Phylogeny Reconstruction

Center for Integrative Bioinformatics Vienna (CIBIV)

Max F. Perutz Laboratories (MFPL)
Vienna, Austria

Phylogeny Reconstruction

Charles Darwin: Evolutionary Relationships

Then ketones $A \times D$. cations
H2 f what. $C \times B \cdot \pi$
first predation, \mathbb{B} a D
wither greater enituckere
Then forme woes he
frons. - benny when

Charles Darwin (1809-1882)

Phylogeny Reconstruction

Ernst Haeckel: Evolutionary Trees

Notes
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Notes

Theodosius Dobzhansky: The Light of Evolutionary

Notes

Nothing in Biology Makes Sense Except in the Light of Evolution.

Dobzhansky, 1973

Theodosius Dobzhansky (1900-1975)

Some Notation

Note: branch $=$ edge $=$ split, external node $=$ leaf $=$ taxon are used interchangebly.

Main Types of Phylogenetic Methods

Data	Method	Evaluation Criterion
Characters (Alignment)	$\left\{\begin{array}{cc}\text { Maximum Parsimony } & \text { Parsimony } \\ \text { Statistical Approaches: } \\ \text { Likelihood, Bayesian } \\ \text { Distances } & \text { Distance Methods }\end{array}\right\}$	Evolutionary Models

William of Ockham: The Law of Parsimony

Occam's Razor (law of parsimony) states:

Pluralitas non est ponenda sine necessitate.

Plurality should not be posited without necessity.

The principle gives precedence to simplicity; of two competing theories, the simplest explanation of an entity is to be preferred.

Notes

Phylogeny Reconstruction

Maximum Parsimony

taxon	1	2	3	4	5	6	7	8	9
$1:$	C	G	C	A	C	T	G	T	T
$2:$	C	G	C	A	C	T	G	T	T
3:	T	G	A	A	C	T	G	C	T
$4:$	C	G	G	A	C	T	G	C	T
	\Uparrow		\Uparrow					\Uparrow	

Tree a: ((1,2),(3,4))

Tree c: ((1,4),(2,3))

Phylogeny Reconstruction

Parsimony Informative Sites

We have seen that not all variable columns are informative for the parsimony reconstruction.
To be an informative site for the parsimony principle the column has to contain at least two different character states, and for at least two of these states have to occur at least twice.

Notes
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Maximum Parsimony: Fitch's (1970) algorithm

Note: We need 1 substitution per union in tree T (tree-length $=$ substitutions needed).
(1) Initialize state set S_{k} at each leaf k with the characters from the alignment.
(2) Construct the state sets of all internal leaves in a post-order-traversal starting a the root.
(3) Let k be the current node and i, j its decendents, then build the intersection of S_{i} and S_{j} :

- If $S_{i} \cap S_{j}$ non-empty: set $S_{k}=S_{i} \cap S_{j}$,
- if $S_{i} \cap S_{j}$ empty: set $S_{k}=S_{i} \cup S_{j}$ and increase the tree-length by 1 .
(9) Continue with the traversal until you have reconstructed the state set $S_{\text {root }}$ of the root of T. If we have a sequence for the root, repeat Step 3 for the its character and $S_{\text {root }}$.

Notes
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Notes
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Notes
\qquad
\qquad
\qquad
\qquad
\qquad

Notes

Ideally we would evaluate all trees and take the one(s) with the lowest tree-length.
However, there are too many trees. This problem affects almost every method that aims to find trees with optimal score.
So we need other strategies (which we will see later).

Problems with Parsimony

- Parsimony is often considered model-free. This is not entirely correct.
- One has no choice of a model, but nevertheless the algorithm assumes a very simple model.
- Parsimony assumes that substitutions are rare and that back-mutations do not occur.
- Although this was often true for morphological data, it is certainly not true for distantly related DNA sequences which only have four character states.

Distance-based methods

Notes

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Notes
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Aim: Find branch lengths v_{b} such that the sum of the branch lengths connecting any two leaves gets close to the measured distances between all pairs of leaves. That is, for instance

$$
d_{A, D}^{\text {measured }}=v_{1}+v_{2}+v_{3}+v_{4}
$$

Distance Methods: UPGMA

One possibility are clustering methods like UPGMA = Unweighted Pair Group Methods using Arithmetic means.

	A	B	C	D
A	0	6	7	13
B	6	0	8	14
C	7	8	0	11
D	13	14	11	0

Distance Methods: Clustering Methods

- Clustering methods well, if sequences evolve according to a molecular clock
- or equivalently: if the ultrametric inequality

$$
D_{A B} \leq \max D_{A C}, D_{B C}
$$

holds for each triple (A, B, C).

- Then the data is ultrametric, that means according to a molecular clock.

Notes
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Notes

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Distance Methods: Four-point Condition

- On the other hand, a distance matrix D can only be presented as a tree, if and only if the Four-Point-Condition

$$
d_{u v}+d_{x z} \leq \max \left(d_{u x}+d_{v z}, d_{u z}+d_{v x}\right)
$$

holds for all orderings of four taxa u, v, x, z.

- Or equivalently:
- For all sets of four taxa there exists a labelling of the elements, say A, B, C, D such that

$$
\left.d_{A B}+d_{C D} \leq d_{A C}+d_{B D}=d_{A D}+d_{B C}\right)
$$

- This means, that the distance matrix is additive, i.e. it fits fits one tree.

Distance Methods: Neighbor Joining (NJ)

A widely used distance method is Neighbor-Joining:

1 begin with a start tree:

2 compute for each pair 1,2 the net-divergence

$$
\frac{1}{2(N-2)} \sum_{k=3}^{N}\left(D_{1 k}+D_{2 k}\right)+\frac{1}{2} D_{12}+\frac{1}{N-2} \sum_{3 \leq i<j} D_{i j} .
$$

3 Choose the pair (A, B) that minimizes this equation.

Phylogeny Reconstruction

Distance Methods: Neighbor Joining (NJ)

4 cluster (A, B) and define an interior node W :

5 compute the branch lengths for the external edges:

$$
\begin{aligned}
v_{A W} & =\frac{1}{2}\left(D_{A B}+\frac{1}{m-2} \sum_{k=1}^{m}\left(D_{A k}-D_{B k}\right)\right) \\
v_{B W} & =\frac{D_{A B}}{2}-v_{A W} .
\end{aligned}
$$

Notes
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Notes
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Notes
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Notes

6 compute distance W to the remaining $\mathrm{m}-2$ leaves:

$$
\left.D_{W k}=\frac{1}{2}\left(d_{A k}+D_{B k}-D_{A B}\right)\right)
$$

7 continue with the reduced set of leaves

Distance Methods: The NJ Tree Step-by-step

The algorithm is repeated until the tree is fuly resolved:
1.
2.

3.

4.

Notes

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

- Aim: Find the tree T that minimizes the squared error:

$$
E(T)=\sum_{i=1}^{N-1} \sum_{j=i+1}^{N}\left(d_{i j}-\rho_{i j}\right)^{2}
$$

where $\rho_{i, k}$ is the length of the unique path in T connecting leaves i and k.

Notes

\qquad
\qquad
\qquad
\qquad
\qquad

Distance Methods: Least Square

$$
\begin{aligned}
& d_{12}=b_{1}+b_{2} \\
& d_{13}=b_{1}+\quad b_{3}+\quad b_{6} \\
& d_{14}=b_{1}+\quad b_{4}+\quad b_{6}+b_{7} \\
& d_{15}=b_{1}+\quad b_{5}+b_{6}+b_{7} \\
& d_{23}=b_{2}+b_{3}+\quad b_{6} \\
& d_{24}=b_{2}+b_{4}+b_{6}+b_{7} \\
& d_{25}=b_{2}+\quad b_{5}+b_{6}+b_{7} \\
& d_{34}=\quad b_{3}+b_{4}+\quad b_{7} \\
& d_{35}=\quad b_{3}+b_{5}+\quad b_{7} \\
& 4_{45}=\quad b_{4}+b_{5}
\end{aligned}
$$

Phylogeny Reconstruction

Distance Methods: Least Square

$$
d=A b
$$

$$
\begin{aligned}
& d_{12}=b_{1}+b_{2} \\
& d_{13}=b_{1}+\quad b_{3}+\quad b_{6} \\
& d_{14}=b_{1}+\quad b_{4}+\quad b_{6}+b_{7} \\
& d_{15}=b_{1}+\quad b_{5}+b_{6}+b_{7} \\
& d_{23}=b_{2}+b_{3}+\quad b_{6} \\
& d_{24}=b_{2}+\quad b_{4}+\quad b_{6}+b_{7} \\
& d_{25}=b_{2}+\quad b_{5}+b_{6}+b_{7} \\
& d_{34}=\quad b_{3}+b_{4}+\quad b_{7} \\
& d_{35}=\quad b_{3}+\quad b_{5}+\quad b_{7} \\
& 4_{45}=\quad b_{4}+b_{5}
\end{aligned}
$$

Notes
\qquad
\qquad
\square
\qquad
\qquad
\qquad
\qquad

Notes

\qquad
\qquad
\qquad
\longrightarrow
$A=$
$\left[\begin{array}{lllllll}1 & 1 & 0 & 0 & 0 & 0 & 0 \\ 1 & 0 & 1 & 0 & 0 & 1 & 0 \\ 1 & 0 & 0 & 1 & 0 & 1 & 1 \\ 1 & 0 & 0 & 0 & 1 & 1 & 1 \\ 0 & 1 & 1 & 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 & 0 & 1 & 1 \\ 0 & 1 & 0 & 0 & 1 & 1 & 1 \\ 0 & 0 & 1 & 1 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 & 1 & 0 & 1 \\ 0 & 0 & 0 & 1 & 1 & 0 & 0\end{array}\right]$

Distance Methods: Least Square Estimate

For

$$
\begin{gathered}
d=A b \\
\left(\begin{array}{l}
\rho_{12} \\
\rho_{13} \\
\rho_{14} \\
\rho_{15} \\
\rho_{23} \\
\rho_{24} \\
\rho_{25} \\
\rho_{34} \\
\rho_{35} \\
\rho_{45}
\end{array}\right)=\left[\begin{array}{lllllll}
1 & 1 & 0 & 0 & 0 & 0 & 0 \\
1 & 0 & 1 & 0 & 0 & 1 & 0 \\
1 & 0 & 0 & 1 & 0 & 1 & 1 \\
1 & 0 & 0 & 0 & 1 & 1 & 1 \\
0 & 1 & 1 & 0 & 0 & 1 & 0 \\
0 & 1 & 0 & 1 & 0 & 1 & 1 \\
0 & 1 & 0 & 0 & 1 & 1 & 1 \\
0 & 0 & 1 & 1 & 0 & 0 & 1 \\
0 & 0 & 1 & 0 & 1 & 0 & 1 \\
0 & 0 & 0 & 1 & 1 & 0 & 0
\end{array}\right] \cdot\left(\begin{array}{l}
b_{1} \\
b_{2} \\
b_{3} \\
b_{4} \\
b_{5} \\
b_{6} \\
b_{7}
\end{array}\right)
\end{gathered}
$$

Notes
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
with d, ρ : distance vectors, b : branch length vector
If the distances are additive, then $\rho_{i j}=d_{i j}$ and we can solve it directly.

Distance Methods: Least Square Estimate

For

$$
d=A b
$$

If they are not additive we try to minimize the square differences (i.e., least square error) between d and ρ :

$$
E=\sum_{i=1}^{N-1} \sum_{j=i+1}^{N}\left(d_{i j}-\rho_{i j}\right)^{2}
$$

The least square solution \hat{b} for this can be obtained mathematically using Matrix operations:

$$
\hat{b}=\left(A^{t} A\right)^{-1} A^{t} d
$$

How to get distances?

Distances can be computed in various way...
Usually via Maximum Likelihood.

Introduction: ML on Coin Tossing

Given a box with 3 coins of different fairness ($\frac{1}{3}, \frac{1}{2}, \frac{2}{3}$ heads)
We take out one coin an toss 20 times:

$$
H, T, T, H, H, T, T, T, T, H, T, T, H, T, H, T, T, H, T, T
$$

$$
\begin{aligned}
\text { Probability } & \text { Likelihood } \\
p(k \text { heads in } n \text { tosses } \mid \theta) \equiv & L(\theta \mid k \text { heads in } n \text { tosses }) \\
= & \binom{n}{k} \theta^{k}(1-\theta)^{n-k} \\
& \text { (here binomial distribution) }
\end{aligned}
$$

Aim: The ML approach seaches for that parameter set θ for the generating process which maximizes the probability of our given data.

Hence, "likelihood flips the probability around."

Three coin case
$L\left(\theta \mid 7\right.$ heads in 20) $=\binom{20}{7} \theta^{7}(1-\theta)^{13}$
for each $\operatorname{coin} \theta \in\left\{\frac{1}{3}, \frac{1}{2}, \frac{2}{3}\right\}$

For infinitely many coins
$\theta=(0 \ldots 1)$
ML estimate: $L(\hat{\theta})=0.1844$ where coin shows $\hat{\theta}=0.35$ heads

From Coins to Phylogenies?

While the coin tossing example might look easy, in phylogenetic analysis, the parameter (set) θ comprises:

- evolutionary model
- its parameters
- tree topology
- its branch lengths

That means, a high dimensional optimization problem.
Hence, some parameters are often estimated/set separately.

Modeling Evolution

- Evolution is usually modeled as a
stationary, time-reversible Markov process.
- What does that mean?

Assumptions on Evolution

Markov Process

The (evolutionary) process evolves without memory, i.e. sequence S_{2} mutates to S_{3} during time t_{n+1} independent of state of S_{1}.

Notes

Assumptions on Evolution

Stationary:

The overall character frequencies π_{j} of the nucleotides or amino acids are in an equilibrium and remain constant.

Time-Reversible:

Mutations in either direction are equally likely

$$
\pi_{i} \cdot P_{i j}(t)=P_{j i}(t) \cdot \pi_{j}
$$

This means a mutation is as likely as its back mutation.

$$
P(i \rightarrow j)=P(i \leftarrow j) \quad \text { (JC69) }
$$

Substitution Models

Evolutionary models are often described using a substitution rate matrix R and character frequencies Π. Here, 4×4 matrix for DNA models:

$$
\begin{gathered}
R=\left(\begin{array}{cccc}
A & C & G & T \\
- & a & b & c \\
a & - & d & e \\
b & d & - & f \\
c & e & f & -
\end{array}\right) \\
\Pi=\left(\pi_{A}, \pi_{C}, \pi_{G}, \pi_{T}\right)
\end{gathered}
$$

From R and Π we reconstruct a substitution probability matrix P, where $P_{i j}(t)$ is the probability of changing $i \rightarrow j$ in time t.

Relations between DNA models

Further modification:
rate heterogeneity: invariant sites, Г-distributed rates, mixed.

Protein Models

Generally this is the same for protein sequences, but with 20×20 matrices. Some protein models are:

- Poisson model ("JC69" for proteins, rarely used)
- Dayhoff (Dayhoff et al., 1978, general matrix)
- JTT (Jones et al., 1992, general matrix)
- WAG (Whelan \& Goldman, 2000, more distant sequences)
- VT (Müller \& Vingron, 2000, distant sequences)
- mtREV (Adachi \& Hasegawa, 1996, mitochondrial sequences)
- cpREV (Adachi et al., 2000, cloroplast sequences)
- mtMAM (Yang et al., 1998, Mammalian mitochondria)
- mtART (Abascal et al., 2007, Arthropod mitochondria)
- rtREV (Dimmic et al., 2002, reverse transcriptases)
- ...
- BLOSUM 62 (Henikoff \& Henikoff, 1992) \rightarrow for database searching

Computing ML Distances Using $\mathbf{P}_{\mathrm{ij}}(\mathbf{t})$

The Likelihood of sequence s evolving to s^{\prime} in time t :
$L\left(t \mid s \rightarrow s^{\prime}\right)=\prod_{i=1}^{m}\left(\Pi\left(s_{i}\right) \cdot P_{s_{i} s_{i}^{\prime}}(t)\right)$
Likelihood surface for two sequences under JC69:

GATCCTGAGAGAAATAAAC $=s^{\prime}$
GGTCCTGACAGAAATAAAC $=s$
Note: we do not compute the probability of the distance t but that of the data $D=\left\{s, s^{\prime}\right\}$.

Notes
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Notes
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Computing Likelihood Values for Trees

Given a tree with branch lengths and sequences for all nodes, the computation of likelihood values for trees is straight forward.
Unfortunately, we usually have no sequences for the inner nodes (ancestral sequences).
Hence we have to evaluate every possible labeling at the inner nodes:
for every column in the alignment. . . but there is a faster algorithm.

Likelihoods of Trees (Single alignment column, given tree)

For a single alignment column and a given tree:

$$
\text { A } 0.00098
$$

\[
$$
\begin{gathered}
\mathrm{A} 0.00098 \\
\hline \mathrm{C} 0.02848 \\
\hline \mathrm{C} \\
\hline 0.028244
\end{gathered}
$$

\] | T | 0.02844 |
| :--- | :--- |

Notes
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Notes
\qquad
\qquad
\qquad
\longrightarrow
\qquad
\qquad
\qquad

Notes

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Likelihoods of Trees (Single alignment column, given tree)

For a single alignment column
Likelihoods of nucleotides i at inner nodes:

$$
\begin{aligned}
& L_{5}(i)=\left[P_{i C}\left(d_{1}\right) \cdot L(C)\right] \cdot\left[P_{i G}\left(d_{2}\right) \cdot L(G)\right] \\
& L_{6}(i)=\prod_{v=\{2,3,4\}}\left[\sum_{j=\{A C G T\}} P_{i j}\left(d_{v}\right) \cdot L_{v}(j)\right]
\end{aligned}
$$

Site-Likelihood of an alignment column k :

$$
\begin{align*}
& L^{(k)}=\sum_{i=\{A C G T\}} \pi_{i} \cdot L_{6}(i)=0.005489 \\
& \quad \text { with all } d_{x}=0.1 \text { and } P_{i j}(0.1)= \begin{cases}.91 & i \neq j \\
.03 & i=j\end{cases} \tag{JC}
\end{align*}
$$

Phylogeny Reconstruction

Likelihoods of Trees (multiple columns)

Considering this tree with $n=3$ sequences of length $m=3$ the tree likelihood of this tree is

$$
\begin{aligned}
\mathcal{L}(T)=\prod_{k=1}^{m} L^{(k)} & =0.047554^{2} \cdot 0.024323 \\
& =0.000055
\end{aligned}
$$

or the log-likelihood

$$
\ln \mathcal{L}(T)=\sum_{k=1}^{m} \ln L^{(k)}=-9.80811
$$

Phylogeny Reconstruction

Adjusting Branch Lengths Step-By-Step

To compute optimal branch lengths do the following. Initialize the branch lengths.
Choose a branch (A.). Move the virtual root to an adjacent node (B.). Compute all partial likelihoods recursively (C.). Adjust the branch length to maximize the likelihood value (D.).

Repeat this for every branch until no better likelihood is gained.

Notes
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Notes
\qquad
\qquad
\qquad
\longrightarrow
\qquad
\qquad
\qquad

Notes

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

$B(n)=\frac{(2 n-5)!}{2^{n-3}(n-3)!}$
$B(10)=2027025$
$B(55)=2.98 \cdot 10^{84}$
$B(100)=1.70 \cdot 10^{182}$

(B) (A) CB

(C) (A)

(C) (A) C

Phylogeny Reconstruction

Finding the ML Tree

Exhaustive Search: guarantees to find the optimal tree, because all trees are evaluated, but not feasible for more than 10-12 taxa.
Branch and Bound: guarantees to find the optimal tree, without searching certain parts of the tree space - can run on more sequences, but often not for current-day datasets.
Heuristics: cannot guarantee to find the optimal tree, but are at least able to analyze large datasets.

Notes

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Build up a tree: Stepwise Insertion

Notes

\qquad
\qquad
\qquad
\qquad
\qquad
Is also used for other (non-ML) methods like parsimony.

Local Maxima

What if we have multiple maxima in the likelihood surface?

Tree rearrangements to escape local maxima.

Phylogeny Reconstruction

Tree Rearrangements: Scanning a Tree's Neighborhood

From a current tree construct other trees by rearranging its subtrees and evaluates all resulting trees. Repeat with the best tree found, until no better tree can be found. This also used for other (non-ML) methods, like parsimony.

Phylogeny Reconstruction

How reliable is the reconstructed tree:

- Usually programs deliver a single (best) tree, but without confidence values for the subtrees.
- How can we assess reliability for the subtree?

Notes
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Notes
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Notes

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Bootstrap and Consensus Tree

- Bootstrapping creates many pseudo-alignments by sampling alignment columns with replacement from the original alignment.
- From the pseudo-alignment we reconstruct trees.
- From the tree we collect and count all splits.
- From the splits we construct a consensus tree.
- Definition: A split $A \mid B$ in the tree is the bipartition of the leaves/taxa into two subsets A and B induced by removing an edge or branch from the tree.
- Definition: Two splits $A \mid B$ and $C \mid D$ are compatible, i.e. not contradictory, if at least one intersection of $A \cap C, A \cap D, B \cap C$, $B \cap D$ is empty.

Estimating Confidence: The Bootstrap

Phylogeny Reconstruction

Summarizing Trees: Consensus Methods

- Strict consensus: contains all splits occuring in all input tree.
- Semi-strict consensus: contains all splits which are not contradicted by any tree.
- Majority consensus M_{ℓ} : contains all splits which occur in more than ℓ input trees, where $\ell \geq 50 \%$ typically exactly 50%.

Notes

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Notes
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Notes

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

