Introduction to UNIX

Michaela K. Harlander
Physik Department TU Miinchen

20. Oktober 1991

This document is an introduction to UNIX for those who have never used UNIX
before. It explains the main principles, what you need to create your own files and
how to run them through a compiler. A brief overview on networking is given as
well as on the X window system.

An alphabetical list of important UNIX commands is provided. You may wish
to skim through this list from time to time while working through this introduction.

This document contains a reference card for the vi and the emacs editor.

Contents

1 Principles of UNIX 1

2 Getting Started 3
2.1 Account and Password oo oo oL 3
2.2 Machine Handling 3
2.3 Login Procedure L 4
2.4 Entering Commands L Lo 5

3 Shells 5
3.1 Features and Startupfiles o oL 5
3.2 History and Job Control o L. 6
3.3 Thenice Command 6

4 Getting Help 7

5 The Filesystem 7
5.1 Structure oL e 7
5.2 File Names e 9
5.3 Filename Expansion 0 oL 10
5.4 Renaming and Deleting Files 11
5.5 File Access Permissions o oo 11

5.6 Backups oL 12

6

10

Working with the Shell 12

6.1 Standard Input and Standard Output 12
6.2 Redirection e 13
6.3 Pipes. . . . e 14
6.4 Environment Variables 0000000 14
6.0 Aliases L 15
6.6 Using the Shell’s Special Characters as Normal Characters 15
6.7 Emergencies e 16
6.8 Shell Scripts o o 16
Editing Files 18
T Vi o e 18
T2 €MACS « v vt e 19
Compilers 20
Networking 21
9.1 Domain Names o e 22
9.2 Remote Login 23
9.3 File Transfer L 23
9.4 Electronic Mail 0 o s 24
9.5 Netnews L o o e e 26
9.6 The Local Net s 27
The X Window System 27
10.1 The Role of the Mouse, 28
10.2 Startupfileso 29
10.3 The Window Manager, 29
104 xterm Lo e e e e e 29
10.5 Selected X Utilitieso o o 30
10.6 Using X onthe Net, 30
Important UNIX Commands 31
Al awk Lo 31
A2 cab . Lo e 31
AZ ce 31
Ad cd oo 32
Ab chmod . . . oL 32
A.6 compress, uncompress and zcato L 32
AT cp o o e 32
A8 date . .. 32
A9 diff . L 32
Ad0echo . . o o o o 33
Adlfile . oo o e 33
Ad2find ..o 33
Ad3fingero e 33
ATAdgrep . . o oo e e 33

ii

A6k« o o 34
AdTIn . .o o e 34
AdSIpr . o e 34
Ad9ls o o o e 34
A20mail and mailx L 35
A2lmake L e 35
A22man e e e 35
A23mkdir ... 35
A24more e e e 35
A25mv . . e e e 35
A26mnice e e 35
A27nohup L 36
A28 DS o o e 36
A29Tm ... e e 36
A30rmdir e e 36
A3lruptime and Tup Lo e 37
A32rwhoand rusers e 37
A33sed 37
AB4dsort .. e e 37
A3btail .« oL 37
A36talk ..o 37
A3Ttar e e 37
A38tee e 38
A39uptime . . . Lo e 38
AAOWE . . o e e e 38
Adlwhich e 38
Ad2who e 38
GNU Emacs Reference Card 38
B.1 Starting and Leaving Emacs oL 39
B2 Files e e 39
B.3 Getting Help L 39
B4 FError Recovery 39
B.5 Incremental Search, 39
B.6 Motion e e 39
B.7 Killing and Deletingo L. 40
B.8 Marking 40
B.9 Query Replace 40
B.10 Multiple Windows o o 41
B.11 Formatting Lo 41
B.12 Case Change e 42
B.13 The Minibuffer 42
B4 Buffers oo 42
B.15 Transposing e 42
B.16 Spelling Check L 42
BA7Tags o e 42

iii

B.18 Shells e e e 43

B.19 Rmail .. .00 o 43
B.20 Regular Expressions L oo 43
B.21 Registers L e 44
B22Info e 44
B.23 Keyboard Macros o 44
B.24 Commands Dealing with Emacs Lisp 44
B.25 Simple Customization L. 45
B.26 Writing Commands L o 45
C Vi Reference Card 45
C.1 Units of Measure o e 45
C.2 Starting and Leaving vi o oL 46
C.3 Moving e 46
C.d Inmserting Text o 47
C.h Deleting o 47
C.6 Changing e 48
C.7 Searching for a String L L oo 48
C.8 String Substitution L L 48
C.9 Yanking Text 49
C.10 Putting Text o 49
C.al Markingo . o 49
C.12 Shell Commands o o 49
C.13 Miscellaneous Commands 50
D Simple Regular Expressions 50
E Literature 51

Copyright (©1991 Michaela K. Harlander
All rights reserved
Version 1.0

Permission is granted to make copies of this manual provided the copyright notice
and this permission notice are preserved on all copies.

UNIX is a registered trademark of AT&T Bell Laboratories
MS-DOS is a registered trademark of Microsoft Corp.
Ethernet is a registered trademark of Xerox Corporation
PostScript is a registered trademark of Adobe Systems, Inc.

Comments and suggestions to Michaela.Harlander@physik.tu-muenchen.de

The author takes no responsibility for errors or omissions or for damage resulting
from the use of the information herein.

v

Acknowledgement

An introduction to UNIX should be written in a way that a normal user without
any ambition to delve deep into computing may understand at least the most essential
points. The typical System Administrator, including myself, refuses to remember
how he or she felt when first sitting in front of such a crazy UNIX system and trying
desparately to force the machine to perform some sensible action.

Therefore, I thank the users at the Physik Department of the Technische Univer-
sitit Miinchen and at the Nuclear Science Division at the Lawrence Berkeley Lab-
oratory. They constantly reminded me of basic problems normal users face when
fighting their first battles against UNIX.

The reader probably has already noticed that I'm no native speaker of English.
Many thanks go to Wendy Nather and John Sasso for correcting and improving
many crude sentences.

In the course of writing a manual, you have to ask the experts for proofreading to
fix the errors, misunderstandings etc. Usually, this results in rewriting the complete
document. I have been very lucky in this respect — many thanks to Magnus Harlander
and Hannes Faestermann who did careful proofreading without telling me that they
would have written the whole thing completely different.

Very special thanks go to Bernhard Schneck who heroically worked his way
through various versions of this introduction. This resulted in intense discussions on
irc and in huge electronic mail messages. He made a lot of very useful corrections,
suggestions and remarks which improved this introduction considerably. I also got
some remarks of the more, well. .. hmm. .., pedantic sort. Fortunately, we have been
separated most of the time by at least the Atlantic Ocean, so none of us took major
harm and I'm looking forward to future collaborations. :-)

1 Principles of UNIX

UNIX is a multi—user system. It allows you to share a machine with other users and
to run several processes at the same time. You may imagine it to be built like this:

Application Processes: cc, 77, emacs, math, vi, ...
USER
Shell: Bourne shell (sh), ksh, csh, bash
TCP/UDP
system management
IP

Network
Eth Hard disks Memory CPU HARD-
(Ethernet etc.) WARE

Figure 1: The Structure of UNIX

At the base you find the hardware: the memory, where your processes are kept
during execution (although sometimes temporarily stored on a harddisk), the central
processing unit (CPU) and eventually a floating point unit (FPU) to do the work,
the disks, where your files and all other programs are stored, and the network which
connects the machine you are working on to other machines.

The system layer is mainly built out of management systems for the hardware.
The process management takes care of your processes and of those of other users so
that they do not interfere and share computing resources equally. Only one program
at a time can be processed by the CPU, all the others have to wait. You will not see
this explicitly since the programs are exchanged in frequent intervals. However, if
many processes share the same CPU, each process has to wait longer to be processed
by the CPU again and therefore will slow down. All processes with the same priority
have to wait the same amount of time. The priority can be changed, however, so
some processes get control of the CPU more often than others and run faster.

The filesystem organizes the space available on a hard disk and allows you to see
many disks as a homogenous storage medium. If you want to use files that are stored
on a harddisk which is attached to a machine other than the one you’re working at,
the filesystem has to use the network.

To make networking actually work, a general “syntax” is needed for sending data
between various machines. This “syntax” is established by network protocols. These
come in various levels: While IP is a protocol to merely send packets of data over
a cable, TCP and UDP provide further capabilities, based on IP, to make it easier
to write application programs. TCP, for example, provides a mechanism to make

2 1 PRINCIPLES OF UNIX

USER 1 USER 2 USER 3
P1 P2 | P3 | P4 P5 P6
SHELL SHELL SHELL
SYSTEM

Figure 2: A multiuser system

sure that data actually arrive at the desired destination, even if packets are getting
lost. To use network applications, you fortunately do not have to know how these
protocols work. Some common network application programs are rlogin, allowing
you to log on a remote machine (if you’ve got an account there), ftp for file transfer,
or mail to deliver electronic mail messages.

In general, however, the main thing you see from your system is the shell which
can be best described as a command interpreter. For you as a user there is not
much difference between calling a program or using a shell command — except for a
very important point: since there are several shells where you can chose one, shell
commands differ from shell to shell.

Different flavors of UNIX also employ different commands. Today’s UNIX sys-
tems come basically in two flavors: those orientated at SYSTEM V, which has been
developed by AT&T and those derived from BSD from the University of California
in Berkeley.! The user interface of these two is different, so some commands avail-
able on one system may not be available on the other, or commands have different
syntax on various systems. Newer versions of SYSTEM V have been influenced a lot
by BSD, however. Especially the latest version, SYSTEM V RELEASE 4 (SVRA4)
employs a lot of commands originally found in BSD only. Therefore, some of the
remarks in this introduction concerning peculiarities of SYSTEM V apply only to
old versions like SYSTEM V RELEASE 3 (SVR3). If we state something does not
work with SVR3, then this applies also to elder versions of SYSTEM V. In case of
doubt, consult your system’s manuals.

On the top you find a huge amount of application programs which may be compil-
ers, editors, programs for analytical mathematics etc. These and some shell /system
commands are what you probably will use most, besides your own programs.

Fig. 2 shows a scheme of a multiuser and multitasking system. Each user has
a shell, which may be different for different users, and can run several processes
(tasks), here indicated by P’s with a number. They are called children of the (login)
shell since they have been started from this shell.

!Strictly speaking, only AT&T’s product may be called UNIX. In this document, the term UNIX
refers to all UNIX-like systems.

Now you know a bit about the system and are ready to actually use it. But before
you type any command in UNIX, it is important to know that UNIX is case—sensitive!

2 Getting Started

2.1 Account and Password

Before you can log in, you have to get an account. The usual way to get one is
to go to the System Administrator. There you get a loginname which probably is
derived from your real name. You will belong to a group. This can be all people of
a university institute, all employees of a certain department, all students, etc. The
group is important for file access permissions (see section 5.5).

The System Administrator will assign you a login shell. See section 3 for prop-
erties of various shells. You can change your login shell using the command chsh.

Furthermore, a password has to be provided which should be known only by you
and has to be entered during the login procedure to make sure you are the user you
claim to be. It is secret! The password is stored on the computer in encrypted form,
80 no one, not even the System Administrator, can read it. It is very important that
you keep it secret!

The password should be at least 6 characters long. The first 8 characters are
significant. It should consist of lowercase letters, uppercase letters, numbers and
special characters like commas, periods etc. Using control characters can lead to
problems. A password consisting of lowercase letters only is not considered to be
safe since it is much easier to guess. The same holds for a password consisting
only of numbers. Do not use something obvious like your name, date of birth or
phonenumber as password nor those of your brother, sister, boy-friend, wife etc. or
anything else someone could guess who wants to break into your account! On the
other hand, you should not choose a password that is so complicated that you have
to write it down to remember. NEVER write a password down! You should also
change the password at least every three months or as soon as you suspect that
someone might know it. This can be done by the command passwd or yppasswd if
your system is using YP (see section 9).

2.2 Machine Handling

Be careful that you do not switch a machine or its peripherials on or off by accident.
A UNIX machine is never switched on or off by anyone except the System Adminis-
trator. Simply switching it off may cause big damage to the filesystem. If the screen
is dark, hit some keys.? Many systems have a screen-saver, which turns the screen
dark if there has been no keystroke for several minutes. Hitting a key restores the
screen. If this does not work, you may have to switch on the screen. Look carefully
to make sure that you really have the correct switch, namely for the screen, not for
the machine. Be aware that there are computers which have the machine built into

the screen, so the switch for the screen is the same as for the machine. In case of
doubt, ask!

2SHIFT or CTRL are good choices since they do not pass input to any application which might be
running. If it does not work, you have to try other keys.

4 2 GETTING STARTED

2.3 Login Procedure

When you’re ready to log in, you’ll see something like this on the screen:

login:
Password:

After you enter a loginname and password, the password is checked and if it is found
to be o.k., a shell is started and the environment is set up. What happens exactly
depends on various things such as the shell you chose to be your login shell and the
kind of terminal you sit in front of.

If you use a workstation or an X terminal, usually several windows are started
(for more on the X window system, see section 10). If you use a PC or a terminal
connected to the UNIX machine by a serial line, you need a program to emulate a
single terminal. A PC with direct access to the net often runs software which enables
you to rlogin (see below) to a UNIX machine. Some PCs may even run UNIX by
themselves.

In any case, the message of the day will be displayed, containing up-to-date
information on the system. It is important that you read it carefully since things like
down times for the system or installation of new software packages will be announced
there.

After login you will see a prompt. The prompt is a sequence of characters the shell
places at the beginning of a line when it is expecting you to enter a new command.
Here, we will use a simple $ sign as prompt. Note that it could be completely
different on your system, for example it can contain the name of the machine or
the pathname of the working directory. This is, of course, of no importance for the
commands you enter.

Once you’re logged in to a machine which is connected to a network, you can
also log on other machines where you have an account. This time you have to use
the rlogin (r representing remote) or the telnet program. In contrast to the usual
login you have to provide the name of the machine where you want to log in (see
section 9.1). Example:

$ rlogin heart_of_gold.magrathea.universe

If you have a different loginname on this machine, you say

$ rlogin heart_of_gold.magrathea.universe -1 other_loginname

A telnet session looks like this:

$ telnet heart_of_gold.magrathea.universe
Trying 7.7.7.7...

Connected to heart_of_gold.magrathea.universe
Escape character is °*7]’.

2.4 Entering Commands 5

UNIVERSE UNIX (heart_of_gold)

login: loginname
Password:

To log out, you can give the command logout or press ~d, which means “press the
Control key and at the same time the d key”3. Some systems want to see a ~z.

2.4 Entering Commands

Commands are entered by giving the command name, sometimes followed by options
and/or arguments.

Options affect the way a command works. They usually are single letters pre-
ceeded by a dash without a space between dash and letter. You saw an example for
an option (-1) above with the rlogin command. In most cases you are allowed to
specify several options by just writing the different options one after another behind
the dash. Some programs like compilers, however, require each option to be given
separately. In case of doubt, refer to the manpages.

Arguments are usually items which are subject to the command’s operation, e.g.
if you want to look at a file, you type more filename, where more is the name of
a command to display files page by page, and filename is the argument the more
command shall operate on.

A command line is terminated by hitting the RETURN or ENTER key.

3 Shells

3.1 Features and Startupfiles

The shell sets your environment, e.g. it sets your prompt, tells the machine where
to look for new mail etc. To do this, the shell executes at least one startupfile. Most
shells use two of them (see the table). The shell also can have a mechanism called
history which remembers the last commands you gave and allows you to repeat these
commands identically or modified. Another nice feature is job control, which allows
you to stop jobs or to start them in the background, i.e. your terminal does not
wait for these jobs to finish and immediately gives you back your prompt, so you
can continue to enter commands while the job is processed in the background. In
the following table you see which shell has which features.

‘ shell ‘ sh ‘ csh ‘ ksh ‘ bash ‘
1st startupfile | .profile .login .profile | .bash_profile
or .profile
2nd startupfile - .cshrc $ENV $ENV
features dumb job control job control job control
simple history | nice history nice history

*The Control key can be marked “Ctrl” or, on German keybords, “Strg”.

6 3 SHELLS

sh is also called Bourne Shell. $ENV as second startupfile for ksh and bash means
that the name for this startupfile is set by the variable ENV in the first startupfile.
Often, .kshrc is used for ksh and .bashrc for bash. The § sign in combination with
shell variables means that that the value of the variable has to be inserted.

3.2 History and Job Control

The following table gives an overview over history commands.

operation csh ksh bash
repeat last command 1! r 1!
repeat last command
that started with exp lexp T exp lexp
show last commands history | history | history
or fc -1
repeat command no. n 'n rn 'n
repeat last command, but
replace a with b ~a”b r a=b ~a”b

There are more advanced techniques to modify previous command lines in each of the
three shells. For example, ksh and bash allow to search for a string that appeared
in a previous command line and displaying this line. Read the manual pages for
detailed information.

Job control: On BSD systems, “z stops a job. The command jobs displays
all stopped jobs giving them a number n. Typing fg %n gets job n back to the
foreground. If you just type fg, you get back the job you stopped last. Giving
the command bg after stopping a job puts it in the background. You can do this
immediately when starting the job by putting a & at the end of the command. The
latter method works also with systems where you cannot stop a job, i.e. for many
machines running SVR3 or previous versions of SYSTEM V.

3.3 The nice Command

Computationally intensive jobs can slow down a machine immensely for other users
even for things that do not require much CPU time like editing. You should use
the nice command to give your process lower priority. It will run as usual if no
other user process is present on the machine but will give user processes like editors
priority.

The scale of nice values ranges from 0 to 39 in most cases, with 20 as the default
user nice value. You cannot give your process a higher priority, i.e. a lower nice value.
To nice your program, you use the nice command with a nice value followed by your
program’s name. This starts your program with lower priority. E.g. to increase the
nice value by 10, use nice -10 program. Unfortunately, csh uses the nice values
with the “wrong” sign, i.e. you have to type nice +10 program in csh. /bin/nice
reads the - as an option while csh interprets it as a sign. To avoid confusion, you
can explicitly use /bin/nice to get the usual nice syntax even in the csh.

Processes with the same nice value share the machine resources equally.

4 Getting Help

UNIX systems offer many on—line help tools.

e apropos expression is well suited if you do not remember a command com-
pletely or simply do not know the command name for a certain feature. The
system will look for expression in the headlines of its manuals and tell you
the context where expression shows up.

e whatis command gives a short description of command.

e man command gives you extensive information on command. This command
invokes the manpages (manual pages).

There is also an information system built into the emacs editor. We will come to it
when discussing emacs (see appendix B.22). Some sites have additional systems for
local information.

In case of problems you should also have a look at your system’s hardcopy manu-
als. In most cases, there is a file named “Global Index”, which allows you to quickly
find the manual you need for your particular problem. Of course, you can also ask
other users, the “help desk” or “Programmierberatung” if available, or the System
Administrator to help you. Please do the latter only if you have checked all other
possibilities or if the problem can only be solved by a System Administrator (e.g. if
your account has been disabled).

5 The Filesystem

5.1 Structure

UNIX views a file as a continuous stream of information. You can as well say, it
is a sequence of bytes. A byte defines a small unit of information as stored on a
computer. Each file has a name. A special file which contains the names of other
files is called a directory. As we will see later, the default input and output channels
are another kind of special files. Directories are used to structure the files present
on your system.

The UNIX file structure is hierarchical. It starts with the root directory / and
develops like a tree. Fig. 3 shows a small part of such a tree and as an example, part
of the homedirectory of the fictitious user “arthur”.

/home/earth/arthur is the home directory of the user arthur where he goes
after logging in. User arthur belongs to the group earth, and in this special case,
the directory tree splits up into the groups first before splitting up into the home
directories. On most systems, the homedirectory of a user can be addressed by
“loginname in csh, ksh and bash. Your own homedirectory may be addressed by a
single ~

There is no limit on the number of subdirectories. It is a good idea to use subdi-
rectories to structure your homedirectory, e.g. to create a directory for C programs
and in this directory create a separate subdirectory for each programming project.
A directory called bin is usually used to hold binaries (executable files).

The following commands are available for dealing with directories:

5 THE FILESYSTEM

letc

Jusr /home /bin /tmp

/home/beteigeuze /home/earth /home/other

/home/earth/arthur [home/earth/trillian

D

~arthur/Mail

~arthur/bin ~arthur/C ~arthur/plots

plotl.ps
plot2.ps
plot3.ps
plota.ps
plotla.ps

Figure 3: Part of a typical UNIX directory tree

5.2 File Names 9

mkdir dirname make a new subdirectory called dirname
rmdir dirname remove the (empty!) subdirectory dirname
cd dirname go to dirname

cd .. goone directory up in the tree (parent directory)

cd go to home directory

1s list content of directory

1s -1 long listing of directory’s content

pwd print working (current) directory

The working, i.e. the current, directory is represented by a single period, the parent
directory by two periods.

Example:
$ pwd
/home/earth/arthur
$ mkdir test
$ cd test
$ pwd
/home/earth/arthur/test
$ cd ../C
$ pwd
/home/earth/arthur/C
$ cd
$ pwd
/home/earth/arthur
$

5.2 File Names

UNIX does not care much about filenames and allows in principle all characters.
However, you’re always on the safe side if your filename contains only the following
characters:

e uppercase and lowercase letters
o digits

e underscore ()

e period (.)

e dash (-)

Other characters may be misinterpreted by the shell. If using uppercase letters, keep
in mind that UNIX is case sensitive. Filenames may be 253 characters long. Some
old SYSTEM V allow only 14 characters.

Contrary to MS-DOS, UNIX does not use extensions (this is something separated
from the rest of the filename by a dot). Therefore you are allowed to use as many

10 5 THE FILESYSTEM

dots in your filenames as you like. For example, UNIX does not need a special ending
(like MS-DOS) to decide whether a file is executable or not. Application programs,
however, look sometimes for the last characters of a filename separated by a dot to
determine what kind of file it is. Some of these “extensions” that have a special
meaning to application programs are

.tex tex source code

.dvi tex code after compiling

.ps postscript files (postscript is a graphics language)
.tar archive file

.Z compressed file

.c C source code

f FORTRAN source code

There are many more, e.g. LaTeX produces a number of files with various extensions,
but you’ll soon find out about their meaning. The extensions used by compilers are
found in the section dealing with compilers.

Files starting with a period are “invisible”, i.e. a 1s command does not show
these files. For example, all startup files begin with a period, since you don’t want
to see them every time you do a 1s. To see invisible files in a listing, type 1s -a.

If you address a file, you can use its absolute or its relative pathname. The
absolute pathname contains the full path from the root directory / down to the
directory where the file resides. /home/earth/arthur/plots/plotl.ps is such an
absolute pathname. A relative pathname describes the path relative to the working
directory. The following relative pathnames all specify the same file:

relative pathname from working directory
plotl.ps “arthur/plots
plots/plotl.ps “arthur
../plots/plotl.ps “arthur/C

If we refer to the simple filename without any path, we will sometimes use terms like
”base filename”.

5.3 Filename Expansion

Sometimes you wish to deal with several files but do not want to type all of them, or
you’d like to abbreviate a filename. The shell provides so-called filename expansion
to save you typing. The most important mechanisms are:

o the * wildcard character matches any number of characters, even zero.
In “arthur/plots, 1s *.ps lists all files which end in .ps.

o the 7 wildcard character matches any single character. 1s plot?.ps would
list plotl.ps, plot2.ps, plot3.ps and plota.ps, but not plotia.ps.

5.4 Renaming and Deleting Files 11

¢ if you want only some characters to be matched, give the range or a list in
brackets. [ae] matches an a or an e, [a-z] matches any single lowercase
letter.
1s plot[1-3].ps lists plotl.ps, plot2.ps and plot3.ps, but not plota.ps
or plotla.ps.

Especially ksh and bash offer more advanced tools for filename expansion. See the
manuals for these shells.

5.4 Renaming and Deleting Files

mv fnamel fname2 rename file fnamel to fname2; an existing file fname2 would be
destroyed

mv fname dir move file fname to directory dir; the file has the same base filename
afterwards, but the pathname is changed. If dir already contains a file with
the base filename fname, this file will be overwritten.

mv dirl dir2 move all of directory dirl including subdirectories into directory
dir2. If dir2 does exist, dirl will become a subdirectory of dir2. If dir2
does not exist, it will be created. This does not work on older SYS V systems.

cp fnamel fname2 copy file fnamel to fname2; an existing file fname2 would be
destroyed

cp fnamel dir copy file fnamel to directory dir, keeping the same base filename

cp -r dirl dir2 copies recursively all files in dir1l and its subdirectories to dir2,
preserving the structure (does not work on older SYS V systems)

rm fname remove file fname. Contrary to MS-DOS, the rm command in UNIX is
irrevocable!

5.5 File Access Permissions

Doing an 1s -1 plotl.ps in “arthur/plots may give the following output:
-rwxr-xr-- 1 arthur 3451 Jul 25 13.15 plotil.ps

The first dash indicates that you have a simple file. For a directory you would see
here a “d”. The next 9 characters represent the access permissions on the file. After
the number 1 which is a link count* you find the owner of the file, then the size in
bytes and the date of the last modification. Finally there is the filename.

There are three important things you can do to a file: read it, write to it and
execute it. The file access permissions determine who is allowed to do each of these
three to your file. The permissions are specified for three different kinds of users:
the owner (u), the group (g) and the rest of the world (o).

The first 3 characters of the access permission tell you that the owner may read
(r), write to (w) and execute (x) the file. The next 3 characters give the permission

*This tells you if there are any links, i.e. alternative filenames for this file. See p. 34.

12 6 WORKING WITH THE SHELL

for the group (earth in this example). Group members may read and execute the
file, but are not allowed to write to it. If you want to see the group displayed by the
1s command, use the options -1g. The last three characters indicate that the file
may only be read, but not written to or executed by all other users not belonging to
the group.

Access permissions can be changed with the command chmod. This can be done
for user (u), group (g), others (o) and all of these three (a). A + or - sign indicates
whether to add or to remove a certain permission which is then specified by r, w or
x. A = sign assings the permission explicitly.

chmod u-x plotil.ps
makes the file plotl.ps non—executable for arthur:

$ 1s -1 plotl.ps
-rw-r-xr-- 1 arthur 3451 Jul 25 13.15 plotil.ps

There is also a number code for the permissions. The letters r, w, x are assigned the
following values:

r4, w2, x1
The above permission would then be coded by 654. One could therefore use
chmod 654 plotil.ps

to perform the above change of the access permissions for plotl.ps.

5.6 Backups

In case of a harddisk crash, the files stored on this disk may be lost. Therefore it
is necessary to make backup copies of your files from time to time so that you can
recover from a disk crash.

On some sites, the System Administration provides backups of the homedirecto-
ries as a service. However, to be on the safe side you should do some backups of your
own. You should store important files on a separate storage medium, e.g. a floppy
disk or a tape.

To do a convenient backup, use the tar utility as described in appendix A. This
utility is able to write complete directories, including all subdirectories, in an archive
file.

You can also compress the resulting tarfile before moving it to the external
storage medium. This saves you space when storing the backup files. A common
compressing command is compress. See p. 32 for a description of compress and an
example for doing a backup.

6 Working with the Shell

6.1 Standard Input and Standard Output

Many programs just read input, process it and write some output. Therefore UNIX
predefines a standard input channel called stdin. It is just a predefined file, and the

6.2 Redirection 13

content associated with it is usually taken to be the input from your keyboard. If
you have several controlling terminals,® each of them has a standard input of its own.
Similarly, there exists a file called standard output which is commonly identified with
the display of the controlling terminal. All output from processes is sent to standard
output if nothing else has been specified.

There is a third file called standard error receiving error messages. It also is
identified with the terminal, nevertheless it is a file distinct from standard output
and therefore may be redirected to another file than standard output. This is useful,
if you do not want output of a process and error messages to be mixed up.

6.2 Redirection

Redirection means to assign a different file to standard input, standard output or
standard error. Standard input is redirected by a < sign.

command < infile
reads the input for command from file infile. Standard output is redirected by >:
command > outfile
writes its output to file outfile. An existing outfile would be overwritten. For
appending the output to a file rather then overwriting it, use >> instead of >.
Standard error can be redirected by 2> in sh, ksh and bash. If you already
redirected the standard output and want to redirect the error messages to the same
file, use 2>&1. Examples:

command < infile > outfile 2> errfile

takes the input from infile, writes results to outfile and error messages to
errfile. The order of redirection of the three standard files is interchangeable.

command > outfile 2>&1
writes results and error messages to outfile. Here the order of redirection is im-

portant. Standard output must be redirected before you redirect standard error to
the file which replaces standard output.

In csh, you can use >& to redirect standard output and standard error to the
same file:

command >& outfile

Redirection of standard error alone is not possible in csh.

®This is the screen or window you’re operating with. In a window environment each window
corresponds to a separate terminal.

14 6 WORKING WITH THE SHELL

6.3 Pipes

Pipes allow you to take a command’s standard output as standard input for another
command. The pipe symbol is |. As an example, assume you want to know whether
user “arthur” is logged on the local net. You may use the output of the rwho
command, which lists all users on the local net, as input for the grep routine (grep
searches for a pattern and displays the lines where it found a match):

rwho | grep arthur

lists all logins of “arthur” on the local net.
Or you may want a long listing (1s -1) of a directory with very many files. To
display it page by page, pipe the output of the 1s -1 command into the more utility:

1s -1 | more

6.4 Environment Variables

During the login procedure the shell sets up several environment variables. We
have listed some of the more important ones below. To display their value, use
echo $VARIABLE. echo copies its arguments to the standard output and the $ sign
references the value of VARIABLE.

TERM the terminaltype you use, e.g. xterm or vt100 (is used by many
programs to find the characteristics and control characters to ma-
nipulate your terminal)

DISPLAY the display; important if you are running X (see chapter 10.)
PRINTER the default printer used by the 1pr command (see appendix A)
PATH list of directories where the shell searches for the commands

PS1 the string used for the usual (primary) prompt in sh, ksh and bash
prompt the string used for the usual (primary) prompt in csh

HOME your home directory you enter after you logged in
To change shell variables, use

e in csh and tcsh: setenv VARIABLE value

e in sh, ksh and bash: VARIABLE=value; export VARIABLE

To add a directory to the path, e.g. if user arthur wants to have his bin subdirectory
in the path, use:

e in csh: setenv PATH ${PATH}:$HOME/bin

e in sh, ksh and bash: export PATH=${PATH}:$HOME/bin

The current directory is represented by a dot in the path.

You can put such additions to your path in one of your startupfiles. This saves
you typing a pathname when giving a command which resides in a directory listed in
PATH. If you give a command by just typing a base filename, the shell looks through
all these directories one after the other until it finds the command. If it does not find
the command, the shell prints the error message command not found. To invoke a
command which resides in a directory not present in the path, you have to give the
full or the relative pathname. To see all directories in the path, type echo $PATH.

6.5 Aliases 15

6.5 Aliases

Sometimes you like to have abbreviations for shell commands you use quite often.
You can define aliases for this purpose. It is most convenient for you to put your
aliases in one of your startupfiles. In the following example, we define the alias 11
for the command 1s -1:

e alias 11 ’1s -1’ in csh
e alias 11=’1s -1’ in ksh and bash

The use of the various forms of quotation marks in the shells is a non-trivial matter.
If you get problems, just look at the manpages. The above form should however
work in nearly all cases.

6.6 Using the Shell’s Special Characters as Normal Characters

Sometimes you want to give arguments on the command line which contain characters
that have a special meaning to the shell. You don’t want the shell to interpret them,
but to take them literally. I.e. you want to escape the shell’s interpretation. For
example, you look for the occurence of “Smith& Wesson” in a file called phonelist
where you keep your phonenumbers.

grep Smith&Wesson phonelist

would not work since the ampersand (&) tells the shell that the command ends here
and it should be processed in the background. Wesson phonelist is interpreted as
the next command. To escape the interpretation of the shell, you can chose among
the following;:

e Put the search pattern in double quotes. Anything in double quotes is inter-
preted as a string that should be taken literally. References to shell variables
are processed, however. Therefore, this method does not work with $ signs in
the string. File name expansion (file globbing) is not performed.

e Put the search pattern in single quotes. In contrast to double quotes, references
to shell variables are not processed. Also, file globbing is not done.

e Escape the ampersand directly, i.e. precede it by the shell’s escape character
\. The escape character prevents the following character from interpretation
by the shell. It has nothing to do with the ESC key on your keyboard.

To make the above example work, you could therefore use one of
grep "Smith&Wesson" phonelist

grep ’Smith&Wesson’ phonelist
grep Smith\&Wesson phonelist

16 6 WORKING WITH THE SHELL

6.7 Emergencies

If there is a process doing something you definitely not intended it to do when
starting it, you can

o sit and wait—if it is not destructive or using much computing time

o interrupt the process by typing ~c. This aborts simple commands, others might
return to their prompt level or normal mode of operation

o If the program ignores the ~“c, you can try ~\. This is a stronger request to
stop execution, normally also producing a core dump (you’ll find a file called
core in the current directory of the program, which records its state and can

be used for debugging)

o kill it from another shell. First do a ps -ux command (or ps -e on SYS V)
to see all your active processes, and look for the process-identification number
(PID) of the bad guy. Then enter kill PID.

¢ if you have no window system and this process is messing up your screen, you
may wish to stop it before killing. After entering ~z to stop this process, use
kill %. This command kills the job you stopped last.

o really Kkill it. If the simple kill did not work, try again with ki1l -9 PID or
kill -9 %.

If your terminal behaves very strangely, not printing commands you enter or giving
you funny signs, you have to reset the terminal parameters to some reasonable values.
This strange behaviour can result from a vi crash. Type “jstty sane”j. The ~j
replaces the usual RETURN. Some systems want to see reset instead of stty sane.

6.8 Shell Scripts

The shell can be used as a programming language, too. It provides you with tools
like loops, if-statements etc. The commands are different for the various shells, but
sh, ksh and bash have a broad subset of commands in common. The exact syntax
can be found in the manual pages. If you want to use shell scripts to automate some
tasks it is highly recommended to use sh since sh is available on every UNIX system.

You can use it also to just write some often used commands to a file - everything
suitable as input to the shell can be the content of a shell script. Assume, you have
such a file, e.g. called script. To invoke it, you have to tell the system which shell
you want to use. There are two possibilities:

¢ Invoke the script by explicitly specifying the shell on the command line:
sh script
You must have read permission for the file to do so.
e Put the following as first line in script:

#!/bin/sh

6.8 Shell Scripts 17

Execute script by simply giving its name on the command line. Of course,
you must have permission to execute the file. If the first characters of a file are
#!, the system expects the pathname of an interpreter, e.g. a shell to follow,
and uses this interpreter to process the file. On some very old SYSTEM V
machines, this method does not work.

We will give some examples here. The first uses the find utility. It may be useful
to have a look at the find manual page to understand the example.

The following script looks in your homedirectory and all subdirectories for files
you probably do not need anymore like backup files from emacs (ending with a =),
.dvi, .aux or .log files from LaTeX runs and core files. Core files are produced if
one of your programs fails due to a fatal run time error. They usually are rather big
and can consume a lot of diskspace. Doing such a cleanup from time to time helps
you to need less diskspace.

#!/bin/sh

echo starting cleanup

cd

find . \(-name ’*”’ -o -name ’*.log’ -o -name ’*.dvi’ -o \

-name ’*.aux’ -o -name core \) -ok rm {} \;
echo cleanup done!

The first cd ensures you are in your homedirectory when starting the command.
The find then starts from the current directory (i.e. the homedirectory), represented
by the dot, and looks for files that match one of the names given in the quoted
parentheses. The -name tells find to look for the name, the -o is a logical or. The
expressions with wildcards have to be in quotes to prevent interpretation by the
shell. The -ok rm {} \; tells £ind to remove everything it found, but to ask for
confirmation for each file. The two echo commands print informational messages.

Here follows a script which makes an archive file of your tex and C subdirectories
and compresses it. This file can then be stored on a floppy disk or tape as a backup

file.

#!/bin/sh

cd
tar cvf - tex C | compress > backup.tar.Z
echo backup file: backup.tar.Z

This kind of shell script is especially useful if you have more complicated com-
mands. The next example summarizes some of the actions a typical user performs in
the morning after logging in, surrounded by some cheering remarks. :-)® The # signs
are comment symbols, i.e. the rest of the line is ignored by the shell. This example
also contains a for loop.

Tf you don’t know what to do with the last three characters: this is a smiley! Just turn your
head to the left — see? They are widely used in electronic mail or in netnews to point out irony etc.
in case the reader should not have noticed otherwise.

18 7 EDITING FILES

#!/bin/sh

for i in 12 3 # a for loop in sh, runs from 1 to 3

do # belongs to the for loop syntax

echo Good Morning!!!'# writes '"Good Morning!!!" to the screen
sleep 2 # waits two seconds (to let you wake up)
done # ends the for loop

echo # prints an empty line

echo -n Today is # the -n prevents newline at the end (BSD)
date # prints date+time

echo

echo Hmmm... who else is on the net at THIS time of day?7?7?
rwho | more # looks for other users on the net

echo

echo What about our machine??

uptime # displays status of machine

echo

echo Well, let’s have a look at the TO_DO list...

cat ~/T0_DO # many people write the stuff the’re ought

to do in a TO_DO list
echo Gee, now make a pretty face and wake up!!

7 Editing Files

On most UNIX systems, there are two convenient editors: vi and emacs. Beside
these two, there is also a line editor called ed. For non-interactively processing a file,
you can use sed, awk or perl.

You can look at a file without changing it by using the cat command.

cat filename

displays the file filename in one chunk on the display. To display it page by page,
use

more filename

7.1 vi

viis still the most widely used editor under UNIX, even though it is not as convenient
as emacs is. Unfortunately, there is no good manpage for vi. The reference card
included in the appendix may help to overcome this a bit.

You edit a file by typing vi filename. If vi complains that it does not know
which terminal you’re on, leave it by entering :q! and set the environment variable
TERM (see previous section). If you have no idea about what your terminal may be,
try vt100.

vi knows three modes: Insert Mode, Command Mode and ex Mode (also called
Last Line Mode, Bottom Line or : Mode). When vi starts, you are in Command
Mode, i.e. you may enter commands, but no text. To enter text, give one of the
commands

7.2 emacs 19

i insert at current cursor position
a append after cursor

o open new line below current line

Other commands for adding text can be found in the appendix.

To get back to command mode, which for example is necessary to move the
cursor, press the ESC key. If you do not remember which mode you’re in, press ESC:
if you were in Insert Mode, you’re now in Command Mode, if you were in Command
Mode, vi beeps at you and leaves you in Command Mode.

For more complicated commands, you have to use the Last Line Mode. To get
there, type a colon in Command Mode. Everything up to the next RETURN is then
taken as a command. Commands in Last Line Mode are different from those in
command mode. Here and in the vi reference card, all commands in Last Line
Mode are preceded by the colon which enters this mode.

vi is case sensitive. Since you do not see the commands you type in command
mode, check for the CAPS LOCK key in case vi refuses to understand you!

If you see a ~ at the beginning of a line this means that this line does not belong
to the file. This is used to mark the end of a file.

You can quit vi by typing ZZ in command mode. This stores all changes you
made to the file. If you want to quit vi without storing the changes, type :q!.

The most important commands for vi are collected in appendix C.

7.2 emacs

Emacs is a non—proprietary software as provided by the GNU project. It is more
then just an editor. It is a programming environment. It allows you to read your
mail and it has a convenient information system. Using it, you will soon discover
that it is able to do even more than that.

To start emacs, simply type emacs. If you are using it for the first time, type
“h t to enter a tutorial. An overview over the most important commands is given
by the reference card in appendix B.

Read in a file by typing “x~f and give the filename. Emacs looks for the extension
of the file and for some it will start a special mode. For example, the C mode indents
C source code properly while you are typing, the TeX mode allows to check for $
signs and braces etc. For information about the current mode, type “h m. To save
the file, type "x"s.

The info system can be invoked by “h i. There you find a description of the info
system itself and all other available topics, including emacs.

To leave emacs, type “x~c. This will ask you if you want to save the changes for
each file you were editing since last saving it. Emacs is continuely doing backup copies
of the files you’re editing. You normally do not see them since they are removed
each time you save filename. They are, however, very useful in case of a system
crash. They are named #filename# where filename is the original name of the file
you were editing. If addressing one of the backup files with shell commands, you
must escape the # signs since they are comment symbols to the shell. emacs also
keeps a copy of the last version of the file you saved before the current one. This file
is named filename~.

20

8

8§ COMPILERS

Compilers

The most common compilers on UNIX systems are:

The

The

The

cc the C compiler; often available in an ANSI and a non-ANSI version

(ANSI C is a standardized C)

gcc the GNU C compiler, which is ANSI compliant. Look for the info
entry in emacs.

CC C++ compiler (there can be other names, t00)
g++ the GNU C++ compiler, see the info entry in emacs.
£77 the FORTRAN compiler, often a very much extended FORTRANT77

pc the pascal compiler - the flavor of pascal it understands depends com-
pletely on your system, see the manual for details

compilation process consists of the following steps:

. Preprocessing. All comments are removed. Preprocessor directives are inserted

when using a compiler which provides a preprocessing mechanism, e.g. a C
compiler.

. Compiling.

. Optimizing if specified when compiler is called. Compiling and optimizing

result in an assembly language file.

Assembling. Translates the assembly language file into an object file, i.e. into
a language the machine can really handle.

Loading. All object files and the appropriate libraries are linked together to
an executable.

following extensions are commonly recognized by the compilers:

.c C source code file

.cc C+4+ source code file (sometimes also .C)

.f FORTRAN source code file (sometimes also .f77 or .for)
.p pascal source code file (sometimes also .pas)

.s assembler file

.0 compiled object code file (not yet linked)

1 C file after preprocessor run (if compiler is called with -P option)

following options are known to most compilers. You have to give compiler

options each separately preceded by a dash. For the arrangement of options and
arguments you have to examine the manual pages. Typical examples are given

below.

-0 produces optimized output; the executable runs much faster. Often
you may choose among several optimization levels.

21

-g creates symbolic information to be used by source code debuggers
(see later in this section)

-c does only compile, but not link. The result is a file with extension .o

-0 outname will name the executable to outname instead of a.out
which is the default

-1 library links the object file with the specified library. For example,
if you are using mathematical functions, you have to link with the
math library, which is typically called 1ibm.a. Since all libraries
have the form libx.a you only have to specify the x part of the
library name immediately after the -1 without a space in between.
Linking with the math library is done therefore by -1m (see the
example below).

To compile the file first_try.c with cc having optimization turned on and not
wishing for linking, you would enter:

cc -0 -c first_try.c

To compile the file expo.c using gcc, with creation of symbol tables for debugging,
linking with the math library and calling the final executable expo, you do

gcc -g -0 expo expo.c -lm

Often, a program does not work as expected when started for the first time. For
pure syntactical errors in a C program, try running the syntaxchecker 1int.

Using a source code debugger allows you to go step by step through your program,
examine the value of parameters etc. while simultaneously looking at the source code
which is executed. Unfortunately, many debuggers support only C. There may be
problems with other languages. On many UNIX systems, the debugger dbx should
be available. If not, look for sdb. Very good debuggers are gdb and ups.

To use these debuggers, your program must have been compiled with the -g
option. On most compilers, it is not possible to have -g and -0 at the same time.

To make the compilation process more convenient there exists the make util-
ity (see also appendix A). It allows to automize the compilation process which is
especially useful for large programming projects.

To keep track of various versions of a program there are utilities like RCS or SCCS.
They allow you to retrieve earlier versions of your program without the need to store
complete files. These utilities are not available on all systems.

9 Networking

In this introduction the net has been mentioned several times already: you can log
on a remote machine, you can talk to a person on another machine etc.

There are several kinds of network. The differences between these networks are
not primarily based on the physical cables they use but on the protocol spoken on this
cable. There is e.g. BITNET, HEPNET or SPAN (DECNET networks), the Internet
with the TCP /TP protocol suite, and the OSI protocol family which is supposed to be

22 9 NETWORKING

the standard protocol one day. Today, TCP/IP is most widespread. It is built into

most UNIX systems. The following is restricted ourselves to application programs
built on top of the TCP /IP protocol.

9.1 Domain Names

Network application programs require that you name a machine. Each machine has
a unique, so-called “domain name”. These names typically look like

machine.subdomainl....subdomainn.top-level_domain
It consists of the machine’s name and several subdomains, separated by a dot. The
last domain is called top-level domain. Each country participating in the domain
name system is assigned such a top—level domain, usually the ISO 2-letter country
code. As an exception, the USA has seven top—level domains:
EDU educational institutions
COM commercial organisations
ORG non—commercial organizations
GOV governmental institutions, e.g. National Laboratories
MIL military institutions
NET major network support centers

ARPA hardly used anymore, originally institutions specific to the Internet

Some of the country codes are

AU Australia AT Austria

CH Switzerland DE Germany

DK Denmark FI Finland

FR France IL Israel

IT Ttaly JP Japan

KR South Korea MX Mexico

NL Netherlands NO Norway

SE Sweden UK Great Britain

For the local network at your site, aliases may be defined in order to safe you
typing the long domain names. E.g., the machine

heart_of_gold.magrathea.universe

could be addressable as heart_of_gold in its local network.

9.2 Remote Login 23

9.2 Remote Login

The two possibilities for remote login are telnet and rlogin, as already explained
in section 2.3. Since their use has been described there, we will concentrate here on
the main differences between these two.

e rlogin works only with UNIX machines. To connect to non-UNIX machines,
you have to use telnet.

e To connect to very remote machines, use telnet. If you are connected to a
remote computer and enter a command, every single character is sent over the
network wrapped in an data packet of its own. It would be much more eco-
nomic if the whole comand line would be sent in one such packet. This gets
essential if the packets have to travel very far, using lots of network resources.
In telnet, just type telnet’s escape character (most often it’s ~1) and the com-
mand mode line. This will process the command line at your local machine,
and send the whole line over the net after you pressed the RETURN key. This
does, however, not work for editors. To swich back, type "] mode character.

e rlogin allows remote login without supplying a password by using a file
.rhosts on the destination machine. In this file, machines can be listed from
where a rlogin may be accepted without prompting for a password. For se-
curity reasons, it is strongly recommended NOT to use this feature: if anyone
succeeded in cracking into one of your accounts, she/he can enter all accounts
which allow your rlogin from the cracked account without asking for a pass-
word. A .rhosts file can be tolerated if limited to a local net where you have
only one password for several machines. In any case, your .rhosts for security
reasons MUST have the access permission 400, i.e. only readable for you.

e telnet allows you to do more then just remote login. Refer to the manpage.

9.3 File Transfer

There are two utilities for file transfer: recp and ftp. rcp is not recommended since
it needs a .rhosts file. rcp is not suited for large file transfers.

A ftp (file transfer protocol) session start for user arthur connecting to
heart_of_gold.magrathea.universe looks like this:

$ ftp heart_of_gold.magrathea.universe

Connected to heart_of_gold.magrathea.universe

220 heart_of_gold FTP server (UNIVERSE 0S 77.1) ready.
Name (heart_of_gold.magrathea.universe:arthur): arthur
331 Password required for arthur.

Password:

230 User arthur logged in.

ftp>

You give the machine name as argument to the ftp command. You have to enter
loginname and password to get access to the remote machine. Ftp then expects ftp
commands. Entering a 7 gives you a list of available commands. Some important
commands are

24 9 NETWORKING

1s or dir list directory on remote machine
cd dirname change to directory dirname on remote machine
lcd dirname change to directory dirname on local machine

binary transmit the files in binary mode. This is very useful for transfer-
ing large files since it is much faster. To switch back to the default
value, enter ascii. Binary mode should be used for all file transfers.
However, you can not use it if

e at least one of the machines is a non—-UNIX machine

o transfering ASCII text files between different architectures

hash prints hash marks (#) during file transfer so you can see how fast
the transfer is going on. The number of transfered bytes a single
hash mark corresponds to depends on the ftp server and is displayed
when switching hash mark printing on.

get fname get file fname from remote machine to local machine
put fname put file fname from local machine to remote machine
mget filelist get files in filelist from remote machine.
mput filelist put files in filelist to remote machine.

prompt switch interactive mode on/off. This is useful for the mget and
mput commands which prompt you for confirmation for each file’s
transfer.

quit close connection and end ftp session.

You can not transfer binary numbers and floating point numbers between ma-
chines with a different hardware architecture (e.g. from a DECstation to a SUN
SPARCstation).”

Some sites provide anonymous ftp. These sites have archives where they store
free software. You can use anonymous ftp without having an account for the machine
where you want to get software from. Just give anonymous for the username and
your loginname (!) as password. NEVER give your password when using anonymous
ftp!! Information about anonymous-ftp servers is most often obtained from netnews
(see below.).

However, before you try to get files from very far away, look at archive sites that
are close to your site to avoid unneccessary network traffic.

9.4 Electronic Mail

The network enables you to receive and send electronic mail messages. There are
many programs you can use to handle your mail. Simple programs are mail or mailx
which are supplied with almost every UNIX system. Built into emacs is rmail. You
can start the latter by typing ESC x rmail in emacs. Type “h mto get a description
of the mail mode you entered. Another very convenient mail handler is mh, which

"Please note the difference between e.g. a floating point number stored using the machine’s
floating point representation as can be done by C’s fwrite command or a floating point number
stored as an ASCII string.

9.4 FElectronic Mail 25

can be available from the shell, with an X interface or within emacs. There might
be other mail programs at your site.

How to read mail depends completely on the mail program you use, therefore we
will not comment on that. There are, however, some things you should know about
sending mail.

First, you have to know the mail address of the person you want to send mail to.
I assume for the moment that this person has access to the internet. Mail addresses
have the following form:

nameQdomainname

name is the name of the mailbox. It is common in UNIX systems to use the
loginname of a user as name for the mailbox. Some systems allow to use the full
name. There may be other names, too, for example names for a mailing list where
the mail sent to this mailbox is distributed to several people.

domainname is the domain name of the host where the mail should be received.
This is not necessarily the machine where the person you want send mail to usually
works. You have to know the correct hostname. The domainname can also be an
alias defined by the site you want to send mail to in order to have shorter and easy to
remember mail addresses (see the cc: field in the mailheader below for an example).

A typical mailheader looks like this—with slight modifications depending on your
mailprogram.

To: juser@foo.bar.edu

cc: arthur@magrathea.universe
Bcc: my_loginname

Subject: demonstration

Here comes the mail body...

To: is the person to receive the mail, cc: are addresses to receive a carbon copy.
These addresses will appear in the mail header of the mail each receiver gets. The
Bce: field contains addresses to receive “blind carbon copies”, i.e. these addresses
will not appear in the mail header the recipients in the to: or cc: fields get. This
is most often used to get yourself a copy of the mail. Since for mail on your local
net you usually do not need to give a hostname in the mail-address, just insert
your loginname in the Bce: field for your copy. In the default mail header, you will
probably find the cc: or the Bec: field, not both of them, nevertheless you can use
both. All of these fields can have multiple entries, separated by commas.

If you sent your mail you will not be informed upon correct arrival of your
message. The fact that you got your carbon copy right does not imply that the
other recipients got the mail. You will be informed if the delivery fails, however. If
you are not informed about a delivery failure within several days, you can be pretty
sure that everything worked fine.

If your mail can not be delivered, you get a note with your mail returned. In the
note you will find the reason for failure. Some common found reasons are:

26 9 NETWORKING

unknown user The user part of the address, i.e. the name, did not match
any possible mailbox at the host/site you were mailing to. Check
the name for spelling errors!

unknown host The host you specified could not be found.
host has been down for ... This means that the host could be found

but is currently not responding to mail transfer requests.

If you want to send mail to person not having access to the internet, but having a
bitnet address, use the bitnet address with a .bitnet attached to it.
Some mail addresses contain % signs like in

userjhosti@host2.domain

This means only that the mail has to use a gateway (host2). This information is of
no importance for you.

You may run over two other forms of mail addresses which are likely to cause
more trouble:

° hostn! ... host2'hostl'!user

is a UUCP address. You may try to translate it in
user@hosti.uucp

If this does not work, you have to specify at least one gateway in the mailad-
dress. You can try something like

userfhost1fhost2 ...hostn-1@hostn.uucp
or

hostn-1'hostn-2!... . host2'hostl!user@hostn.uucp
or ask your local mail guru.

° host::user

is a DECnet address. These addresses are very hard to transform to a domain
address, if at all. Try to get another mail address for this person!

9.5 Netnews

There exists a worldwide information system called netnews or news. This system
has more then a thousand topical newsgroups ranging from pure technical computer
discussions over political disput to recreation information. How many newsgroups
you actually can access is site dependent.

To read news, you have to use a newsreader. There are plenty of them, and each
works differently. Check at your site which newsreader is available.

But beware! The first time you’ll read news, you will be subscribed to all news-
groups with about 120.000 articles waiting for you! Of course you can unsubscribe
to newsgroups.

9.6 The Local Net 27

9.6 The Local Net

The net is not only important for remote login or mail. If your site has several
computers, it probably uses a network to make working with all these machines
more convenient for you. This is mainly achieved by the following:

e Network Information System (NIS), formerly called Yellow Pages (YP)® keeps
information about the user as found in the /etc/passwd file on a central YP
server machine in the network. The files are available to all other machines.
As a consequence, your password and shell are the same on all machines which
are in the same YP domain, i.e. which get their information from the same
YP server. If you change your password or shell on one machine, no matter on
which one, this change will be stored on the YP server and is therefore known
to all machines in the YP domain.

o The Network File System (NF'S) allows to share diskspace over the net. This is
especially important for your homedirectory. NI'S makes it possible that your
homedirectory is the same on all machines on the local network. Physically,
your homedirectory is stored on a harddisk attached to one machine. Other
machines can mount the stuff on this disk and it is then available on these
machines as if it came from a local disk. The machine which exports the files
from its local harddisk is called a fileserver. This is also used for application
programs since it is much easier to maintain 1 copy of a program that is shared
over the net then 20 local copies. Often, only very few software is held on local
disks while the rest is stored on disks attached to one or a few machines.

e Printing can also be a network-wide service. This allows you to address any
printer you like in the local network, no matter to which machine this printer
is physically connected.

A local network does not have to look like sketched above. However, you will find it
convenient if it does.

10 The X Window System

The X Window system is a freely available window system developed at MIT. It
runs on various platforms and allows you to get windows from other machines over
the net. The portability and the network capabilities of X make it superior to other
window systems like e.g. Sunview. There are commercial products (Openlook and
Motif) which heavily rely on X11 and are similar to use.

If you log on a machine which can run X, it is sometimes already running und
you get some windows after the login procedure completed, or you have to start it
directly by typing xinit or a similar command.

There are many applications available under X:

¢ the xterm terminal emulator (these are the nice windows where you can enter
commands); a simple xterm is started by xterm &.

8NIS/YP and NFS have been developed by SUN Microsystems and are licensed by many other

manufacturers. These programs are today’s standard.

28 10 THE X WINDOW SYSTEM

e several window managers; they do the housekeeping and decoration of your
xterms and other windows.

e several nice utilities, e.g. xclock showing you a clock on your screen, xbiff to
inform you visually about new mail etc.

e graphics programs. There are many of them, and each site has different ones.
Some common programs are xfig, xvgr and khoros.

e X is also a graphics programming tool you can use to visualize the results of
your calculations.

Many things concerning X like what window manager you use or which graphics
programs are available are site specific, so they will not be discussed here. In the
following sections, some basics concerning X are pointed out, so you’ll be able to
fight with your local system — whatever jungle that may be!

10.1 The Role of the Mouse

Sitting in front of an X window display with several windows open, you see that
moving the mouse moves the cursor over the screen. If it is inside a window, this
window can be marked active, e.g. by a change of color in its titlebar, and you
can enter commands. Some window managers force you to activate the window by
pressing a mouse button while the cursor is in this window. Nothing happens if you
try to enter command while no window is active.

The pure background where all your windows are placed on is called root window.

The effect of pushing one of the three mouse buttons depends on the context in
which this button is pressed. The context consists of

e the background where the cursor was when the button was pressed: was it on
the root window, on a window body, on a titlebar?

e the keys on the keybord which were simultaneously pressed with the mouse
button.

Here’s a list of common contexts and what they can affect. The resulting actions
mentioned in this list can only be examples since in most cases they depend on the
window manager and on the configuration at your site.

root window pull-down menues e.g. for logins and window operations.
This is completely site dependent.

window body + meta or alt key this can be for windows which are
lying on top of one another: to bring them on top or on bottom of
the “window stack”. This depends on the window manager.

window body + control key menues with some terminal and window
options like enabling a scrollbar or changing a font. This is config-
uration and site independent.

titlebar of window move a window, bring it on top or on bottom of a
window stack. This depends on the window manager.

10.2 Startupfiles 29

resize marker of titlebar allows to resize a window. Depends on the
window manager, but is commonly used.

icon marker of titlebar makes a very small box (icon) out of the win-
dow and puts it in some corner of your screen. Depends on the
window manager, but is commonly used.

icon restore the window which has been iconized generating this icon.

Test the effect of pushing the mouse buttons in the different contexts!

10.2 Startupfiles

Similar to the shell, the X Window System has startupfiles. They control things
like default color and font of a xterm, which applications should be started auto-
matically during login, where shall system messages (console output) appear, etc.
Unfortunately, there is no general naming convention for the X startupfiles. These
names are completely site specific.

10.3 The Window Manager

This thing is—besides you—responsible for the mess on your screen. It keeps usually
a bar at the side where all your X-applications are listed. It may decorate the xterm
with a titlebar, an icon marker and a resize marker. It often provides several pull-
down menues accessible by pressing the mouse buttons on the root window.

One of the window manager’s tasks is to place and to move windows. If a window
appears, the window manager usually displays a grid attached to the mouse. Move
it where you want it to be and press a mouse button to activate the window

You will have a startupfile for the window manager, too. For example, twm has
.twmrc as a startupfile. There you will find a description of the menues available for
different contexts.

10.4 xterm

The simplest way to start an xterm is to type xterm &. Do not forget to start it
in the background, otherwise the terminal where you started the new xterm will be
waiting for this xterm to finish before giving you back the prompt.

There are several options which control the way the xterm looks and behaves.
Here’s a list:

-fn font the window will have the font specified. Unfortunately there
is no convenient way to find out what fonts are available. You can
try the commands xlsfonts, xfd fontname and xfontsel. Some
common ones are 6x10 (very small), 6x13, 7x14, 10x20 (large).

-g geometry this gives the size and location of the winow. Geometry
is a string of the form “columns x rows +xoffset +yoffset” where
xoffset is measured from the left margin of the screen and yoffset
is measured from the top. Replacing the + sign by a - measures
from right and from the bottom, respectively. xoffset and yoffset

30 10 THE X WINDOW SYSTEM

are measured in pixels. You may give only columns and rows or
only the location. There may be no spaces.

-bg color sets the background color. Colors can be addressed by color
names. They are stored in a file called rgb.txt which resides some-
where in the directory tree where the X window stuff is.

-fg color sets the foreground color.
-n name The name of the window when iconized
-T title The title of the window appearing in the titlebar

-e command command is executed when the window has been activated.
This must be tha last option.

xterm -fn 7x14 -g 80x60 -n man -T man -e man xterm &

starts a long window with a somewhat bigger font that will be named “man”. It will
start with the manual page for xterm. Some window managers ignore part of the
options.

10.5 Selected X Utilities

The following utilities have some options in common. With -bg and -fg you can
chose background and foreground color. The -geometry option specifies size and
location. Contrary to xterm, the size has to be specified in pixels in most cases.

xbiff small mailbox that changes color and beeps if mail arrives
xload shows the load on your machine graphically

xclock an “analog” clock. With the -d option it is a digital clock, also displaying
the date

oclock “analog”, round clock
xcalc scientific desktop calculator

xman a nice X version of the usual man command

10.6 Using X on the Net

Think of a xterm where you rlogin to another machine. You want now to have
a X-application started on the remote machine but displayed on the local machine.
This can be useful if there’s a special program only available on the remote machine,
for example. There are two things you have to do:

¢ allow the remote machine to open windows at your screen. To do so, give the
command

xhost remote_machine_name

at your local machine.

31

o tell the remote machine where to display the X application by setting the
DISPLAY variable to the local machines’ display. The display name is

machine_name:0

if only one screen is attached to the machine. Else use the number of the
terminal you’re using instead of the O in the last place. E.g., in sh, ksh and
bash you would give the following command at the remote machine:

export DISPLAY=local_machine_name:0

If done so, simply give the command for the X application on the remote machine.

There are some dumb programs under X which complain if you want to execute
them on your local machine. Check if DISPLAY is correctly set on your machine —
this can be also necessary for non-dumb programms — and give the xhost command
with your local machine name. I know, it’s ridiculous, but what can I do?

A Important UNIX Commands

In alphabetical order, we will list here some important UNIX commands together with often
needed options. Of course, this list does not replace the manpages nor is it complete. It
just introduces you to some important commands and tells you about others without exactly
explaining how to use them. The descriptions hold for both BSD systems and SYSTEM V
if not stated otherwise.

A.1 awk

awk 1s a utility to search for patterns and process them. It is more powerful then sed, but
not as versatile as perl is.

A.2 cat

cat filename

displays the file filename. The output can also be redirected to another file:
cat filel > file2

writes the content of filel to file2.
cat filel file2 file3 > file4

catenates the first three files and redirects the output to file4.
But beware! cat filel file2 > filel destroys filel since it is first opened for writing,
i.e. truncated to zero length, before the cat command is performed.

A.3 cc
is your systems C compiler. The simplest way to use it is:
cc file.c

which compiles file.c and results in an executable a.out. For options, see section 8.

32 A IMPORTANT UNIX COMMANDS

A4 cd

cd dirname

changes the working directory to dirname. See also section 5.1.

A.5 chmod

changes the access permissions of a file. See section 5.5.

A.6 compress, uncompress and zcat

These commands are to compress or expand files.

compress filename
uncompress filename.Z
zcat filename.Z

compress reduces the size of filename and places the compressed file in filename.Z if
possible.

uncompress restores the compressed file to its original form. The compressed file is
deleted.

zcat is the same as uncompress, but leaves the compressed file intact. The output is
written to standard output.

To make a compressed archive of your C subdirectory, you could use:

tar cvf - C | compress > C.tar.Z

This results in a file C.tar.Z. The - sign in the tar command tells tar to write its output to
standard output which then is piped as input to compress. Since compress gets its input
from standard input, 1t does not know how to replace this with a .Z file. Therefore, explicit
redirection is necessary. To restore the content of the archive file, use

zcat C.tar.Z | tar xvf -

The - sign at the end tells the tar command that it shall take its input from standard input,
which is redirected to come from the zcat command.

A.7T cp

cp source-file destination-file
cp file-list directory

cp copies files and directories. See section 5.4.

A.8 date

displays time and date.

A.9 diff

diff filel file2

displays the differences between filel and file2.

A.10 echo 33

A.10 echo

copies its arguments to the standard output. Can be used to print the value of a shell
variable (referenced by the § sign).

$ echo a
a

$ a=b

$ echo $a
b

$

The a=b command 1s not valid in csh. You have to use set a=b instead.

A.11 file
file file-1list

classifies the files given in file-list according to their contents, e.g. ascii text, executable, C
source code, etc.

A.12 find

find directory-list expression

selects files from directory-list which match expression. Expression can also contain com-
mands to be applied to the file. Find has a fairly complicated syntax and may be time-
consuming. NEVER start a £ind from a directory on top of the complete directory tree, like
/ or /home - it would look through all the directories beneath / or /home to find your file!!
This may take several hours to complete and make the machine almost unusable, depending
on file system and organisation.

A.13 finger

finger nameG@host

finger displays information about users that are currently logged on a machine. If
only a loginname is specified as argument, finger looks at the machine you’re working with
(sometimes also on the local net). You can also finger persons on remote hosts.

The option -1 gives longer information.

A.14 grep

grep pattern file-list

searches for pattern in files from the file-list, which may contain directories; in which case
all files of that directory are being searched. Given you have a list with phonenumbers called
phonelist and want to look for the entry ”Peter”, enter

grep -1 "Peter" phonelist

The -1 option makes the search case-insensitive.

A.15 head

head -n filename

displays the first n lines of file filename. The default for n is 10.

34 A IMPORTANT UNIX COMMANDS

A.16 kill
kill PID-list

terminates the processes identified by PID-1ist, where PID stands for process-ID. The PID
can be determined by running the ps utility. You can only kill processes you own. If the
kill command does not terminate your process, try kill -9.

In shells which support job control, you may use

kill %jobnumber

where jobnumber is the number displayed by the jobs command (see section 3.2). kill %
kills the job you stopped last.

A.17 In
1n file link

establishes a so—called hard link to an existing file, i.e. you can access the file by two names:
the original filename and the just created name of the link. Both names have the same
status. If you remove one of the two names, the file is still accessible by the other one. On
newer systems, you can create a symbolic link by giving the —s option. This link has not the
same status as a filename. It only creates a small file which contains the path of the original
file. Therefore, if you remove the original file, the symbolic link is only a pointer to a no
more existing file. Contrary to the hard link, a symbolic link can be made to a directory.

A.18 lpr
lpr -Ppname file-list

sends the files of file-list to the printer named pname. Inform yourself about the printernames
at your site. Typical names are ”lp” for a lineprinter and ”ps” for a laserprinter able to
understand postscript. You can set the PRINTER environment variable (see section 6.4) to a
printer name which then is the default printer, i.e. if you use 1pr without the -P option, the
printer specified in PRINTER will be used.

Never send a postscript file to a lineprinter, it will just print all the postscript commands
but not the text or figure you actually want to see. If it happens by accident, immediately
take the job out of the printerqueue using 1pq and lprm (see below) since it would waste a
huge lot of paper!

You can look at the jobs waiting to be printed at a particular printer by

1pq -Ppname

This shows you also the job-—number for each printing job. If you want to remove a job from
the printqueue, use

lprm -Ppname job-number

where job—number is the job—number displayed by 1pq. You can only remove your own
print—jobs.
The appropriate SYSTEM V commands are 1p, 1pstat and cancel.

A.19 Is
1ls file-list

displays information about the files in file-list. File-list may also contain directories in which
case all files from that directory are listed. If the file-list is empty, the files in the working
directory are listed. The following options are most useful:

A.20 mail and mailx 35

-a displays also files starting with a period
-1 displays long information about files, including access permissions

-F display a / after each directory, an asterisk after an executable and, on BSD systems, an
@ after symbolic links.

A.20 mail and mailx

mail (BSD) and mailx (SYSTEM V) are simple utilities for reading and sending electronic
mail. They provide very limited possibilities for editing the mail you write. We recommend
to use rather one of the mail systems embedded in emacs. See, e.g. the description of rmail
in the emacs reference card of appendix B.

A.21 make

1s a tool to make the compilation process more convenient. It allows to recompile automat-
ically only those files that changed after the last compilation, and those which depend on
these changed files. The command make executes a file called Makefile or makefile con-
taining instructions for the compilation process. For syntax and detailed description, look
at the manpage. If the GNU version of make is available at your site, use the appropriate
info entry in emacs which is a nice make tutorial.

A.22 man

man command

displays the manual page for command. Using the -k option with a keyword as argument,
you get topical information about available manual pages for this keyword.
For further information on getting help, refer to section 4 and to appendix B.22.

A.23 mkdir

mkdir directory-list

creates the directories given in directory-list.

A.24 more

more file-list

displays the files in file-list page by page. On some old SYSTEM V machines, you have to
use pg instead.

A.25 mv

mv existing-file new-file

renames a file. See section 5.4.

A.26 nice

lowers the priority of a process in order not to block a machine for other processes. See
section 3.3.

36 A IMPORTANT UNIX COMMANDS

A.27 nohup

nohup command

ensures that the process started by command 1s not terminated if you log out. If you do
not specify output files, both the standard output and error are redirected to a file named
nohup.out.

If you are using csh, starting a process in the background already ensures that the process
is not terminated by logout. Therefore you no not need to use nohup. This is not the case
for tesh.

A.28 ps

displays information about active processes. Without any options, you only get information
on your processes which are started from the terminal where you entered the ps command.
Remember that in a window system, each window corresponds to a separate terminal. All
of your processes can be obtained by using

ps —ux
To see other users’ processes, too, enter
ps —aux

If you’re interested only in running processes, use the r option. The output of a ps command
consists of several columns. The most interesting are:

USER process’ owner

PID process—ID

%CPU the percentage of CPU time the process is using
%MEM the percentage of memory the process is using

SZ memory size of the process

RSS current resident memory size of the process

TIME the CPU time in seconds the process used up to now

COMMAND the command which started the process. If its truncated and you want
to see more of it, add a w once or multiple to the ps options.

The options are quite different on SYSTEM V and so is the output. The analog to the BSD
7aux” option is "ef”. By ”7-u” followed by a username you get all processes belonging to that
user.

A.29 rm

rm file-list

removes the files given in file-list. The effect of this command can not be undone!

A.30 rmdir

rmdir directory-list

removes the empty directories given in directory-list. Directories not being empty will not
be removed.

A.31 ruptime and rup 37

A.31 ruptime and rup

These commands show the status of the machines attached to your local network.

A.32 rwho and rusers

These commands show who 1s logged on the local network.

The rusers command takes more time, but rwho is disabled on some sites since it causes
a lot of network traffic.

For options, see the manpages.

A.33 sed

is a non—interactive editor. See the manual page for more information.

A.34 sort

sorts files in ascii sequence or other sequences controlled by options (e.g. -d is dictionary
order). The sortfield in the file can be chosen. See the manpage.

A.35 tail

tail filename

displays the last part of file filename

A.36 talk

talk loginname@hostname

is asking the user loginname@hostname to talk to you over the net. If the user is on the
same machine as you are, you only need to specify the loginname.

To end a talk session, type ~c.

talk sometimes does not work between different architectures. Users can deny permis-
sion to be talked to using the mesg command.

A.37 tar

tar key options file-list

creates an archive file or retrieves files from an archive file. The key determines whether to
create or retrieve:

¢ create an archive file
x extract files from archive

t list contents of archive
The most important options are:

v verbose; tells what files are processed

f indicates that the next argument is a filename to read from or write to; if
instead of a filename a - sign is given, standard input or standard output
1s used

h in creating, follow symbolic links and include the pointed—to files

38 B GNU EMACS REFERENCE CARD

To create an archive file from your C subdirectory in your homedirectory, give the following
command in your homedirectory:

tar cvf C.tar C
This results in an archive file C.tar. To retrieve its content, type

tar xvf C.tar

A.38 tee

tee file-list

copies standard input to standard output and to the files given in file-list. To append to
files, use the -a option.

a.out | tee outfile

displays the results of the executable a.out on the screen, simultaneously writing them to
outfile.

A.39 uptime

displays the status of your machine: how long it’s running, how many users are logged on

and the load.

A.40 wc
wc file-list

counts lines, words and characters of the files given in file-list and displays the results. To
have only one or two of lines, word and characters counted, give the options 1, w or ¢ or a
combination of them.

A.41 which
which filename
displays the pathname of filename. which looks only in the directories specified in the
PATH variable.
A.42 who

displays the users currently logged on the machine where you give the command.

B GNU Emacs Reference Card

In this reference card, C-k means “press the Control key and the k key simultaneously. M-k
means “press the Meta key and the k key simultaneously. The Meta key can be marked
Meta or ¢. If these keys are not present on your keyboard, the ESC key will work, too. In
this case, press ESC followed by the appropriate key.

Copyright (©1987 Free Software Foundation, Inc. designed by Stephen Gildea, March 1987
v1.9 for GNU Emacs version 18 on UNIX systems®

®Permission is granted to make and distribute copies of this card provided the copyright notice
and this permission notice are preserved on all copies. For copies of the GNU Emacs manual, write
to the Free Software Foundation, Inc., 675 Massachusetts Ave, Cambridge MA 02139.

B.1 Starting and Leaving Emacs 39

B.1 Starting and Leaving Emacs

To enter Emacs, just type its name: emacs
To read in a file to edit, see Files, below.

suspend Emacs (the usual way of leaving it) C-z

exit Emacs permanently C-x C-c¢

B.2 Files

read a file into Emacs

save a file back to disk

insert contents of another file into this buffer
replace this file with the file you really want
write buffer to a specified file

run Dired, the directory editor

B.3 Getting Help

The Help system is simple. Type C-h and follow the directions. If you are a first-time user,
type C-h t for a tutorial. (This card assumes you know the tutorial.)

get rid of Help window C-x 1
scroll Help window ESC C-v
apropos: show commands matching a string C-h a
show the function a key runs C-h ¢
describe a function C-h £
get mode-specific information C-h m

B.4 Error Recovery

abort partially typed or executing command C-g

recover a file lost by a system crash M-x recover-file

undo an unwanted change C-x uor C—_

restore a buffer to its original contents M-x revert-buffer
c-1

redraw garbaged screen

B.5 Incremental Search

search forward C-s
search backward C-r
regular expression search C-M-s

Use C-s or C-r again to repeat the search in either direction.

exit incremental search ESC
undo effect of last character DEL
abort current search C-g

If Emacs is still searching, C-g will cancel the part of the search not done, otherwise it
aborts the entire search.

B.6 Motion

Cursor motion:

40 B GNU EMACS REFERENCE CARD

entity to move over backward forward
character C-b Cc-f
word

T

o

=
1

line

go to line beginning (or end)
sentence

paragraph

page

sexp

function

go to buffer beginning (or end)

1

I 1
®» T M

1

|

EOOO:IEEOO

|
VE:IEN'—'(D(D’JH\
® H

EOOO:IEEOO

|
AE=E2X M oo

Screen motion:

scroll to next screen C-v
scroll to previous screen M-v
scroll left C-x <
scroll right C-x >

B.7 Killing and Deleting

entity to kill backward forward
character (delete, not kill) DEL c-d
word M-DEL M-d4

line (to end of) M-0 C-k C-k
sentence C-x DEL M-k
sexp M-- C-M-k C-M-k
kill region C-w

kill to next occurrence of char M-z char

yvank back last thing killed C-y
replace last yank with previous kill M-y

B.8 Marking

set mark here C-@ or C-SPC
exchange point and mark C-x C-x

set mark arg words away M-@

mark paragraph M-h
mark page C-x C-p
mark sexp C-M-@
mark function C-M-h
mark entire buffer C-x h

B.9 Query Replace

interactively replace a text string M-%
using regular expressions M-x query-replace-regexp

Valid responses in query-replace mode are

B.10 Multiple Windows

replace this one, go on to next
replace this one, don’t move

skip to next without replacing
replace all remaining matches
back up to the previous match
exit query-replace

enter recursive edit (C-M-c to exit)

B.10 Multiple Windows

B.11

delete all other windows
delete this window

split window in 2 vertically
split window in 2 horizontally

scroll other window
switch cursor to another window

grow window taller
shrink window narrower
grow window wider
shrink window shorter

select a buffer in other window
find file in other window
compose mail in other window
run Dired in other window
find tag in other window

Formatting

SPC

DEL

ESC
C-r

C-M-v
C-x o

C-x ~
C-x {
C-x }
M-x shrink-window

C-x 4 b
C-x 4 £
C-x 4 m
C-x 4 d
C-x 4 .

indent current line (mode-dependent) TAB

indent region (mode-dependent)
indent sexp (mode-dependent)
indent region rigidly arg columns

insert newline after point

move rest of line vertically down
delete blank lines around point
delete all whitespace around point
put exactly one space at point

fill paragraph

fill region

set fill column

set prefix each line starts with

41

42 B GNU EMACS REFERENCE CARD

B.12 Case Change

uppercase word M-
lowercase word M-
capitalize word M-

o g

uppercase region C-x C-u
lowercase region C-x C-1
capitalize region M-x capitalize-region

B.13 The Minibuffer

The following keys are defined in the minibuffer.
complete as much as possible TAB

complete up to one word SPC
complete and execute RET
show possible completions ?

abort command C-g

Type C-x ESC to edit and repeat the last command that used the minibuffer. The
following keys are then defined.
previous minibuffer command M-p

next minibuffer command M-n
B.14 Buffers
select another buffer C¢-x b
list all buffers C-x C-b
kill a buffer C-x k

B.15 Transposing

transpose characters C-t
transpose words M-t
transpose lines C-x C-t
transpose sexps C-M-t
B.16 Spelling Check
check spelling of current word M-$
check spelling of all words in region M-x spell-region
check spelling of entire buffer M-x spell-buffer
B.17 Tags
find tag M-.
find next occurrence of tag C-u M-.
specify a new tags file M-x visit-tags-table
regexp search on all files in tags table M-x tags-search
query replace on all the files M-x tags-query-replace

continue last tags search or query-replace M-,

B.18 Shells

B.18 Shells

execute a shell command M
run a shell command on the region M-
filter region through a shell command C
start a shell in window *shell* M

B.19 Rmail

scroll forward SPC
scroll reverse DEL
beginning of message . (dot)
next non-deleted message

previous non-deleted message

next message

previous message

delete message

delete message and back up

undelete message

reply to message

forward message to someone

send mail

get newly arrived mail

quit Rmail

output message to another Rmail file
output message in UNIX-mail style
show summary of headers

1 [
[o1 C B

D“C;)O.QO’QEHaHSOQ-EE"d’J
(o]

B.20 Regular Expressions
The following have special meaning inside a regular expression.

any single character . (dot)
7ero or more repeats *
one or more repeats +
zero or one repeat ?
L
L

any character in set .]
any character not in set ~]
beginning of line

end of line $

quote a special character ¢ \¢
alternative (“or”) \—
grouping NCoN)
nth group \n
beginning of buffer \¢

end of buffer \’

word break \b

not beginning or end of word \B
beginning of word \<

end of word \>

any word-syntax character \w

any non-word-syntax character \W
character with syntax ¢ \sc

character with syntax not ¢ \Sc

44

B.21

Registers

copy region to register
insert register contents

Q Q
MM

0
]
~

save point in register
move point to saved location C-x j

B.22 Info

B.23

B.24

enter the Info documentation reader

Moving within a node:

SPC
DEL
. (dot)

scroll forward
scroll reverse
beginning of node

Moving between nodes:

next node

previous node

move up

select menu item by name

select nth menu item by number (1-5)
follow cross reference (return with 1)
return to last node you saw

return to directory node

go to any node by name

Other:

=

run Info tutorial

list Info commands
quit Info

search nodes for regexp

-~

Keyboard Macros

start defining a keyboard macro
end keyboard macro definition
execute last-defined keyboard macro
append to last keyboard macro

name last keyboard macro

insert lisp definition in buffer

eval sexp before point

eval current defun

eval region

eval entire buffer

read and eval minibuffer

re-execute last minibuffer command
read and eval Emacs Lisp file

load from standard system directory

B GNU EMACS REFERENCE CARD

C-h i

R aHHz3 B 0B

C-x (

C-x)

C-x e

C-u C-x (

M-x name-last-kbd-macro
M-x insert-kbd-macro

Commands Dealing with Emacs Lisp

C-x C-e

C-M-x

M-x eval-region

M-x eval-current-buffer
M-ESC

C-x ESC

M-x load-file

M-x load-library

B.25 Simple Customization 45

B.25 Simple Customization

Here are some examples of binding global keys in Emacs Lisp. Note that you cannot say
"\M-#"; you must say "\e#".

(global-set-key "\C-cg'" ’goto-line)
(global-set-key "\e\C-r" ’isearch-backward-regexp)
(global-set-key "\e#'" ’query-replace-regexp)

An example of setting a variable in Emacs Lisp:

(setq backup-by-copying-when-linked t)

B.26 Writing Commands

(defun <command-name> (<args>)

"<documentation>"
(interactive "<template>")
<body>)

An example:

(defun this-line-to-top-of-screen (line)
"Reposition line point is on to the top of
the screen. With ARG, put point on line ARG.

Negative counts from bottom."
(interactive "P")
(recenter (if (null line)
0
(prefix-numeric-value line))))

The argument to interactive is a string specifying how to get the arguments when the
function is called interactively. Type C-h f interactive for more information.

C Vi Reference Card

This section has been inspired by Sobell’s “Practical Guide to the UNIX System”

C.1 Units of Measure

Commands in command mode often specify units of measure where the command shall take
effect. These are

46 C VI REFERENCE CARD

character each character, including SPACES, TABS, punctuation
and Control-characters
word string of characters bounded on both sides by one

or more punctuation marks, SPACEs, TABs, digits or
NEWLINEs. A group of punctuation marks is a word.

blank delimited word the same as a word, but includes adjacent punctua-
tion. Blank delimited words are therefore separated
by so-called whitespace, i.e. SPACE, TAB or NEWLINE.

line a string of characters bounded by a newline. This
logical line is not necessarily the same as a physical
line on the screen. If no RETURN is entered to end a
line, vi continues this logical line. Some setups of
vi automatically separate logical lines into physical
lines.

sentence a string of characters bounded by a period, an excla-
mation point or a question mark followed by two (!)
SPACES or a newline.

paragraph a string of characters followed by at least one blank
line.

If you precede a unit of measure with a number, this number is taken as a repeat factor
for the unit of measure.

C.2 Starting and Leaving vi

vi starting vi without specifying an input file
vi filename edit file filename
vi -r filename recover filename after a system crash

1wq save changes and quit vi
ZZ save changes and quit vi
:q! discard changes and quit vi

C.3 Moving

Remember that you have to be in Command Mode to use the following commands for moving
the cursor. They also specify the Units of Measure you can use with other commands. Each
command may be preceded by a number n which causes repetition of the command n times.

Note that the keys h, j, k, 1 which are right under your fingers while you're typing
have the same meaning as cursor keys.

C.4 Inserting Text

PACE, 1

OMH o wo =2 F o B

=]
]
—3
c
=
=

B Y A
<«

B ==

character to the left

down one line

character to the right

up one line

word to the right

blank delimited word to the right
word to the left

blank delimited word to the left
end of word to the right

end of blank delimited wird to the right
beginning of line

(cannot be used with a repeat factor)
beginning of next line

beginning of previous line

end of line

beginning of sentence

end of sentence

beginning of paragraph

end of paragraph

to line n (without n to the last line)
to top of screen

to middle of screen

to bottom of screen

47

The next commands move the cursor by bigger portions of the file. These are no Units

of Measure.

“d down half a screen

u up half a screen

~f forward one screen

b back one screen

C.4 Inserting Text

With the following commands you stay in Insert Mode until you press ESC to return to

Command Mode.

The following commands insert text

OO0 = ® H

C.5 Deleting

before cursor

before first nonblank character on line
at current cursor position

at end of line

open line below current line

open line above current line

In this section and the following ones, M is a Unit of Measure as given in section C.3 that
can be preceded by a repeat factor n. Note that d followed by RETURN deletes two lines, the

current line and the following one. To delete the current line only, use dd.

48 C VI REFERENCE CARD

nx delete n characters, starting with current one
nX delete n characters before current one,
starting with character preceding the current one
dM delete text specified by M
ndd delete number of lines specified by n
D delete to end of line

Examples:

d0 delete to beginning of line

dWw delete to end of blank delimited word
5dd delete 5 lines starting with current line
dG delete through end of file

di1G delete through beginning of file

C.6 Changing

Giving one of the first four commands in the following list, you will see a $ sign at the end
of the Unit of Measure specified. Everything from the cursor to the $ sign will be replaced
by what you enter until you press ESC to return to Command Mode. If you reach the $ sign
while entering text, vi will continue to insert the characters you type.

ns substitute n characters
cM change text specified by M
ncc change n lines

C change to end of line

nrc replace n characters by the single

character ¢ (returns to Command Mode)
R replace (overwrite) text until ESC is pressed

C.7 Searching for a String

In the following, regex is a regular expression (see appendix D) that can be a simple string
of characters.

/regex RETURN search forward for regex
?regex RETURN search backward for regex

n repeat original search in same direction

il repeat original search in opposite direction
/RETURN repeat original search forward

?RETURN repeat original search backward

C.8 String Substitution

A substitution command has the following syntax:

:[address]s/search-string/replace-string/g

C.9 Yanking Text 49

address consists of two line numbers separated by a comma.
The line numbers can be replaced by a . (dot), rep-
resenting the current line, a $ representing the last
line or a mark sign (see section C.11).

search-string is aregular expression that can be a simple character

string

replace string is aregular expression that can be a simple character
string

g indicates global replacement; if you omit the g, only

one replacement per line will be performed.

C.9 Yanking Text

Yanking in vi means “remember, but do not delete”. You can put yanked text somewhere
else in the file. To store it for later purposes, you have additional buffers available, named
from a to z. Just precede the yanking command by "x where x i1s the buffer name.

yM yank text specified by M
nyy yank n number of lines
Y yank to end of line

C.10 Putting Text

After you deleted or yanked text, you can put it somewhere in the file. If you did not
specify a buffer for intermediate storage, you may only perform cursor motions between the
yank/delete command and the put command. To put something stored in buffer x, precede
the put command by "x.

P put text before cursor
p put text after cursor

C.11 Marking

mx set mark x where x is a letter from a to z

x move cursor to beginning of line
containing mark x

X move cursor to position of mark x

>? move cursor to previous location

C.12 Shell Commands

:sh create a (sub)shell; return to editor with ~d or exit

:lcommand create a shell and execute command

Ilcommand create shell, execute command and place the standard
output of command in the file you are editing, replac-
ing the current line

:r!command insert the output of command at current position of
cursor

50 D SIMPLE REGULAR EXPRESSIONS

C.13 Miscellaneous Commands

u undo last change; works only once!

J join the current and the following line

. repeat the most recent command that made a change

:w file write changes to file (current file if no file has
been given as argument)

te file edit file; use :w first to store the changes you made
to the current file before reading in a new one.

: f display name and status of current file
:r file insert file at current position of cursor
g display filename, current line number, total number

of lines and the percentage of the file preceding the
current line

v insert next character literally. This is used in Input
Mode to insert Control-characters etc. literally
change uppercase to lowercase and vice versa

D Simple Regular Expressions

Regular expressions are used in several UNIX utilities and editors for searching and replacing
sets of strings. This chapter is restricted to the simple regular expressions as used by vi.
For the full regular expressions, you should have a look at the manpage for egrep or section
B.20. The usage of regular expressions in emacs is somewhat different then described here.
Look at the appropriate parts of the emacs manual.

A regular expression can be a simple string or a combination of characters which matches
a set of strings. This is achieved by giving some characters a special meaning. If you want
to use these special characters in a regular expression literally, you have to quote them by
preceding them with a backslash. \\ represents a literal backslash.

You have seen this type of referring to a set of strings already in the shell’s filename ex-
pansion. There, #, 7 [and] had special meaning. Regular expressions are more complicated
and powerful.

In most cases, the regular expression has to be bracketed between two equal characters.
They can be anything as long as they are the same. These delimiters are simply defined by
the first character that appears which is taken to be the delimiter. The delimiter is special
to this regular expression and has to be quoted if appearing inside the regular expression.
Often, a / is used as delimiter, and I will use this in the following.

The simplest regular expression is a simple string. It matches only itself. /abc/ would
match anything like abc, aabcc etc.

Special characters are:

e . (period) matches any single character (like ? in the shell’s filename expansion)

e [1 equivalent to the shell’s filename expansion. This matches a single character being
in the list (like [abcl) or range (like [a-c]) given in the brackets. If the left bracket
is followed by a =, every character not listed in the brackets will match. The special
charcters \, *, $ lose their special meaning (see below). A ~ is special only as the
first character following a left bracket. The - sign is used to indicate a range and
therefore special, except as first character after [or [*. If you want to include a] in
the list, you have to quote it as \].

e * An asterisk after a regular expression which represents a single character means that
this regular expression will be matched if occuring zero or more times. ab*c would
match ac, abc, abbc etc.

51

An asterisk following a period matches any string of characters. This i1s equivalent to
the single asterisk in the shell’s filename expansion.

e " (caret) A regular expression beginning with a caret matches only a string at the
beginning of a line.

e $ A regular expression ending with a $ matches only a string at the end of a line.

e \(and \) Quoted parentheses can be used to group parts of an expression. These
groups can be referred to later by quoted digits.

The following two are special to searching and replacing in vi and sed:

e An ampersand in the replacement string is replaced by the string the search string
matched.

e In a search string a quoted digit (\n) represents the string of the nth expression that
has been grouped in the search string by quoted parenteses.

e In a replacement string a quoted digit refers to the nth grouped regular expression
that has been matched in the search string.

To avoid ambiguities there are the following rules:
e A regular expression matches always the longest possible string.

e An empty regular expression represents the last regular expression used. An empty
regular expression is just one with two equal characters, namely the two delimiters.

E Literature

Here are some books you might find useful.
A nice introduction to UNIX is

e Mark G. Sobell, A Practical Guide to the UNIX System, Benjamin/Cummings Pub-
lishing Company, 1989.

If you want to learn C, the following books are recommended

e Mitchell Waite and Stephen Prata, The Waite Group’s New C Primer Plus, Howard
W. Sams & Company, 1990

e Brian W. Kerninghan and Dennis M. Ritchie, The C Programming Language, 2nd
edition, Prentice-Hall

The definite introduction to the X window system is O’Reilly’s X Window Series. The
volume most suited for a beginner is

o X Window System User’s Guide, The X Window System Series, O’Reilly & Associates,
1990

If you want to gain much (!) deeper knowledge about UNIX and networking, try

e S.J. Leffler et al., The Design and Implementation of the 4.3 BSDK UNIX Operating
System, Addison—Wesley, 1990

e W. Richard Stevens, UNIX Network Programming, Prentice-Hall, 1990

