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Differential expression: Is the expression of a special gene
different in different treatments?
Learning: What accounts for the difference in different
treatments?
Functional analysis: Which functional classes are different in
different treatments?

1 One factor

Two samples
Multiple samples

2 Time courses

3 Factorial experiments
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Techniques

Experimental techniques

Analog Digital
Measurement Counting

Microarrays
e.g. SAGE (Serial Analysis of
Gene Expression)

Hybridization Sequencing

Lots of statistics Robust statistics

Need to design chip
Do not need sequence in
advance
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Techniques

Sources of error

Biological noise:

Transcription is a stochastic process

Posttranscriptional regulation

Stability of the mRNA

Technical limitations:

cDNA from mRNA

Microarray:

Binding of the dye
Hybridization kinetics
cross-hybridization
Measurement of the
signal

SAGE:

Detection of tags
Tags not unique or not
present
Sequencing errors
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Tag data

Experiment

SAGE:

extract short (10-20 bp)
tags from cDNA

cut with special
restriction enzymes from
3’ end

if transcript is known →
know ’virtual’ transcript

tags are concatenated,
cloned and sequenced →
get counts
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Tag data

Design

Design issues - Probability of detecting a transcript

The tags stem from randomly picked transcripts

Due to experimental treatment, GC-bias has been observed

Even in absence of any noise their frequencies are not a
perfect representation of the frequencies in the cell but follow

a binomial distribution: P(k) =

(
N
k

)
pk(1− p)N−k

N: Library size (total number of tags)
k: count of tag x which occurs in cell with proportion p
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Tag data

Preprocessing

Minimal count of a transcript in the
cell to be detected with probability
> 95% (total number of transcripts
300 000):

N k ≥ 1 k ≥ 2

10 000 91 144
100 000 10 16

1 000 000 2 3

�
�
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As preprocessing single counts are usually excluded since they may
be due to sequencing error. This reduces the detection probability
of low abundance transcripts.



Analysis of gene expression

Tag data

Preprocessing

Minimal count of a transcript in the
cell to be detected with probability
> 95% (total number of transcripts
300 000):

N k ≥ 1 k ≥ 2

10 000 91 144
100 000 10 16

1 000 000 2 3

�
�

�
�

As preprocessing single counts are usually excluded since they may
be due to sequencing error. This reduces the detection probability
of low abundance transcripts.



Analysis of gene expression

Tag data

Differential expression

Differential expression

Question: Given 2 Libraries S1 and S2, where tag x occures n1

times and n2 times, respecitvly, is x differentially expressed?

S1 S2

x n1 n2

others L1 − n1 L2 − n2

Null Hypothesis:
The proportions are equal
Test Statistic:

χ2

Fisher’s exact test
Test proportions n1/L1 and n1/L1 for equality with z-Test
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Microarray data

Survey of one microarray experiment
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Microarray data

Experiment

Oligonucleotide arrays

e.g. Affymetrix arrays

In situ synthesis is used to build
probes bp by bp

Oligonucleotides of length ≈ 25 on
array

Perfect matching sequences
One or more mismatching
nucleotides (control for
non-specific binding)

One biological sample per array
(a new slide for every sample)

cDNAs are labelled with biotin
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Microarray data

Experiment

cDNA arrays

Spotting technology to attach probes
to chip (e.g. cDNA library)

Two biological samples per array

Each labelled with one of the
fluorescent dyes Cy3 (green) or Cy5
(red)

Mixture of labelled cDNAs on slide

Intensities of the dyes measured →
Ratio of the intensities provides
information of the mRNA ratios in the
original samples
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Microarray data

Design

Replicates

Technical replicates:

The same sample is spotted on different slides (but labelled
independently)

Measurements of errors in the procedure or in the technology

Biological replicates:

Different samples spotted on different slides

Inference of the underlying population

Type I: different extracts of a cell line or a tissue

Type II: the same tissue but different individuals (greater
variability)�



�
	The larger the number of replicates the better mean and variance

can be estimated.
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Microarray data

Design

Fold change

The fold change (FC) is a measure for differential expression:

Expression in sample B

Expression in sample A
(normally in log2-scale)

log FC variance

One cDNA
array

logB − logA σ2

2 arrays,
direct
comparison

[(logB − logA)−
(logA− logB)]/2

σ2/2

2 arrays,
indirect
comparison
via Refernce

(logR − logA)−
(logR − logB)

2σ2
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Microarray data

Preprocessing and Normalization

Analysis of microarrays

1 Image analysis

2 Normalisation
(each slide
separatly)

3 Differential gene
expression (all
slides, whole
experiment)

4 Analysis of gene
expression
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Microarray data

Preprocessing and Normalization

Image analysis

1 Localisation of the spots

2 Segmentation: Determination of the spot borders, partition in
foreground and background

3 Computation of the intensities

4 Filtering of low-quality spots
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Microarray data

Preprocessing and Normalization

Normalization of cDNA arrays: M/A plot

Assumption: Only a small part of the
genes are differentially expressed, then
the plot of R against G should be a line

A = (log2(R) + log2(G ))/2 (Addition,

mean intensity)

M = log2(R)− log2(G ) (Minus,

differential expression, log fold change)

Fit curve by Lowess or Loess
normalization.
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Preprocessing and Normalization

cDNA array: Intensity Boxplot

Distributions adjusted by median centering or quantile
normalization.



Analysis of gene expression

Microarray data

Preprocessing and Normalization

cDNA array: Intensity Boxplot

Distributions adjusted by median centering or quantile
normalization.



Analysis of gene expression

Microarray data

Differential expression

Ranking the genes - |M | and |M |

M = log2(R)− log2(G )

M < 0 Gene over-expressed in green-labelled sample compared to
red-labelled sample

M = 0 Gene equally expressed in both samples
M > 0 Gene over-expressed in red-labelled sample compared to

green-labelled sample

Absolute value of of M is indicator for differential expression

m replicates: Mean intensity M =
1

m

m∑
i=1

Mi

Problem: Variance of the M-values not considered
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Microarray data

Differential expression

Ranking the genes - |T |, p and B

T-test Null hypothesis: two distributions show the same mean

here: Does the distribution of M values deviate from mean 0?

T =
M

σ/
√

m
(Standard deviation σ

Problem: Large T value can also be caused by low σ
With small sample size σ cannot be well estimated →
moderated T-statistic (variances are borrowed from other
genes)

P-value probability that a |T | is larger or equal to the observed |T |,
while the null hypothesis is true

Must be adjusted for multiple testing

BEB Bayes empirical Bayes: Posterior probabilities for differential
expression (log odds)

Estimated variables are used for moderated T-statistic
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Microarray data

Differential expression

Example
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Functional analysis

Annotation

Previous analyses are done on the level of probes or tags

Now: include function information

First step: Find corresponding genes

Microarray SAGE

Probe-to-gene-mapping Tag-to-gene-mapping

Annotation data packages for
specific platforms (e.g.
Affymetrix) in Bioconductor,
e.g.annotate

Mapping by ’virtual’ transcript,
e.g. SageGenie
http://cgap.nci.nih.gov/
SAGE/AnatomicViewer

http://cgap.nci.nih.gov/SAGE/AnatomicViewer
http://cgap.nci.nih.gov/SAGE/AnatomicViewer
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Functional analysis

Gene sets

Use the functional information (meta-data, annotations) available
for the genes to define gene sets:

GO Gene Ontology: Molecular function, biological process and
cellular component

Annotations arranged in a directed acyclic graph

Pathways KEGG, BioCarta, GenMapp

Loc Chromosomal Localisation → clusters of co-regulated genes

TFBS Transcription factor binding sites

...
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Functional analysis

Gen-Class Testing (differentially expressed genes)

Guess: List of differentially expressed genes are functionally
related

Problem: Find functional group(s) which are related to the
differentially expressed genes

Procedure: Choose gene sets of known function and test every set
whether it is overrepresented in the set of differentially
expressed genes

Test Null hypothesis: The amount of a category K is equally
distributed among differentially and non-differentially
expressed genes

2× 2 Contingency table:

diff nd

K a b
not K c d

→
Fisher-Test
(hypergeometric

distribution)

Attention: Multiple tests and complex dependencies
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Functional analysis

Rank-based Gene-Class Testing

Gene set Enrichment Analysis (GSEA)

Genes ranked by a measure for differential expression (e.g.
fold change, |T |, B), but no cutoff needed

KS Kolmogorov-Smirnov-Test: Does the genes of category K
occur more frequently in the beginning of the list?

Null distribution estimated by permutation
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Learning

Distance functions

Data matrix E :
Sample

Gene 1 . . . m

1 Expres-
... sion
n values

Application of distance funtions to
the n-dimensional column vectors:

1 Euclidean distance:

d(x , y) =

√
n∑

i=1

(xi − yi )2

2 1− r(x , y) with correlation
coefficient r

3 1− |r(x , y)|
Analogous for the m-dimensional row
vectors
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Types of learning
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Learning

Classification

Classification

Classification is a form of unsupervised learning → external
information is used.

Question: Classification of patients by their expression profiles
(learn with healthy and ill persons)

Multilevel process:

1 Feature selection: Select informative components

2 Learn a classifier with labelled samples

3 Classify an unlabelled sample with the classifier
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Learning

Classification

Feature selection (Gene filtering)

A Classification with the complete n-dimensional data is often
problematic

Improvement: extract N genes, that distinguish best between
the classes and learn the classifier only with the reduced
N-dimensional data

m1 data sets for class 1 and m2 data sets for class 2
1 T-Test for every gene, whether two classes have the same

mean expression value
2 Wilcoxon-Test whether two classes have the same median

(non-parametric test)

Only thake the N most significant genes
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Learning

Classification

Classification algorithms

k-NN k nearest neighbors:

Majority decision of the k objects with the smallest distance
to the classified object

LDA Linear discriminant analysis

For every class, a “feature vector” is learned which represents
the class

CART Classification and regression trees:

Decision trees: Partitioning with respect to a component
(gene expression value) on every inner node, class labels on
the leaves

SVM Support vector machines:

With a mathematical expression, the objects are transfered in
a space where they can be separated with a straight line
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Learning

Classification

Validation

To protect the classifier against overfitting, a test data set is
neccessary.

Cross validation:

The labelled data is
partitioned several times
in training data and test
data

The classifier is learned
with the training data
and the test data is
classified

The gene selection can also be validated (avoids overfitting to the
selected genes)
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Clustering

Clustering

Clustering is a form of unsupervised learning → no external
information is used.

Input: Distances computed between the genes from a microarray
experiment

Output: Assignment of classes to the genes

Also: Clustering of samples or two-sided clustering

Problems:

Few known about reliability and problems of clustering
methods

Hard to reproduce

Does not answer biological question for differential expression
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Learning

Clustering

Clustering algorithms

Hierarchical clustering

Genes with the smallest distance are
merged

New distances computed to inner node

Tree (dendogram) is produced

Mistakes cannot be taken back

Partition clustering

k-means: k classes → class means →
classification according to smallest
distance → new classes → . . .

The classes are recomputed in every
step
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Learning

Clustering

Clustering as a visualisation tool

Heatmap:

Color-coding of
the expression
level

Two-sided
hierarchical
clustering

Rearrangement of
rows and columns
such that similar
rows (columns)
are placed next to
each other
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