Leipzig School of Human Origins Course on
'Phylogeny Reconstruction' (04.-08.05.2007)
Final Exam - 08.06.2007

Name:	
Vorname:	

1. What is the alignment score of the following alignment using the scoring function:

$$
s(a, b)= \begin{cases}+5 & \text { if } a=b \text { (match) } \\ -2 & \text { if } a \neq b \text { (mismatch) } \\ -6 & \text { if } a \text { or } b \text { indel (gap) }\end{cases}
$$

sequence 1:	G	C	T	C	G	T	A
sequence 2:	-	-	T	C	A	T	A

2. Why can the inclusion of paralogous sequences make phylogenetic analysis for the relationship of species fail? (2-4 sentences)
3. What is the difference between transitions and transversions? (1-2 sentences)
4. Order the following evolutionary models by their complexity (i.e., number of parameters)?

- GTR $+\Gamma$ (General-time-reversible $+\Gamma$-distributed rate heterogeneity)
- HKY85 (Hasewawa,Kishino,Yano)
- GTR
- JC69 (Jukes-Cantor)

5. Which of the following tree-reconstruction methods are using (explicit) models of sequence evolution?Maximum ParsimonyNeighbor JoiningLeast SquareMaximum Likelihood
6. Does the following distance matrix representable as a tree?

Hint: four-point condition: $d(u v)+d(x y) \leq d(u x)+d(v y)=d(u y)+d(v x)$

	A	B	C	D
A	0	8	5	11
B		0	9	5
C			0	12
D				0

7. For the alignment below do the following:
a) Mark all informative sites.
b) Draw the maximally parsimonious tree.
c) Compute the 'length' of the tree, i.e., the number of mutations needed.

All mutations are counting 1 , equally.

seq1:	G	G	A	A	C	G	A	T	T	A
seq2:	G	A	A	A	C	T	C	T	C	A
seq3:	G	A	A	C	C	T	C	T	C	A
seq4:	G	G	A	C	C	T	A	T	T	A

8. Assign the following terms to their proper locations in the tree.
a) leaf
b) external branch
c) root
d) multifurcation
e) inner node

9. From gene A you reconstruct a tree with log-likelihood -2534.3 . Phylogenetic inference from gene B produced a tree with log-likelihood -753.7 . Are these two likelihoods comparable?
10. How many mutations are expected to have occurred in a sequence of 200 nt along a branch of length 0.15 ?
11. What is the main differences between the maximum likelihood approach and Bayesian inference in phylogeny reconstruction? (2-5 sentences)
12. Does a higher α-value (shape parameter) in a Γ-distribution mean more rate homogeneity or more rate heterogeneity.
13. A bootstrap analysis produced the following splits in the according percentages of trees:

$A B C \mid D E F$	100%
$A B \mid C D E F$	60%
$A B C F \mid D E$	45%
$A C \mid B D E F$	40%
$A B C D \mid E F$	35%
$A B C E \mid D F$	25%

Construct and draw the the 50\%-majority rule consensus and the strict consensus.
14. The following plot shows the log-likelihoods of the sampled trees from a Bayesian analysis. Mark the minimum length of the burn-in in the diagram. Is this a definite decision? (1 sentence)

