
(p)IPHULA - (parallel) Inference of Population History Using a
Likelihood Approach

(p)IPHULA Manual
Version 1.16 (May 2007)

Copyright 2004-2007 (p)IPHULA by Heiko A. Schmidt, Arndt von Haeseler, and Jutta Buschbom
Copyright 1998-2004 IPHULA by G. Weiss and A. von Haeseler

Heiko A. Schmidt
Center for Integrative Bioinformatics Vienna (CIBIV),
Max F. Perutz Laboratories (MFPL),
Dr. Bohr-Gasse 9, A-1030 Vienna, Austria.
email: heiko.schmidt @ univie.ac.at

Arndt von Haeseler
Center for Integrative Bioinformatics Vienna (CIBIV),
Max F. Perutz Laboratories (MFPL),
Dr. Bohr-Gasse 9, A-1030 Vienna, Austria.
email: arndt.von.haeseler @ univie.ac.at

Jutta Buschbom
Institute of Forest Genetics and Forest Plant Breeding,
Federal Research Centre for Forestry and Forest Products,
Sieker Landstr. 2, D-22927 Großhansdorf, Germany.
email: j.buschbom @ holz.uni-hamburg.de

http://www.cibiv.at
http://www.mfpl.at
http://www.cibiv.at
http://www.mfpl.at
http://holz.uni-hamburg.de/
http://holz.uni-hamburg.de/

General Information

(p)IPHULA is a software that infers parameters of population history in a maximum
likelihood framework using Monte Carlo simulation.

(p)IPHULA is written in ANSI/ISO C. It will run on most personal computers and
workstations if compiled by an appropriate C compiler. IPHULA has been parallelized
(pIPHULA) using the Message Passing Interface standard (MPI, Snir et al., 1998;
Gropp et al., 1998). For parallel execution of pIPHULA it is necessary to have an
implementation of MPI installed on your system. Please read the Installation section
(3) for more details.

We suggest that this documentation should be read before using (p)IPHULA the first
time.

(p)IPHULA is pronounced [’i:fula:] (ee-foo-lah) or [’pi:fula:] (pea-foo-lah), depend-
ing on whether one is speaking about the sequential (IPHULA) or the parallel version
(pIPHULA), respectively.

To find out what’s new in the current version please read the Version History (Sec-
tion 10).

2

Contents

1 Legal Stuff 5

2 Introduction 6

3 Installation 8
3.1 UNIX/Source Distribution . 8
3.2 Binary Distributions . 9

3.2.1 Linux . 9
3.2.2 Mac OS X . 9
3.2.3 Older Mac OSes . 10
3.2.4 Windows 95/98/NT/etc. 10

3.3 Compilation for Parallel Implementation 10
3.3.1 MPI-Parallel (p)IPHULA . 10
3.3.2 OpenMP-Parallel (p)IPHULA . 12

3.4 ANSI/ISO C Compilers . 12

4 Usage 14
4.1 Program Execution . 14
4.2 Input/Output Conventions . 15

4.2.1 Program input . 15
4.2.2 Report file . 15
4.2.3 Matrix output . 15
4.2.4 Parameter output . 16

4.3 Simulation Settings . 16
4.4 Running pIPHULA in Parallel . 17

4.4.1 Using LAM-MPI . 18
4.4.2 Using MPICH . 20

5 Hints for Running pIPHULA 23
5.1 Defining the Simulation Grid . 23
5.2 Choosing the Tolerance Limit δ . 23
5.3 Batch Mode . 23

6 Supporting Programs and Scripts 26
6.1 Graphical Output . 26
6.2 Compilers and Other Software . 27

3

7 (p)IPHULA References and Further Reading 29

8 Acknowledgments and Credits 30

9 Known Bugs 32

10 Version History 33

4

1 Legal Stuff

(p)IPHULA is c©2004-2007 H.A. Schmidt, A. von Haeseler, and J. Buschbom.
Earlier IPHULA versions were c©1998-2004 by G. Weiss and A. von Haeseler.

The software and its accompanying documentation are provided as is, without guar-
antee of correctness, support or maintenance. The pIPHULA package is licensed under
the GNU public license, except for the parts indicated in the sources where the copyright
of the authors does not apply. Please refer to http://www.opensource.org/licenses/
gpl-license.html for details.

5

http://www.opensource.org/licenses/gpl-license.html
http://www.opensource.org/licenses/gpl-license.html

2 Introduction

Weiss and von Haeseler (1998) introduced a three-parameter model (θ, τ, ρ), the WvH98
model, of population size change to model population history and infer demographic
parameter values based on a given set of aligned DNA-sequences.

WvH98 models an event of exponential population size change in a Wright-Fischer
population (i.e., a population with randomly mating individuals in non-overlapping gen-
erations, in which individuals of the next generation are drawn from a large gene pool
and no selection occurs). It takes into account the population size θ = 4N0µ before the
growth or decline event started, with N0 denoting the initial effective population size
and µ the mutation rate per gene and generation. The starting point τ of the population
size change event is considered in units of 1

µ in the past and the population growth factor
ρ represents the ratio between the current and the initial population size at time τ in
the past (i.e., ρ > 1 growth, ρ = 1 constant size, and ρ < 1 decline, cf. Fig. 2.1).

Population size changes produce typical distributions of neutral genetic variation in
populations that provide information on the three parameters of the model. Inference is
based on the mean pairwise difference K and the number of polymorphisms S observed
in DNA sequence data. A maximum likelihood approach is applied to estimate the model
parameters based on K and S. Since there is no closed form available to estimate these
model parameters directly from the data, Weiss and von Haeseler (1998) have suggested
a Monte Carlo approach to obtain maximum likelihood estimates of the parameters.
This approach approximates the likelihood surface for the three relevant population
parameters by coalescent simulations on a 3D-grid. Each simulation is conducted in two
steps: first, a genealogy is produced. Its coalescent times are determined according to

ρ>1

ρθ

τ
θ

ρ=1
θ

ρ<1

τ

θ

ρθ

Figure 2.1: Relationship of the population growth parameters ρ, θ, and τ in cases of
exponential growth (left), stable size (middle), and decline (right). Figure
adopted from Weiss and von Haeseler (1998).

6

the coalescent approximation for populations with deterministically varying population
sizes (Griffiths and Tavaré, 1994). At each coalescent time two lineages are randomly
merged, resulting in a genealogy for the given number of individuals. In a second step a
sample of sequences is generated by evolving an ancestral sequence along the genealogy.
Here, the mutation process runs irrespective of the current genealogy and is determined
by the nucleotide substitution model parameters set by the user. The, thus, simulated
DNA sequence data sets are analyzed with regard to the K- and S-statistics. The
frequency with which the simulated data sets produce mean pairwise distances (K)
close to and numbers of polymorphisms (S) identical to those found in the original data
set approximates the likelihood lik(θ, τ, ρ|K, S).

7

3 Installation

The source code of the (p)IPHULA software is 100% identical across platforms. However,
installation procedures differ. There is a source distribution (piphula-X.XX.tar.gz,
piphula-X.XX.zip) and binary distributions (piphula-X.XX-linux.tar.gz,
piphula-X.XX-macosx.tar.gz, piphula-X.XX-windows.zip) with executables
for Linux, Mac OS X, and Windows respectively. (X.XX has to be substituted by the
current version number.)

3.1 UNIX/Source Distribution

Get the file piphula-X.XX.tar.gz (.zip file for Windows). Decompress it first (using
the gunzip command in a Terminal or another program capable of handling gz format)
and then untar the file with

gunzip piphula-X.XX.tar.gz
tar xvf piphula-X.XX.tar

The newly created directory piphula-X.XX contains five subdirectories called doc,
data, R-scripts, bin, and src. The doc directory contains this manual in PDF for-
mat. The data directory provides example input files. The src directory contains the
ANSI/ISO C sources of (p)IPHULA. An R-script for plotting results is found in the
folder R-scripts. In a Terminal (e.g., xterm on Unix/Linux, Terminal.app on MacOS
X, or Command prompt on Windows) switch to this directory by typing

cd piphula-X.XX

To compile we recommend the GNU gcc compiler (included in most Linux distribu-
tions, the free Xcode package for Mac OS X or the free cygwin or minGW package for
Windows). If gcc is installed just type

sh ./configure
make
make install

and the executable iphula is compiled and put into the /usr/local/bin directory.
You might need administrator rights to run the make install step. Alternatively, you
can copy the executable to another directory in your search path that you can access.

8

If you want to have iphula installed automatically into another directory you can
set this by setting the --prefix=/name/of/the/wanted/directory directive at the sh
./configure command line.

The parallel version should have been built and installed as well, if configure found
a known MPI compiler/installation (cf. 3.3.1 MPI-Parallel (p)IPHULA).

Then type

make clean

and everything will be nicely cleaned up.
If your compiler is not the GNU gcc compiler and not found by configure you will

have to modify that, by setting the CC variable (e.g. setenv CC cc under csh or CC=cc;
export CC under sh/bash) before running sh ./configure. If you still cannot compile
properly then your compiler or its runtime library is most probably not ANSI compliant
(e.g., very old SUN compilers). In most cases, however, you will succeed to compile
by changing some parameters in the makefile. Ask your local Unix expert/system
administrator for help.

3.2 Binary Distributions

3.2.1 Linux

Get the file piphula-X.XX-linux.tar.gz. After extracting this file as described in
section 3.1 (if you have problems, please ask your local Linux expert), you will find a
folder called piphula-X.XX on your hard disk. This folder contains the subfolders doc,
data, R-scripts, and src. The doc folder contains this manual in PDF format. The
data folder contains example input files. The folder R-scripts contains the R-script
for plotting results. The precompiled execultable as well as the ANSI/ISO C sources of
(p)IPHULA are found in the folder src.

Rename the Linux executable iphula-linux-gcc-static to iphula and copy it to a
folder in your PATH, e.g., /usr/local/bin is generally a good choice.

The Linux executable has been compiled using the GNU C compiler (http://gcc.
gnu.org). If you need a compiler to prepare the executable yourself, you might download
one from the list below (section 3.4). Then proceed as described in the UNIX/Source
Installation section (3.1).

3.2.2 Mac OS X

Get the file piphula-X.XX-macosx.tar.gz. After extracting this file as described in
section 3.1 (if you have problems, please ask your local Mac OS X expert), you will find
a folder called piphula-X.XX on your hard disk. This folder contains the subfolders doc,
data, R-scripts, and src. The doc folder contains this manual in PDF format. The
data folder provides example input files. The folder R-scripts contains the R-script

9

http://gcc.gnu.org
http://gcc.gnu.org

for plotting results. The precompiled execultable as well as the ANSI/ISO C sources of
(p)IPHULA are found in the folder src.

Rename the Mac OS X executable iphula-macosx-Xcode to iphula and copy it to a
folder in your PATH, e.g., /usr/bin or /sw/bin are generally good choices.

The Mac OS X executable has been compiled using Apple’s Xcode Tools (http:
//developer.apple.com/macosx/). If you need a compiler to prepare the executable
yourself, you might download one from the list below (section 3.4). Then proceed as
described in the UNIX/Source Installation section (3.1).

3.2.3 Older Mac OSes

Due to missing access we do not support Mac OS 9/Classic anymore. We recommend
changing to Mac OS X, which combines the advantages of UNIX systems with the
Mac OS’s graphical interface.

If you want to prepare an executable for your Mac OS yourself, you might get
Metrowerks’ CodeWarrior (refer to section 3.4) to compile the C sources included in
all (p)IPHULA distribution packages.

3.2.4 Windows 95/98/NT/etc.

Get the file piphula-X.XX-windows.zip. After un-zipping this file (if you have prob-
lems, please ask your local Windows expert), you will find a folder called piphula-X.XX
on your hard disk. This folder contains the subfolders doc, data, R-scripts, and src.
The doc folder contains this manual in PDF format. The data folder provides example
input files. The folder R-scripts contains the R-script for plotting results. The pre-
compiled execultable as well as the ANSI/ISO C sources of (p)IPHULA are found in the
folder src.

Rename the Windows executable iphula-windows-mingw to iphula and copy it to a
folder in Windows’ search path.

The Windows executable has been compiled using MinGW (http://www.mingw.org).
If you need a compiler to prepare the executable yourself, you might download one
from the list below (section 3.4). Then proceed as described in the UNIX/Source
Installation section (3.1).

If you got a Linux partition on your PC we recommend to install and use (p)IPHULA
under Linux (see section 3.2.1), since (p)IPHULA will run faster under Linux than under
Windows.

3.3 Compilation for Parallel Implementation

3.3.1 MPI-Parallel (p)IPHULA

To compile and run the parallelized IPHULA you need to have an implementation of the
Message Passing Interface (MPI) library, a widely used message passing library standard,

10

http://developer.apple.com/macosx/
http://developer.apple.com/macosx/
http://www.mingw.org

installed on your system. Implementations of the MPI libraries are available for almost
all parallel platforms and computer systems, and there are free implementations for most
platforms as well.

To find an MPI implementation suitable for your platform visit the following web
sites:

• http://en.wikipedia.org/wiki/Message_Passing_Interface

• http://www.lam-mpi.org/mpi/implementations/

• http://www-unix.mcs.anl.gov/mpi/implementations.html

• http://WWW.ERC.MsState.Edu/labs/hpcl/projects/mpi/implementations.
html

Although MPI is also available on Macintosh and Windows systems, the developers
never ran the parallel version on these platforms.

To install the parallel version of (p)IPHULA you need the source distribution for
(p)IPHULA and install the package on your computer as described above (3.1). The
configure should configure the Makefiles appropriately. If there is no known MPI
compiler found on the system the parallel version is not configured. (If problems occur
ask your local system administrator for help.)

Now you should be able to compile the parallel version of (p)IPHULA using the
following commands:

sh ./configure
make
make install

and the executable mpiiphula is compiled and put into the /usr/local/bin directory.
If you want to have the executable installed into another directory please proceed as
described in section 3.1.

If your compiler is none out of mpcc (IBM), hcc (LAM), mpicc lam (LAM under
LINUX), mpicc mpich (MPICH under LINUX), and mpicc (LAM, MPICH, HP-UX,
etc.) and not found by configure you will have to modify that by setting the MPICC
variable (e.g. setenv MPICC /another/mpicc under csh or MPICC=/another/mpicc;
export MPICC under sh) before running sh ./configure.

Some compilers (e.g., IBM) have problems to compile the SPRNG random num-
ber generator source code. In this case you can use the old ’leapfrog generator’
by setting the CFLAGS variable to -DNOSPRNG (e.g., setenv CFLAGS ’-DNOSPRNG’ un-
der csh or CFLAGS=’-DNOSPRNG’; export CFLAGS under sh/bash) before running sh
./configure.

The way to start mpiiphula depends on the MPI implementation installed. So please
refer to your MPI manual or ask your local MPI expert for help.

Since the master process does not require a lot of CPU time, it can be scheduled
sharing one processor with a worker process. Thus, you can run mpiiphula by assigning
n + 1 processes.

11

http://en.wikipedia.org/wiki/Message_Passing_Interface
http://www.lam-mpi.org/mpi/implementations/
http://www-unix.mcs.anl.gov/mpi/implementations.html
http://WWW.ERC.MsState.Edu/labs/hpcl/projects/mpi/implementations.html
http://WWW.ERC.MsState.Edu/labs/hpcl/projects/mpi/implementations.html

3.3.2 OpenMP-Parallel (p)IPHULA

OpenMP (Dagum and Menon, 1998) is a different standard to parallelize software. It
is, however, restricted to multi-processor machines since it is based on threads running
on the same machine. Furthermore, the parallelization itself is done by OpenMP-aware
compilers, and hence dependent on their performance.

The (p)IPHULA source code contains all compiler directives needed to produce an
OpenMP-based thread-parallel executable by compiling it with an OpenMP compiler.

Testing the performance of OpenMP-mediated parallelism showed amazingly bad per-
formance on an IBM Regatta system, even for high numbers of independent tasks on
only 4 CPUs. Unfortunately, this behavior had to be attributed to the performance of
the OpenMP compiler.

Since the MPI implementation by far outperformed the OpenMP version, the develop-
ers decided not to maintain the OpenMP approach. The compiler directives will remain
in the code and should be usable in the future.

A hybrid use of OpenMP and MPI parallelism simultaneously in pIPHULA is not
available.

3.4 ANSI/ISO C Compilers

If there is no binary version of (p)IPHULA available for your computer or if you want
to compile (p)IPHULA yourself, an ANSI/ISO C compiler is needed to produce an
executable suitable for your machine. There are a number of free compilers available for
the different operating systems:

GCC - Gnu Compiler Collection (UNIX/Linux, Mac OS X, Windows), available for
most OSes, widely spread in the UNIX/Linux community where it is included
in virtually every distribution. GCC is also the basis to most compilers mentioned
below. (http://gcc.gnu.org)

ICC - Intel C++ Compiler (Linux, Windows), ICC has shown good performance. It
is free to a certain extent - please refer to the license. (http://www.intel.com/
software/products/compilers/)

MinGW - Minimalist GNU for Windows (Windows), a GCC based package that pro-
vides all basic tools necessary for software development with Gnu tools under
Windows (http://www.mingw.org)

CygWin - GNU+Cygnus+Windows (Windows), a GCC based package that provides
the (almost) full Gnu environment and tools known from UNIX/Linux systems
(including X-Windows). Unfortunately, executables compiled with CygWin need
CygWin installed to be run on other Windows computers. (http://www.cygwin.
com)

12

http://gcc.gnu.org
http://www.intel.com/software/products/compilers/
http://www.intel.com/software/products/compilers/
http://www.mingw.org
http://www.cygwin.com
http://www.cygwin.com

Xcode Tools (Mac OS X), the GCC based software development tools from Apple for
Mac OS X. It is free, but you have to register. Please check the license. (http:
//developer.apple.com/macosx/)

CodeWarrior (Mac OS Classic/9/X, Windows), this is a commercial development en-
vironment from Metrowerks. Although not supported by the (p)IPHULA devel-
opers, CodeWarrior is able to produce executables for older Mac OSes. (http:
//www.metrowerks.com/MW/Develop/CodeWarrior.htm)

For MPI (message passing interface) libraries which are needed to build the parallel
version of (p)IPHULA refer to the Parallel (p)IPHULA section (3.3.1).

13

http://developer.apple.com/macosx/
http://developer.apple.com/macosx/
http://www.metrowerks.com/MW/Develop/CodeWarrior.htm
http://www.metrowerks.com/MW/Develop/CodeWarrior.htm

4 Usage

4.1 Program Execution

In a terminal application (e.g., xterm on Unix/Linux, Terminal.app on Mac OS X,
or the Command Console on Windows) the non-parallel version of (p)IPHULA is called
by typing iphula on the line prompt. The program starts by providing its version
number and general information. It immediately enters the first submenu for setting the
simulation parameters.

****** IPHULA 1.16 (sequential binary) ******

This program makes inference of population history
parameters based on the likelihood of a parameter set
given the number of variable positions in the sample
and the mean pairwise distance.
For more details and reference issues see:
G.Weiss & A.v.Haeseler (1998) Genetics:149, pp.1539-1546

Current parameters of the substitution process:

base frequency of A : 0.327
C : 0.338
G : 0.114
T : 0.221

ts/tv ratio kappa : 15.5
pyr/pur ts ratio xi : 1.85
rate heterogeity : no

Do you want to accept these values for the substitution process?
type ’y’ to accept, ’n’ to change, or ’q’ to abort:

14

4.2 Input/Output Conventions

Extension file content
.iphula report file including results
.matrix output of the θ - τ matrix for each ρ value
.params output of run parameter settings (for associated R-script)

The file types are described in detail below. In the following ”FILEPREFIX” denotes
the prefix, which is either the default name (panel), the name of the input parameter
file given with the -infile option, or explicitely set with the -prefix option.

4.2.1 Program input

The parameter settings for the simulation run are generally entered manually following
the prompts of the menu, no input file is needed. In batch mode the settings can
be entered by piping a text file with the parameter values (the same way you otherwise
would enter them manually) into the program. Such file can also be given to the program
using the -infile commandline option (see section 5.3).

4.2.2 Report file

The report file of pIPHULA (FILEPREFIX.iphula) logs information on the version num-
ber of the program used, date and time of the start of the run as well as the duration of
the run, a summary of the simulation settings and the matrix of the simulation results.

4.2.3 Matrix output

In the θ/τ matrix output files of pIPHULA (FILEPREFIX RHO.matrix) the simulation
results for each ρ value (substituting the RHO term in the file name) can be found. The
values of τ differ over the columns, and for θ along the rows.

τmin ... τmax

θmin

.

.

.
θmax

The first column and row contain the different values of θ and τ respectively, thus,
leaving the upper left field empty. All other fields contain the frequencies of successful
simulation runs. The columns are separated by Tabs.

The matrices are in a format that can be read by the R routine distributed with
pIPHULA for graphical presentation of the results (see section 6.1).

15

4.2.4 Parameter output

The parameter output file (FILEPREFIX.params) summarizes the parameter values of ρ,
θ and τ that define the simulation grid, as well as the number of simulation repeats. This
output file is needed by the R routine for graphical presentation of the results provided
with pIPHULA (see section 6.1).

4.3 Simulation Settings

A (p)IPHULA run is configured through a couple of successive menus. First, one
can change the parameters of the substitution process: base frequencies, transi-
tion:transversion ratio κ, the ratio ξ between pyrimidine and purine transitions, and
the numbers of categories and the shape parameter α for a discrete Γ model. By de-
fault the Jukes-Cantor model is implemented with all base frequencies being equal, equal
transition and transversion rates (i.e., a ts/tv ratio of 0.5), the pyrimidine:purine tran-
sition rate ratio set to 1 and rate homogeneity (At the moment rate heterogeneity is not
implemented yet. Thus, only α = 1 is possible.)

Default parameters of the substitution process:

base frequency of A : 0.250
C : 0.250
G : 0.250
T : 0.250

ts/tv ratio kappa : 0.5
pyr/pur ts ratio xi : 1.00
rate heterogeneity : no

Do you want to accept these values for the substitution process?
type ’y’ to accept, ’n’ to change, or ’q’ to abort:

Next, the dimensions and characteristics of the aligned data set to be simulated need
to be defined, that is, the number of sequences and their lengths. In this step of the
menu also the observed variability in the original data set as reflected by the summary
statistics S (the number of variable positions in the data set) and K (the mean pairwise
distance over all sequences) needs to be entered. K is calculated as the average number
of differences between two sequences in the data set.

Subsequently, the ranges and step sizes of the parameters of population history used in
the simulation have to be set. These values define the position, size and mesh width of the
grid in the parameter space. These parameters are the original equilibrium population
size θ (= k × population size × mutation rate) before the size change event with k = 2
for haploid organisms or organelles and k = 4 for diploid organisms, the point in time
τ at which the population started to change in size (i.e., the time span that passed

16

since the event, scaled by the mutation rate), and ρ calculated as the ratio of the extant
population size to the population size before the population size change event. Note,
that if ρ = 1 (i.e., constant population size, no change), τ remains undefined.

Population history parameter:

The simulations will run on a grid of RHO, THETA and TAU having
- RHO with 8 grid points:

0.001, 0.01, 0.1, 1, 10, 100, 1000, 10000
- THETA with 10 grid points from 1.0 to 10.0
- TAU with 10 grid points from 0.5 to 5.0

Simulate with these grid parameters?
Type ’y’ to accept, ’n’ to change, or ’q’ to abort: y

The parameters can be either changed or the defaults can be selected.
Finally, the number of simulations per grid point (i.e., per set of parameter values) is

chosen and the tolerance limit δ defined. If the difference between the observed value of
K and the simulation result of K is smaller than δ, the simulation result is considered
to be identical to the input value and counted as hit.

Finally all values have to be accepted with y to start the simulation or the parameters
might be corrected at this point.

(p)IPHULA indicates its progess on the screen, compare

Simulating grid position: Rho=0.001000 Theta=1.000000 Tau=0.500000
Simulating grid position: Rho=0.001000 Theta=1.000000 Tau=1.000000
Simulating grid position: Rho=0.001000 Theta=1.000000 Tau=1.500000
...

until it finishes. A report of the run can then be found in the FILEPREFIX.iphula,
output of the results matrices in the files FILEPREFIX RHO.matrix (with RHO being
replaced by the different ρ values used in the simulation) and a summary of the parameter
settings in FILEPREFIX.params.

4.4 Running pIPHULA in Parallel

For those who want to run pIPHULA in parallel, e.g., on a cluster we will exam-
plify briefly how this is done for the MPI implementations LAM-MPI (http://www.
lam-mpi.org) and MPICH (http://www-unix.mcs.anl.gov/mpi/mpich). There are
many (free) MPI implementations (refer to http://en.wikipedia.org/wiki/Message_
Passing_Interface) that all differ to some extent. Hence, we recommend that you con-
tact your local system administrator and read the respective manual carefully.

The following assumes that you are already logged into a cluster node or parallel
computer on with you want to run your parallel IPHULA analysis.

17

http://www.lam-mpi.org
http://www.lam-mpi.org
http://www-unix.mcs.anl.gov/mpi/mpich
http://en.wikipedia.org/wiki/Message_Passing_Interface
http://en.wikipedia.org/wiki/Message_Passing_Interface

4.4.1 Using LAM-MPI

In the following the use of parallel IPHULA is briefly described for a cluster with LAM-
MPI (LAM = Local Area Multicomputer) installed. This description is based on LAM-
MPI’s One-Step Tutorial (http://www.lam-mpi.org/tutorials/one-step/lam.php).

Hostfile:

First one has to generate a hostfile (e.g., lamhosts) containing all machines the parallel
program should run on, say gold, copper, and a 2 processor machine called silver.
Then lamhosts may look like this:

gold
copper cpu=1
silver cpu=2

The cpu option specifies the number of CPUs or cores that may be used on the
respective machine. The cpu option is not necessary if a host has only one CPU/core to
use.

Please ensure that using secure shell (ssh) you can login to all nodes from all other
nodes without a password.

Bootability (optional):

To verify whether the cluster is bootable run:

> recon -v lamhosts
n-1<12583> ssi:boot:base:linear: booting n0 (copper)
n-1<12583> ssi:boot:base:linear: booting n1 (gold)
n-1<12583> ssi:boot:base:linear: booting n2 (silver)
n-1<12583> ssi:boot:base:linear: finished

(The output of the commands might slightly differ due to different setups.)

Boot the cluster:

Start the LAM-cluster with

> lamboot -v lamhosts

LAM 7.0.6/MPI 2 C++/ROMIO - Indiana University

n-1<12585> ssi:boot:base:linear: booting n0 (copper)
n-1<12585> ssi:boot:base:linear: booting n1 (gold)
n-1<12585> ssi:boot:base:linear: booting n2 (silver)
n-1<12585> ssi:boot:base:linear: finished

18

http://www.lam-mpi.org/tutorials/one-step/lam.php

Check the LAM-cluster:

Check whether the cluster runs properly with

> tping -c1 N
1 byte from n0 (o): 0.000 secs

1 message, 1 byte (0.001K), 0.000 secs (7.026K/sec)
roundtrip min/avg/max: 0.000/0.000/0.000

Run parallel IPHULA:

You have to have the MPI-parallel IPHULA executable (mpiiphula in the src folder)
built as described in section 3.3.1. If you have not done this yet, please perform that
step first.

Start the parallel pIPHULA executable preferably with an input file as, for example,
test-input found in the folder data (see section 5.3), since some clusters might not
allow for interactive input. Use a command like:

>mpirun -np 4 mpiiphula -infile=input

The -np option tells the program how many parallel processes it should start on the
LAM-cluster.

For settings, parameters, simulation design, and execution of pIPHULA refer to sec-
tions 4.1, 4.3, and 5.

To start the job in the background using a Bourne shell compatible shell (e.g. sh, ksh,
bash) while collecting all output in a log-file, say output.log start pIPHULA with

>mpirun -np 4 mpiiphula -infile=input > output.log

This usually allows the user to exit the machine while the job remains running.

Monitoring an MPI application:

You can use mpitask and mpimsg to get more information about your running MPI
programs. Please refer to your MPI documentation for more details.

Cleaning LAM:

With lamclean all your processes and messages are removed without rebooting the
LAM-cluster:

> lamclean -v
killing processes, done
closing files, done
sweeping traces, done
cleaning up registered objects, done
sweeping messages, done

19

Then another MPI program like another pIPHULA analysis of a different program
can be started without restarting the LAM-cluster from the beginning.

Terminating the LAM-cluster:

With lamhalt the LAM-cluster is stopped when not needed for further parallel compu-
tation:

> lamhalt

LAM 7.0.6/MPI 2 C++/ROMIO - Indiana University

In case of severe errors like crashes of LAM nodes, lamhalt may hang. Then the
LAM-cluster has to be ’cleaned’ with the wipe command for the same lamhosts file the
LAM-cluster was started with:

> wipe -v lamhosts

LAM 7.0.6/MPI 2 C++/ROMIO - Indiana University

n-1<12597> ssi:boot:base:linear: booting n0 (copper)
n-1<12597> ssi:boot:base:linear: booting n1 (gold)
n-1<12597> ssi:boot:base:linear: booting n2 (silver)
n-1<12597> ssi:boot:base:linear: finished

This removes all hanging jobs.

4.4.2 Using MPICH

In the following the use of parallel IPHULA is briefly described for a cluster with a
MPICH implementation installed (http://www-unix.mcs.anl.gov/mpi/mpich/).

Machinefile:

First one has to generate a machinefile (e.g., hostfile) containing all machines the
parallel program should run on, say gold, copper, and a 2 processor machine called
silver. Then the hostfile will look like this:

gold
copper
silver:2

The value behind the colon (:) specifies the number of CPUs or cores that may be
used on the respective machine. This value is not necessary if a host has only one
CPU/core to use.

Please ensure that using secure shell (ssh) you can login to all nodes from all other
nodes without a password.

20

http://www-unix.mcs.anl.gov/mpi/mpich/

Configure MPD:

If you already configured MPD for your set-up, you might skip this step.
Create the MPD configuration file .mpd.conf in your home directory by running the

following:

cd $HOME
touch .mpd.conf
chmod 600 .mpd.conf

Use any editor to edit the .mpd.conf in your home directory on the cluster. Add the
line

MPD_SECRETWORD=foo123bar

where foo123bar has of course to be replaced by another secret word.

Start MPD:

Start the parallel environment with the command:

> mpd --pid=${HOME}/mpd.pid &

Run parallel IPHULA:

You have to have the MPI-parallel IPHULA executable (mpiiphula in the src folder)
built as described in section 3.3.1. If you have not done this yet, please perform that
step first.

Start the parallel pIPHULA executable preferable with an input file as, for example,
test-input found in the folder data (see section 5.3), since some clusters might not
allow for interactive input. Use a command like:

>mpiexec -maschinefile hostfile -n 4 mpiiphula -infile=input &

The -maschinefile option specifies the location of the above mentioned maschinefile
containing the hosts and CPUs to be used. The -n option tells the program how many
parallel processes it should start on the cluster.

For settings, parameters, simulation design, and execution of pIPHULA refer to sec-
tions 4.1, 4.3, and 5.

To start the job in the background using a Bourne shell compatible shell (e.g. sh, ksh,
bash) while collecting all output in a log-file, say output.log start pIPHULA with

>mpiexec -maschinefile hostfile -n 4 mpiiphula -infile=input > output.log &

This usually allows the user to exit the machine while the job remains running.

21

Killing MPD:

To finish the MPD daemon determine its process ID (PID) which was written into the
file ${HOME}/mpd.pid on startup. Terminate the MPD daemon with the command kill
PID, where PID must be replaced by the process ID given in ${HOME}/mpd.pid. You
may want to remove the PID file with rm ${HOME}/mpd.pid.

22

5 Hints for Running pIPHULA

5.1 Defining the Simulation Grid

The goal of simulations using pIPHULA is to find the maximum likelihood parameter
values for ρ, θ and τ employing a 3-dimensional grid that encloses the global maximum.
The position of this grid in the space of possible parameter values needs to be defined
by the user a priori, however, generally the (approximate) location of the maximum
likelihood peak is unknown. It is thus necessary to explore the likelihood surface and
find the θ and τ ranges that enclose the global maximum likelihood peak in preliminary
runs of the program.

We suggest to start with a ρ value that is likely to represent the demography of the
population under investigation and a widely spaced grid covering a larger range of θ and
τ values for a low number of simulation repeats (e. g. 100 to 1000 repetitions). Subse-
quently, zoom into grid areas of high likelihoods adjusting grid spacing and parameter
ranges to research objectives and computational resources.

5.2 Choosing the Tolerance Limit δ

The likelihood of a specific growth parameter combination is approximated by the fre-
quency with which both S and K are hit by a simulated data set. Possible values of S
are discrete integers, thus a hit is counted if exactly the same number of polymorphic
sites are found in a simulated data set as in the original data set. Since values of K
are continuously distributed, a hit is counted if the difference between the simulated K
value and the observed K value is smaller than δ.

An appropriate value of δ will depend on the characteristics of the analyzed data
set. We suggest to start with the default setting δ = 0.2, perform preliminary pIPHULA
simulations and check the results. If the the proportion of Zeros in the resulting matrices
(FILEPREFIX RHO.matrix) is too high, δ should be increased, if the hit frequencies in
the matrices are too high, reduce δ.

5.3 Batch Mode

Running (p)IPHULA from a Unix batch file is straightforward despite the lack of com-
mand line switches. For this, you have to pipe the parameters to the standard input
of the program. For example, to run (p)IPHULA with a the transition/transversion
parameter equal to 10 the following lines in a shell script are sufficient:

23

iphula << EOF
y
10
200
40
1.2
y
y
10000
2
y
EOF

A second possibility is to create a parameter file, e.g. input containing all input, as
for example (using the above settings)

y
10
200
40
1.2
y
y
10000
2
y

A parameter file defining all parameter settings can be found in the pIPHULA distri-
bution package in data/test-input

Such a parameter file can be piped directly into (p)IPHULA, using iphula < input
or cat input | iphula. You can also tell (p)IPHULA to read in a command file via a
command line flag: iphula -infile=input.

If the simulation parameters are typed or piped into the program, the results will be
written by default to files with the filename base ”panel” (e.g. panel.iphula). If a
command file is given via the -infile option as above, the file is named following the
above example input.iphula. By default the prefix is identical to the infile’s name
but can also be changed at the command line using the -prefix=PREFIX option. Then
PREFIX is the base of the output file names used to append the extensions, e.g. if
-prefix=input then the record file will be called input.iphula.

Started as described above, (p)IPHULA will still print its status messages to the
standard output. If this behavior is not wanted, e.g., when running a batch job in the
background, the the output can be piped into a separate file like iphula.log by adding
’> iphula’ at the commandline. The command
iphula < input > iphula.log &

24

for example will run IPHULA with the content of the file input as input in the
background. All status messages will end up in iphula.log.

25

6 Supporting Programs and Scripts

6.1 Graphical Output

An (incomplete) list of programs supporting pIPHULA by providing graphical presen-
tation of results:

R: a free software environment for statistical computing and graphics that runs under
UNIX/Linux, Mac OS X, and Windows (http://www.r-project.org).

As part of the pIPHULA distribution package the R routine Plot-Iphula.R
is distributed and can be found in R-scripts/Plot-Iphula.R. On UNIX and
Mac OS X operating systems the routine can also be run via a shell script
(R-scripts/plot-iphula.sh).

Extension file content
.matrix input containing the θ - τ matrix for each ρ value
.params input of run parameter settings
.LNmatrix output of the θ - τ matrix for each ρ

transformed into ln likelihood values
.pdf graphical output of the results per ρ value in pdf format
all.pdf compilation of all ρ graphics on one or more pages
max list.txt lists of likelihood maxima per ρ and over all parameters

The routine uses input from the files FILEPREFIX RHO.matrix and
FILEPREFIX.params. All input files need to be situated in the same directory as
the routine.

To apply Plot-Iphula.R to your output data, start the statistics program R, load the
routine with

source("/path/to/routine/Plot-Iphula.R")

and execute it:

plot.iphula(FILEPREFIX)

The shell script can also be called directly from the commandline by navigating to the
directory with the shell script and typing

./plot-iphula.sh FILEPREFIX

26

http://www.r-project.org

First, the approximate likelihood values (frequency data) output by (p)IPHULA
(FILEPREFIX RHO.matrix files) are transformed into ln likelihoods and the resulting
matrices are saved as FILEPREFIX RHO.LNmatrix files.

The ln likelihood results for each ρ value are then plotted as panels. These pan-
els are on one hand saved individually as pdf files(FILEPREFIX RHO.pdf). On the
other hand up to six panels are compiled onto one page and saved in a single pdf
file (FILEPREFIX all.pdf). The ln likelihood for a specific parameter combination ρ,
θ and τ can be represented in either a gray-scale plot (black = high likelihood) or a
heat plot ranging from blue to red colors. Blue colors stand for low likelihoods, white
for intermediate and red for high likelihoods. To switch between gray-scale and color
output, you need to comment the appropriate image commands in the R code in and
out, respectively. The colors in all plates resulting from a pIPHULA run are represented
relatively to the maximum likelihood value across all parameter settings (i. e. also across
panels = ρ values). Fig. 6.1 gives an example output of plot-iphula.R for a pIPHULA
run with six ρ settings.

Finally, a text file is generated that provides the maximum likelihood value(s) and
its/their parameter settings per panel (i.e. ρ) and over all parameters.

6.2 Compilers and Other Software

A list of available compilers is provided in section 3.4. Links to lists of implementa-
tions of the Message Passing Interface (MPI) library for parallel computing are given in
section 3.3.1.

27

rho = 0.1 max = −9.21044

Theta

T
au

0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

rho = 1 max = −9.21034

Theta

T
au

0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2

rho = 10 max = −4.55638

Theta

T
au

0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

rho = 100 max = −3.571986

Theta

T
au

0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

rho = 1000 max = −3.733877

Theta

T
au

0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

rho = 10000 max = −4.60517

Theta

T
au

0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

Figure 6.1: ln likelihood surface of the gene accn2 for a sample of European humans
(darker = higher likelihoods). 28

7 (p)IPHULA References and Further
Reading

For a more extensive description of the theory behind the population size change model
used in pIPHULA and the implementation of the simulations we recommend to refer to

Weiss, G. and A. von Haeseler (1998) Inference of Population History Using
a Likelihood Approach. Genetics, 149, 1539-1546.

This paper also describes an application of the previous non-parallel version of
(p)Iphula that might provide further insight into possible analysis with the (p)IPHULA
program.

29

8 Acknowledgments and Credits

We would like to thank Gunter Weiss for providing helpful comments on the IPHULA
code. AvH and JB were supported by a grant of the Deutsche Forschungsgemein-
schaft (DFG Ha 1628/7-1). HAS and AvH acknowledge financial support by the Wiener
Wissenschafts-, Forschungs- und Technologiefonds (WWTF).

As a scalable random number generator we use source code from the SPRNG (Scalable
Pseudo Random Number Generator) library (Mascagni and Srinivasan, 2000).

30

Bibliography

Dagum, L. and Menon, R. (1998) OpenMP: An industry-standard API for shared-
memory programming. IEEE Comput. Sci. Eng., 5, 46–55.

Griffiths, R. C. and Tavaré, S. (1994) Sampling theory for neutral alleles in a varying
environment. Phil. Trans. R. Soc. Lond. B, 344, 403–410.

Gropp, W., Huss-Lederman, S., Lumsdaine, A., Lusk, E., Nitzberg, B., Saphir, W. and
Snir, M. (1998) MPI: The Complete Reference - The MPI Extensions, volume 2. 2nd
edition, The MIT Press, Cambridge, Massachusetts.

Mascagni, M. and Srinivasan, A. (2000) SPRNG: A scalable library for pseudorandom
number generation. ACM Trans. Math. Software, 26, 436–461.

Snir, M., Otto, S. W., Huss-Lederman, S., Walker, D. W. and Dongarra, J. (1998) MPI:
The Complete Reference - The MPI Core, volume 1. 2nd edition, The MIT Press,
Cambridge, Massachusetts.

Weiss, G. and von Haeseler, A. (1998) Inference of population history using a likelihood
approach. Genetics, 149, 1539–1546.

31

9 Known Bugs

If you observe any strange behavior or other bugs please contact the devel-
opers!

32

10 Version History

pIPHULA 1.16 first official release of (p)IPHULA.

• PDF Manual added.

• R-scripts included to produce graphics from (p)IPHULA results.

• Changes in the output format.

• Several minor changes and bug fixes.

pIPHULA 1.10 first pre-release of (p)IPHULA.

pIPHULA 1.x improved and parallelized version of IPHULA.

IPHULA first implementation of the WvH98 model to infer parameters of populations
history as described in Weiss and von Haeseler (1998).

33

	Legal Stuff
	Introduction
	Installation
	UNIX/Source Distribution
	Binary Distributions
	Linux
	Mac OS X
	Older Mac OSes
	Windows 95/98/NT/etc.

	Compilation for Parallel Implementation
	MPI-Parallel (p)IPHULA
	OpenMP-Parallel (p)IPHULA

	ANSI/ISO C Compilers

	Usage
	Program Execution
	Input/Output Conventions
	Program input
	Report file
	Matrix output
	Parameter output

	Simulation Settings
	Running pIPHULA in Parallel
	Using LAM-MPI
	Using MPICH

	Hints for Running pIPHULA
	Defining the Simulation Grid
	Choosing the Tolerance Limit
	Batch Mode

	Supporting Programs and Scripts
	Graphical Output
	Compilers and Other Software

	(p)IPHULA References and Further Reading
	Acknowledgments and Credits
	Known Bugs
	Version History

