Crash n’ Survival Course with R

Anne Kupczok

MFPL - CIBIV
Center for Integrative Bioinformatics in Vienna

February 9, 2009

Your biggest friend and partner in statistics

Installation of R, starting and additional libraries

vV v . v.Y

R Webpage http://www.r-project.org/
There is code and precompiled binaries
Start with the command R

Additional libraries which are installed
are loaded with library(name)

A usefull interface is the R
commander which is started with
library(Rcmdr), conatins a script
and an output window

http://www.r-project.org/

Using R as calculator: Basic Operations

> 5-2 # addition, subtraction
[1] 3

> 5*%2 # multiplication, division
[1] 10

> bx*x2 # power
[1] 25

> 5%/%2 # division
[1] 2

> 5%%2 # modulo
[1] 1

Basic arithmetic functions and values

predefined arithmetic functions:
max(), min()

abs()
sqrt()

round, floor(), ceiling()

sum(), prod()

l0g(), 0g10(), log2()

exp()
sin(), cos(), tan(), asin(), acos(), atan()

Basic arithmetic functions and values

predefined arithmetic functions:
max(), min()
abs()
sqrt()
round, floor(), ceiling()
sum(), prod()
l0g(), 10g10(), log2()
exp()
sin(), cos(), tan(), asin(), acos(), atan()

Constant Values:

pi us pi

Inf, -Inf infinity 1/0
NaN Not a Number 0/0
NA Not Available ~ 'NA’

NULL Not defined

Assigning values to variables

We do not need to declare the datatype of a variable in R.

The simplest datatype in R is a scalar.

» variables can be used to represent values:

> x <- 15
> X
[1] 15

» values can also be assigned by:

> a =15
> a
[1] 15

» Logical values:

> a == 15
[1] TRUE

A Vector is a array of values

construct a vector with the " concatenate function” c()

Scalar vector

> v <- c(15, 4, 67, 5, 9)
> v
[1] 15 4 67 5 9

A Vector is a array of values

construct a vector with the " concatenate function” c()

Scalar vector

> v <- c(15, 4, 67, 5, 9)
> v
[1] 15 4 67 5 9

Logical vector:

>v <-c(T, T, F, T)
> v
[1] TRUE TRUE FALSE TRUE

A Vector is a array of values

construct a vector with the " concatenate function” c()

Scalar vector

> v <- c(15, 4, 67, 5, 9)
> v
[1] 15 4 67 5 9

Logical vector:

>v <-c(T, T, F, T)
> v
[1] TRUE TRUE FALSE TRUE

Character vector:

> v <- c("Hund", "Katze", "Maus", "Mensch")
> v
[1] "Hund" "Katze" "Maus" "Mensch"

Selections on vectors

» Single value from vector:
> x <- c(4, 5, 8, 23, 12)

> x[2]
[1] 5

Selections on vectors

» Single value from vector:

> x <- c(4, 5, 8, 23, 12)
> x[2]
[1] 5

» Multiple values from vector:

> x[c(2,4)]
[1] 5 23

Selections on vectors

» Single value from vector:

> x <- c(4, 5, 8, 23, 12)
> x[2]
[1] 5

» Multiple values from vector:
> x[c(2,4)]
[1] 5 23
» Subsequent values from vector:

> x[1:3]
[1] 4 5 8

Selections on vectors

» Single value from vector:

> x <- c(4, 5, 8, 23, 12)
> x[2]
(11 &

» Multiple values from vector:

> x[c(2,4)]
[1] 5 23

» Subsequent values from vector:
> x[1:3]
[1] 4 5 8
> Logical selection (boolean vectors of same length):

> x>7

[1] FALSE FALSE TRUE TRUE TRUE
> x[x>7]

[1] 8 23 12

Operations on vectors

» arithmetic operations on vectors:

> x <- c(4, 5, 8, 23, 12)
> x*2
[1] 8 10 16 46 24

Operations on vectors

» arithmetic operations on vectors:

> x <- c(4, 5, 8, 23, 12)
> x*2

[11 8 10 16 46 24
» Vectors need to have the same length!

>x + x

[1] 8 10 16 46 24

> x + x[1:4]

[1] 8 10 16 46 16

Warning message: longer object length is not a
multiple of shorter object length in: x + x[1:4]

Operations on vectors

» arithmetic operations on vectors:

> x <- c(4, 5, 8, 23, 12)
> x*2
[1] 8 10 16 46 24

» Vectors need to have the same length!

>x + x

[1] 8 10 16 46 24

> x + x[1:4]

[1] 8 10 16 46 16

Warning message: longer object length is not a
multiple of shorter object length in: x + x[1:4]

» Test whether a vector contains an element

> ¢(5,6) %in% x
[1] TRUE FALSE

Some functions on vectors

» Getting the length of a vector

> x <- c(4, 5, 8, 23, 12)
> length(x)
(11 5

Some functions on vectors

» Getting the length of a vector

> x <- c(4, 5, 8, 23, 12)
> length(x)
(11 5

» Getting and changing the names of a vector

> names (X)=C(IIE1II ,"E2" "E3", "E4", "ES")
> X
E1 E2 E3 E4 E5
4 5 8 23 12
> X["E3"]
E3
8

Some functions on vectors

» Getting the length of a vector

> x <- c(4, 5, 8, 23, 12)
> length(x)
(11 5

» Getting and changing the names of a vector

> names (X)=C(IIE1II R nEon R nE3n R nEAn R "ES")
> X
E1 E2 E3 E4 Eb5
4 5 8 23 12
> X["ES"]
E3
8

» Getting the order of a vector

> o=order (x)

> 0

[11 1 235 4

> sort(x) #same as x[o]
[11] 4 5 8 12 23

Matrices are represented as vectors with two dimensions
We can set or change dimensions with the function dim
>M<- 1:6
> dim(M) <- <¢(2,3)
> M
[,11 [,2] [,3]
[1,] 1 3 5
[2,] 2 4 6

Matrices are represented as vectors with two dimensions
We can set or change dimensions with the function dim

>M<- 1:6
> dim(M) <- <¢(2,3)
> M

[,11 [,2] [,3]
[1,] 1 3 5
[2,] 2 4 6

Matrices can be created using the matrix function

> N= matrix(1:6,nrow=2,byrow=T)
>N
[,11 [,21 [,3]
[1,1] 1 2 3
[2,] 4 5 6
> dim(N)
[1] 2 3

(here the Matrix will be filled in a rowwise fashion)

Useful functions that operate on matrices

Indexing

> MAT<-matrix(5:12,c(4,2) ,byrow=T)

> MAT[3]

[11 7

> MAT[,1]

[1] 5 7 911
> MAT[1,]

[1] 5 6

> MAT[3,2]

[1] 10

> MAT

(.11 [,2]
[1,] 5 6
[2,] 7 8
[3,1] 9 10
[4,] 11 12

Indexing

> MAT<-matrix(5:12,c(4,2) ,byrow=T)
> MAT[3]

[11 7

> MAT[,1]

11 5 7 911

> MAT[1,]

[11 5 6

> MAT[3,2]

{11 10

assign rownames and colnames

> rownames (M) <- c("X","Y")

> colnames (M) <- C("A","B","C")

> M

> W
o O Q

[le" ,]

[l AL SIS
WWw RN~ =
o Q

Useful functions that operate on matrices

> MAT

(.11 [,2]
[1,] 5 6
[2,] 7 8
[3,] 9 10
[4,] 11 12

Factors: storing categorical variables
A factor consists of a vector of integers and a character vector
> pain <- ¢(0,3,2,2,1)
> fpain <- factor(pain,levels=0:3)
> levels(fpain) <- c("none","mild","medium","severe")

Factors: storing categorical variables
A factor consists of a vector of integers and a character vector

> pain <- ¢(0,3,2,2,1)
> fpain <- factor(pain,levels=0:3)
> levels(fpain) <- c("none","mild","medium","severe")

The level argument assures the ordering of our categories
(otherwise alphabetical ordering)

> fpain

[1] none severe medium medium mild

Levels: none mild medium severe

> as.numeric(fpain)

(11 1 4332

Factors: storing categorical variables
A factor consists of a vector of integers and a character vector

> pain <- ¢(0,3,2,2,1)
> fpain <- factor(pain,levels=0:3)
> levels(fpain) <- c("none","mild","medium","severe")

The level argument assures the ordering of our categories
(otherwise alphabetical ordering)

> fpain

[1] none severe medium medium mild

Levels: none mild medium severe

> as.numeric(fpain)

(11 1 4332

Count the categories (can also be applied to normal vectors):
> table(fpain)
fpain
none mild medium severe
1 1 2 1

Data frames: Lists of vectors with the same length

Creating a data frame object

> vectorl <- c("Hund","Katze","Maus","Schnabeltier")
> vector2 <- c(3,5,7,2)
> dframe<-data.frame(Spec=vectorl,Num=vector2)
> dframe
Spec Num
1 Hund 3
2 Katze 5
3 Maus 7
4 Schnabeltier 2

Data frames: Selection

» get the names of a object

> names (dframe)
[1] ||Specll "Numll

Data frames: Selection

» get the names of a object

> names (dframe)
[1] ||Specll "Numll

» $ gives the column vectors

> dframe$Num #equals
[1] 357 2

dframe[,2] and dframel[,"Num"]

Data frames: Selection

» get the names of a object

> names (dframe)
[1] ||Specll "Numll

» $ gives the column vectors

> dframe$Num #equals dframe[,2] and dframel[,"Num"]
[1] 357 2

» can be indexed like a matrix

> dframe$Num[1] # equals dframe[1,2]
(1] 7

Lists: composite collection of objects
» creating object using list()

> lobject<-1list(c(1,2,2,2),age=c(98,21,56))
> lobject

[[1]]

[1] 1222

$age
[1] 98 21 56

» selection of particular values (Indexing)

> lobject[[1]] #is a vector
[1] 1222

> lobject$age #also a vector
[1] 98 21 56

> lobject[1] #is still a list
[[1]1]

[11 1222

Testing and converting variable types

» Test a special type

> is.list(lobject)

[1] TRUE

> is.list(lobject[[1]1])
[1] FALSE

> is.vector(lobject[[1]])
[1] TRUE

> is.na(c(1,0/0))

[1] FALSE TRUE

Testing and converting variable types

» Test a special type

> is.list(lobject)

[1] TRUE

> is.list(lobject[[1]1])
[1] FALSE

> is.vector(lobject[[1]])
[1] TRUE

> is.na(c(1,0/0))

[1] FALSE TRUE

» Convert to a special type

> a <- as.logical(c(3,2,0,1))
> a

[1] TRUE TRUE FALSE TRUE
> as.integer(a)

(1] 1101

Read and write data
Simple example how to read a table into a data frame object:
> dataFramel <- read.table("data.txt",header=T)
You can also write a data.frame into a file:

> write.table(data,filename)

Read and write data
Simple example how to read a table into a data frame object:

> dataFramel <- read.table("data.txt",header=T)

You can also write a data.frame into a file:

> write.table(data,filename)

Write R-Objects:

#save all the variables in the workspace to a file:
save(file=filename)

#save only the variables MAT and v to a file:

save (MAT,v,file=filename2)

load(filename) #load the data in another R session
#get the names of variables in the workspace:

1s0

V V.V V V VYV

Read and write data
Simple example how to read a table into a data frame object:
> dataFramel <- read.table("data.txt",header=T)
You can also write a data.frame into a file:

> write.table(data,filename)

Write R-Objects:

> #save all the variables in the workspace to a file:
> save(file=filename)

> #save only the variables MAT and v to a file:

> save(MAT,v,file=filename?2)

> load(filename) #load the data in another R session
> #get the names of variables in the workspace:

> 1s(0)

Load a script with R-commands:

> source(script)

Read and write data
Simple example how to read a table into a data frame object:
> dataFramel <- read.table("data.txt",header=T)
You can also write a data.frame into a file:

> write.table(data,filename)

Write R-Objects:

> #save all the variables in the workspace to a file:
> save(file=filename)

> #save only the variables MAT and v to a file:

> save(MAT,v,file=filename?2)

> load(filename) #load the data in another R session
> #get the names of variables in the workspace:

> 1s(0)

Load a script with R-commands:

> source(script)

Get and set the working directory of R:

> getwd()
> setwd(dirstring)

R as a programming language

» Loops: for, while and repeat

> v=c(1,2,3,4,5)

> for (i in 1:5){

+ print (sum(v[1:i]))
+ }

(11 1

[1] 3

[1] 6

[1] 10

[1] 15

» There is a much faster way

> sapply(1:5,function(i) sum(v[1:i]))
[1] 1 3 6 10 15

R as a programming language

» Loops: for, while and repeat > If and else
> v=c(1,2,3,4,5) > if (v[3]==3){1
> for (i in 1:5){ + v[2]=3
+ print (sum(v[1:i])) *)
+ } > v
[1] 1 [11 13345
(1] 3
[1] 6
(1] 10
[1] 15

» There is a much faster way

> sapply(1:5,function(i) sum(v[1:i]))
[1] 1 3 6 10 15

Plotting with R

v = ¢(1,2,3,4,5)

s = sapply(1:5,function(i)
sum(v[1:i]))

plot(v,s)

vV + VvV VvV

10 12 14

8

6

Plotting with R

14

12

10
1

>v =c¢(1,2,3,4,5)

> s = sapply(1:5,function(i) 72

+ sum(v[1:1])) @ °
> plot(v,s) <

There are many parameters to ‘ ‘ ‘

1 2 3
modify the plot, e.g. .
> plot(v,s,main="myplot", myplot
+ ylab="sum",pch="+",col="red") i
9 -
E o+
© .
<
.

Plotting with R

14

12

10
1

v = c(1,2,3,4,5)

s = sapply(1:5,function(i)
sum(v[1:i]))

plot(v,s) <

6
1
o

vV + VvV VvV

There are many parameters to ‘ ‘ ‘
modify the plot, e.g.

> plot(v,s,main="myplot", myplot

+ ylab="sum",pch="+",col="red")

12

There are different graphical de-
vices, e.g.

x110 (screen, default)

pdf O +
dev.off() closes a device .

sum
8 10
I I

6
1
+

Statistics with R

There are many many statistical tests, distributions, ...
implemented in R.
e.g. Fisher-Test on count data:

> l=matrix(c(2,11,15,5),2)
>1
[,11 [,2]
[1,] 2 15
[2,] 11 5
> fisher.test(1)

Fisher’s Exact Test for Count Data

data: 1
p-value = 0.001268
alternative hypothesis: true odds ratio is not equal to 1
95 percent confidence interval:
0.00547646 0.45530971
sample estimates:
odds ratio
0.06755424

Probability and distributions

Di

stributions can be obtained

by:

» probability density d
» cummulative distribution p
» quantiles g

» random r

dnorm(x)

pnorm(x)

<]
=}

0.3

0.2

0.1

0.0

1.0

0.4 0.6 0.8

0.2

0.0

dnorm

Probability and distributions
Distributions can be obtained
by:

» probability density d

» cummulative distribution p
» quantiles g

» random r

Empirical cummulative distribu-

tion: ecdf(rorm(500))

o
-

®
[S]

Fn(x)
0.6

0.4
1

0.2
1

0.0

dnorm(x)

pnorm(x)

0.4

0.3

0.2

0.1

0.0

1.0

0.4 0.6 0.8

0.2

0.0

dnorm

~ 4

Literature:

Main source of the information and for further reading:

Programmieren
mit R

2. Auflage

@ Springer

There are also numerous free documentations of R.
In R, you can get help for a function e.g. ?sum

	What is R?
	Starting using R
	Calculator
	Datatypes
	INPUT
	Programming
	Graphical Visualisations
	Statistics

