Leipzig School of Human Origins Course on 'Phylogeny Reconstruction' (04.-08.05.2007)

Final Exam - 08.06.2007

Name:	
Vorname:	

1. What is the alignment score of the following alignment using the scoring function:

 $s(a,b) = \begin{cases} +5 & \text{if } a = b \text{ (match)} \\ -2 & \text{if } a \neq b \text{ (mismatch)} \\ -6 & \text{if } a \text{ or } b \text{ indel (gap)} \end{cases}$ sequence 1: G C T C G T A sequence 2: - - T C A T A

2. Why can the inclusion of paralogous sequences make phylogenetic analysis for the relationship of species fail? (2-4 sentences)

3. What is the difference between transitions and transversions? (1-2 sentences)

1	\mathbf{P}

- 4. Order the following evolutionary models by their complexity (i.e., number of parameters)?
 - $GTR+\Gamma$ (General-time-reversible+ Γ -distributed rate heterogeneity)
 - HKY85 (Hasewawa,Kishino,Yano)
 - GTR
 - JC69 (Jukes-Cantor)

- 5. Which of the following tree-reconstruction methods are using (explicit) models of sequence evolution?
 - Maximum Parsimony
 - Neighbor Joining
 - Least Square
 - Maximum Likelihood
- 6. Does the following distance matrix representable as a tree?

Hint: four-point condition: $d(uv) + d(xy) \le d(ux) + d(vy) = d(uy) + d(vx)$

	A	В	\mathbf{C}	D
Α	0	8	5	11
В		0	9	5
\mathbf{C}			0	12
D				0

3 P

1 P

- 7. For the alignment below do the following:
 - a) Mark all informative sites.
 - b) Draw the maximally parsimonious tree.
 - c) Compute the 'length' of the tree, i.e., the number of mutations needed.

All mutations are counting 1, equally.

seq1:	G	G	Α	Α	\mathbf{C}	G	А	Т	Т	А
seq2:	G	Α	Α	Α	\mathbf{C}	Т	\mathbf{C}	Т	С	А
seq3:	G	Α	А	\mathbf{C}	\mathbf{C}	Т	\mathbf{C}	Т	\mathbf{C}	Α
seq4:	\mathbf{G}	G	А	\mathbf{C}	\mathbf{C}	Т	А	Т	Т	А

- 8. Assign the following terms to their proper locations in the tree.
 - a) leaf
 - b) external branch
 - c) root
 - d) multifurcation
 - e) inner node

9. From gene A you reconstruct a tree with log-likelihood -2534.3. Phylogenetic inference from gene B produced a tree with log-likelihood -753.7. Are these two likelihoods comparable?

- 10. How many mutations are expected to have occurred in a sequence of 200nt along a branch of length 0.15?
- 11. What is the main differences between the maximum likelihood approach and Bayesian inference in phylogeny reconstruction? (2-5 sentences)

- 12. Does a higher α -value (shape parameter) in a Γ -distribution mean more rate homogeneity or more rate heterogeneity.
- 13. A bootstrap analysis produced the following splits in the according percentages of trees:

3	\mathbf{P}

1 P

1 P

ABC DEF	100%
AB CDEF	60%
ABCF DE	45%
AC BDEF	40%
ABCD EF	35%
ABCE DF	25%

Construct and draw the the 50%-majority rule consensus and the strict consensus.

14. The following plot shows the log-likelihoods of the sampled trees from a Bayesian analysis. Mark the minimum length of the burn-in in the diagram. Is this a definite decision? (1 sentence)

