

Tutorial 2 Idea, challenge, and strategy

TreeSnatcher Plus

All images are copyrighted by their respective owners. If you are the owner of one of the images and wish it to be removed from these documents, please inform us.

Aim
TreeSnatcher Plus converts images of phylogenetic trees back into a machine-readable
representation that can be used within another Bioinformatics application. The program uses
the Newick representation which is widely used in Bioinformatics and Biology.

This functionality can be of help whenever the data source for a publication is out of reach,
or if you want to play through What if-scenarios with the tree depicted. You can modify
other people's trees as you need or draw your own tree.

Challenge
An image of a phylogenetic tree is made of arbitrarily shaped, not necessarily thin, straight or
bent, intersecting lines. The species are in most cases represented by their names. The image
may contain additional elements, e.g. icons. Different objects are likely to overlap the tree itself.

The whole image consists of a mosaic of colored pixels that have no meaning when looked at
in isolation. Without some heavy lifting, a computer can neither recognize lines and intersections
nor read text.

Using TreeSnatcher Plus, you first need to preprocess the image before the program can
identify the branching positions and the branches themselves. As soon as you are satisfied with
the result, TreeSnatcher Plus calculates the Newick expression for your tree. It relies on you to
supervise the whole workflow.

This is a magnified portion of an image showing
a phylogenetic tree. The computer cannot grasp
the whole image like a human but must construct
its view stepwise from the pixel colors and their
spatial relations.

On this basis, how would you define what a line
is, whether it is straight or bent, where lines begin,
intersect,...?

Strategy
Below you are shown an original portion of the same image before and after effective
preprocessing. Tree and text are separated, lines and intersections are as thin as possible and
clearly distinguishable from the background. The foreground is black and the background is white.

For preprocessing, TreeSnatcher Plus offers all tools you need. With experience,
it is fairly straightforward. Your superior goal is always to achieve a result like in the
right image on the last slide. Please have a look at the tutorial about preprocessing.

In the preprocessed image, the program can look for branching positions. For those,
it counts how many among the eight neighboring pixels of each black pixel are
black.

An inner node – a branching position – is averaged over the positions of all black
pixels that have at least two neighboring black pixels on their own.
A tip – the position of a species, gene or taxon - is formed for a pixel that has
exactly one black pixel as neighbor. Black pixels with two black neighboring pixels
lie on a path.

After adept preprocessing, you get a result like in the left image:
Blue nodes represent branching positions, green nodes tip positions.
No nodes need to be added or removed.

The right image shows the result after inapt preprocessing: As some parallel lines
collide, the program 'finds' false and too many nodes there.
If you do not remove them and/or modify the image, the tree topology will be wrong.

You may Add, Remove and Move Nodes or use the drawing tools and repeat the
automatic node placement.

When the node placement is finished, TreeSnatcher Plus can determine the positions
of branches in the tree. A branch exists between a pair of nodes (i.e. inner nodes
and tips) if they are linked by a gapless path of black pixels.

Beginning at a tip, the program visits all black pixels
in the neighborship and colors them yellow, then
visits their neighbors etc. If another node is within
reach, it tries to lengthen the path to this node.

Using this strategy, the program is able to deter-
mine paths between tips and inner nodes. As the
discovered path is not necessarily the shortest
possible, it then walks the path backwards in a
parsimonious fashion in order to determine the
lowest distance between the nodes.
It is more complicated to find paths between inner
nodes as there are always multiple directions to
investigate.

In the illustration, due to a missing black pixel, the
program was unable to 'walk down' the path from
the tip in the top right corner to the inner node.
Therefore, it will not form a branch for this pair of
nodes.

A possible result might look like this:

A green line between two nodes means
that a foreground path (formed by black
pixels) between them exists. This is a
branch. For the time being, the length
of the branch is the path length, measured
in pixels.

Branches and nodes are logical objects
that overlap the image but are not part
of it. If you click at them, you can
modify their properties.

Amongst others, you can assign a name
to an outer node, move or remove a
node or assign a custom length to
a branch.

You never need to drag branches on your
own. If you do it anyway, the program cannot
calculate their length because there is no path.

If there are branches absent in the tree, you can modify the image with the drawing
tools to delete black pixels and fill gaps. After that, you repeat the automatic
calculation of branches and branch lengths.

TreeSnatcher Plus can try to recognize rectangular trees. For this, you select the
option Rectangular. Make sure that the image is well prepared.
Have a look at how the program has identified length relevant (red) and irrelevant (black)
path segments:

The approach works more accurate for sufficiently long and straight paths and
sharp bends. You should experiment with different images.

You might want to scale the tree. For this, you can use a line of known length in the
original image, e.g. a scale bar, or you assign a custom length to a branch and let
TreeSnatcher Plus scale the tree based on this metric.
You can use the branch lengths that the program has calculated and custom
branch lengths simultaneously.

If you wish, you can choose a node from which the Newick expression shall be
constructed recursively. This node is highlighted in yellow.

Currently, TreeSnatcher Plus cannot read taxon names from the source image.
Either you accept the default numbers or you type in the species names.

Another tree - the processed
image is superimposed on
the source image.

Notice how thin the lines are
in the processed image
compared to those in the
original image.Thinning is one
of the preprocessing tools.

In spite of preprocessing,
some mistakable pixels
are still there. However,
as long as
there are no
misplaced
nodes, the
branches will
be set
correctly.

In the end, TreeSnatcher Plus converts the tree topology into a Newick tree
representation. Branch lengths are optional.

(G. rosario:95.8763, G. ambara:94.8454, (G. Lisajoni:90.7216,
(G. speciosa:98.9691, G. sogodensis:77.3196, G. Kieneri:101.0309,
6:74.2268, Turris spectabilis:101.0309):100.0000):92.0000);

You might want to save the Newick representation to the clipboard or store it
in a text file.

From here...

...to there

