutrale Theorie (Hubbell)