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Bootstrapping (Efron, 1979)

Bootstraps

Usually when we estimate some parameter from data, we have
some measure of variability, i.e., mean and standard deviation.
We want to be able to do the same with trees.
The bootstrap is a general statistical method that can be used in
this case.

Nonparametric bootstrap, just re-samples the alignment.
Parametric bootstrap uses model parameters to generate replicate
data.

Bayesian methods usually get this for “free” because we already
have a large set of trees that represent potions in the posterior
density.

Pros and Cons

Pros
Established statistical method.
Simple to implement.
Studies indicate that it’s quite
conservative.

Cons
Results have no convenient
interpretation. ie 50% support
does not mean 50%
probability.
Some strong assumptions are
imposed on the data. ie iid.
Relies on the fact that the data
sample we are using is
representative of entire
“population” of data.

Bootstrap flow

Estimate a ML tree and the model parameters θ.
From the data/or estimate generate replicate data sets.
For each replicate data set estimate a replicate ML tree.
Combine the replicate ML trees into some kind of consensus tree.

Nonparametric Bootstrap

Nonparametric bootstrap samples the alignment with
replacement.

A site, or column in the alignment is picked at random.
This column of sequence data is placed into the replicate alignment.
Some columns will appear more than once in the replicate
alignment.
Other columns will not appear at all.

Requires that the data is i.i.d. across sites.

Original Data

A C A C G C T T T A
A G A T G C T T A A
A C C C C - - G T A
A T A C C C T T T T
A T - - C C T T T A
A C A C G C T T T A
A G A T G C T T A A
A C C C C - - G T A
A T A C C C T T T T
A T - - C C T T T A
A C A C G C T T T A
A G A T G C T T A A
A C C C C - - G T A
A T A C C C T T T T
A T - - C C T T T A
A C A C G C T T T A
A G A T G C T T A A
A C C C C - - G T A
A T A C C C T T T T
A T - - C C T T T A
A C A C G C T T T A
A G A T G C T T A A
A C C C C - - G T A
A T A C C C T T T T
A T - - C C T T T A
A C A C G C T T T A
A G A T G C T T A A
A C C C C - - G T A
A T A C C C T T T T
A T - - C C T T T A
A C A C G C T T T A
A G A T G C T T A A
A C C C C - - G T A
A T A C C C T T T T
A T - - C C T T T A
A C A C G C T T T A
A G A T G C T T A A
A C C C C - - G T A
A T A C C C T T T T
A T - - C C T T T A
A C A C G C T T T A
A G A T G C T T A A
A C C C C - - G T A
A T A C C C T T T T
A T - - C C T T T A
A C A C G C T T T A
A G A T G C T T A A
A C C C C - - G T A
A T A C C C T T T T
A T - - C C T T T A
A C A C G C T T T A
A G A T G C T T A A
A C C C C - - G T A
A T A C C C T T T T
A T - - C C T T T A
A C A C G C T T T A
A G A T G C T T A A
A C C C C - - G T A
A T A C C C T T T T
A T - - C C T T T A
A C A C G C T T T A
A G A T G C T T A A
A C C C C - - G T A
A T A C C C T T T T
A T - - C C T T T A
A C A C G C T T T A
A G A T G C T T A A
A C C C C - - G T A
A T A C C C T T T T
A T - - C C T T T A

Re-sampled Data
C A T C C T T T C G
G A T G T T A T T G
C A - C C G T G C C
T T T T C T T T C C
T A T T - T T T - C

C A T C C T T T C G
G A T G T T A T T G
C A - C C G T G C C
T T T T C T T T C C
T A T T - T T T - C
C A T C C T T T C G
G A T G T T A T T G
C A - C C G T G C C
T T T T C T T T C C
T A T T - T T T - C

Parametric Bootstrap

Instead of re-sampling the data, we use estimated model
parameters.

Start by estimating a ML tree and model parameters θ.
Using these estimated parameters and the estimated ML tree
simulate a new replicate data set.
Estimate a new ML tree and parameters θ′.
In some cases model parameters can be fixed.

Parametric bootstraps do not make any extra assumptions about
the data over the model.



Combining the trees

50% majority rule consensus is conservative and no two
branches/splits can be conflicting.
Extended consensus rules can vary slightly in implementation.
In particular the extended majority rule consensus (default in
PHYLIP’s consense) can have splits in the final tree that conflict
with splits that are more frequent.

Interpretation

Unfortunately in this setting interpreting bootstrap scores is not
straight forward.
It is not a probability.
Generally it appears to be somewhat conservative.
On the other hand it is not uncommon to see high bootstrap
support for the wrong tree.
One interpretation is that the bootstrap attempts to measure
sampling variance. (Swofford, et al 1996)

Example Support of a known tree

Hills et al, 1992. Bacteriophage T7 DNA sequences with a known
phylogeny.

Bayesian Support Values: an aside

Can be interpreted as Probabilities. That is the probability that this
node is in the “true” tree given the data.
Cannot be directly compared to bootstrap values.
But not independent from bootstraps either.
Bayesian Support 6= Bootstrap support.

Hypothesis testing

What question do I want to answer?
Say should I use the JC model or the GTR model?
Or perhaps, Is tree A statistically different from tree B?

It’s important to note that you should know the null
hypothesis/hypotheses before you “collect” the data.

Testing with Likelihood (LRT, KH, SH)

Nested models

A model is nested in another model, if it is a simplification of the
complicated model.
E.g., a clocklike tree is nested in his non-clocklike variant, JC69 is
nested in GTR.
In such a situation we can consider the likelihood of both models.
The Null Hypothesis H0: Both models are equally good.
The alternative Hypothesis HA: The more complicated model is
better.
Note that the more complicated model always has an equal or
higher likelihood (since we have more parameters to tweek).
Here, we can use a (log-)likelihood ratio test (LRT).

LRT

Log Likelihood ratio test

λ = −2 log
L0

L1
= 2(log L1 − log L0)

L0: likelihood of the less parameter-rich model (Null hypothesis, H0)
L1: likelihood of the more parameter-rich model (alternative, H1)

λ is asymptotically distributed to the χ2 distribution with the
appropriate degrees of freedom.
The degrees of freedom are the difference in number of
parameters between the two models, e.g., JC69 – HKY85 have 4
parameters, GTR – GTR-Γ have 1 parameters difference.
We calculate λ and check if it’s outside our P-value range on the
χ2 distribution.



Testing Tree Topologies

Only nested models can be tested:
One model (H0, Null-model, constraint model) is nested in another
model (HA, alternative, unconstraint model) if the model H0 can be
produced by restricting parameters in model HA.
two differrent topologies are not nested.
Thus, LRT cannot be used on different topologies, because the
assumption of the χ distribution does not fit.
Hence, other (bootstrap-bases) methods have been devised to
determine the distribution of log-likelihood differences for testing
(e.g., KH or SH test).

Basic Idea:

Compute log-likelihood values L1, . . . , LN for your trees T1, . . . , TN .
Draw bootstrap samples i from the alignment, re-estimate the
log-likelihood values L(i)

x for each tree Tx and for each sample i.

Adjust the log-likelihoods with the mean by setting L̃(i)
x = L(i)

x − L̄(i)
x

(Centering)

Use the differences between the L̃(i)
x to determine the distribution

of differences δ(i) = L̃(i)
y − L̃(i)

z .
Use the distribution of δ(i) to test your trees.

Time Saving: RELL

The re-optimization to get the log-likelihood values L(i)
x is very time

consuming.
Hence, often the site-likelihoods are used fixed.
During the bootstrap the already estimated site-log-likelihoods are
sampled and added to produce L(i)

x .
The resampling of estimated log-likelihoods (RELL) has been
shown to be often sufficient to produce the distribution of
log-likelihood differences.

Original Kishino and Hasegawa test (KH test)

This test was devised to test whether two a priory chosen trees
(e.g., from a Markov Chain) are equally well supported by the
dataset.
H0: the expected δ = L1 − L2 = 0.
HA: the expected δ = L1 − L2 6= 0.
KH assumes that the ML tree is not among the trees.

Mis-use of the Kishino and Hasegawa test (KH test)

Often, instead two a priory chosen trees, one tree is tested
against the ML tree TML.
That means, δ = LML − L1 is rarely negative.
Hence, δ has to be tested in a single-sided regime.
H0: the expected δ = L1 − L2 = 0. HA: the expected
δ = L1 − L2 > 0.

Multiple trees (Shimodaira and Hasegawa test - SH
test)

The SH test offers a correct way to test a set of trees, which may
be chosen a posteriory after ML analysis.
H0: All trees including TML are equally supported. HA: Some or all
trees Tx are not equally well supported.
The SH test assumes, that the ML tree TML is among the trees.

The SH procedure:

Compute log-likelihood values and the differences δx = LML − Lx

for your trees.
Draw bootstrap samples i from the alignment (with RELL) to gain
log-likelihood values L(i)

x for each tree Tx.
Adjust the log-likelihoods with the mean over the samples i by
setting L̃(i)

x = L(i)
x − L̄(i)

x (Centering)

For each sample i, find L̃(i)
ML over all topologies Tx.

and compute δ
(i)
x = L̃(i)

ML − L̃(i)
x .

For each tree Tx, test whether δx is a plausible sample from the
distribution of δ

(i)
x (over all replicates i).

We use a single sided test, since L̃(i)
ML ≥ L̃(i)

x .

Summary

Likelihoods gives a strong statistical framework for hypothesis
testing.
Proper experimental design and proper use of tests is required.
One should alway be aware of the hypothesis a test assesses and
should make sure that this answers the question asked.
Testing tree topologies can be used to assess whether two
competing hypotheses are really substantially different. If they are
not, one cannot be prefered over the other.


