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Main Types of Phylogenetic Methods

Data Method
Evaluation
Criterion

Maximum Parsimony Parsimony

Characters
(Alignment)

 Statistical Approaches:

Likelihood, Bayesian


Evolutionary

Models

Distances Distance Methods

Heiko A. Schmidt Maximum Likelihood Methods in Phylogenetics

Introduction: ML on Coin Tossing

Given a box with 3 coins of different fairness
(

1
3 , 1

2 , 2
3 heads

)

We take out one coin an toss 20 times:

H,T ,T ,H,H,T ,T ,T ,T ,H,T ,T ,H,T ,H,T ,T ,H,T ,T

Probability Likelihood

p(k heads in n tosses|θ) ≡ L(θ|k heads in n tosses)

=

(
n

k

)
θk(1− θ)n−k

(here binomial distribution)
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Introduction: ML on Coin Tossing (Estimate)

coint tossing: 7 heads, 13 tails

theta [% heads]

lik
el

ih
oo

d(
th

et
a)

0.00285

0.
00

0.
05

0.
10

0.
15

0.
20

0 1/3 1/2 2/3 1

Three coin case

L(θ|7 heads in 20) =

(
20

7

)
θ7(1−θ)13

for each coin θ ∈
{

1
3 , 1

2 , 2
3

}

For infinitely many coins
θ = (0...1)

ML estimate: L(θ̂) = 0.1844 where
coin shows θ̂ = 0.35 heads
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From Coins to Phylogenies?

While the coin tossing example might look easy, in phylogenetic analysis,
the parameter (set) θ comprises:

evolutionary model

its parameters

tree topology

its branch lengths

That means, a high dimensional optimization problem.
Hence, some parameters are often estimated/set separately.
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Modeling Evolution

Evolution is usually modeled as a

stationary, time-reversible Markov process.

What does that mean?
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Assumptions on Evolution

Markov Process

The (evolutionary) process evolves
without memory, i.e. sequence S2

mutates to S3 during time tn+1

independent of state of S1.

A A G G C T T C A G... ...=S1

time t n

A A G C T C A G... ...G C=2S

time t n+1

A G C T C A G... ...AGT=3S
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Assumptions on Evolution

Stationary:
The overall character frequencies πj of the nucleotides or amino acids are
in an equilibrium and remain constant.

Time-Reversible:
Mutations in either direction are equally likely

πi · Pij(t) = Pji (t) · πj

This means a mutation is as likely as its back mutation.

P(i → j) = P(i ← j) (JC69)
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Substitution Models

Evolutionary models are often described using a substitution rate matrix R
and character frequencies Π. Here, 4× 4 matrix for DNA models:

A

C T

G

S

P

3’

O

H

N

N

N

H

CH3

S

P

3’

O

H

N

N

O

S

P

3’

HN

N

N

N

O

N H

H

S

P

3’

N

N

N

N

H

H

N

b

a
d c

f

e

R =

A C G T
− a b c
a − d e
b d − f
c e f −



Π = (πA, πC , πG , πT )
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From Substitution rates to probabilities

. . .R and Π are combined into the instantaneous rate matrix Q

Q =


•A aπC bπG cπT

aπA •C dπG eπT

bπA dπC •G f πT

cπA eπC f πG •T


•A = −(aπC + bπG + cπT )
•C = −(aπA + dπG + eπT )
•G = −(bπA + dπC + f πT )
•T = −(cπA + eπC + f πG )

(where the row sums are zero).

Given now the instantaneous rate matrix Q, we can compute a
substitution probability matrix P

P(t) = eQt

With this matrix P we can compute the probability Pij(t) of a change
i → j over a time t.
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Relations between DNA models

equal base frequencies

JC69

2 transitions)
(transversions,
3 subst. types 6 subst. types

(4 transversions,
2 transitions)

frequencies
different base

2 subst. types
(transitions vs.
transversions)

frequencies

1 substitution type,

different base

F81

2 subst. types
(transitions vs.
transversions)

HKY85 TN93 GTR

K2P
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Protein Models

Generally this is the same for protein sequences, but with 20× 20
matrices. Some protein models are:

Poisson model (”JC69” for proteins)
Dayhoff (Dayhoff et al., 1978)
JTT (Jones et al., 1992)
mtREV (Adachi & Hasegawa, 1996)
cpREV (Adachi et al., 2000)
VT (Müller & Vingron, 2000)
WAG (Whelan & Goldman, 2000)
BLOSUM 62 (Henikoff & Henikoff, 1992)
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Computing ML Distances Using Pij(t)

The Likelihood of sequence s evolving to s ′ in time t:

L(t|s → s ′) =
m∏

i=1

(
Π(si ) · Psi s

′
i
(t)

)
Likelihood surface for two
sequences under JC69:

GATCCTGAGAGAAATAAAC
GGTCCTGACAGAAATAAAC

Note: we do not compute the
probability of the distance t
but that of the data D = {s, s ′}. 0 10 20 30 40 50

−
46

−
44

−
42

−
40

−
38

−
36

branch length t [PAM]

lo
g−

lik
el

ih
oo

d(
t)

lnL= −36.42
t= 10.679
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Likelihoods of Trees (Single column C
G
C

, given tree)

A

G
C

T

1

T
G
C
A 0.0009

0.0273
0.0273
0.0009

U

Ut =10 tV=10

V

1

A

G
C

T

A

G
C

T

1

t =10Tt =10S

TS

A
C
G
T 0.000075

0.023402
0.000075

0.000771

W

Likelihoods of nucleotides at inner nodes:

LU(i) = [PiC (10) · L(C )] · [PiG (10) · L(G )]

LW (i) =
[∑

u=
ACGT

Piu(tU) · LU(u)
]
·

[∑
v=

ACGT
Piv (tV ) · LV (v)

]
Site-Likelihood of an alignment column k:

L(k) =
∑

i=
ACGT

πi · LW (i) = 0.024323
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Likelihoods of Trees (multiple columns)

G

CT T

AA

10 10

1010

U

W

T

V

S
CAA

0.047554

0.047554
0.024323

Considering this tree with n = 3 sequences of
length m = 3 the tree likelihood of this tree
is

L(T ) =
m∏

k=1

L(k)

= 0.0475542 · 0.024323

= 0.000055

or the log-likelihood

lnL(T ) =
m∑

k=1

ln L(k) = −9.80811
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Adjusting Branch Lengths Step-By-Step

To compute optimal branch lengths do the following. Initialize the branch
lengths.
Choose a branch (A.). Move the virtual root to an adjacent node (B.).
Compute all partial likelihoods recursively (C.). Adjust the branch length
to maximize the likelihood value (D.).

A.

B. C.
D.

Repeat this for every branch until no better likelihood is gained.
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Number of Trees to Examine. . .

B

A
C

B(n) = (2n−5)!
2n−3(n−3)!

B(10) = 2027025
B(55) = 2.98 · 1084

B(100)= 1.70 · 10182
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Finding the ML Tree

Exhaustive Search: guarantees to find the optimal tree, because all trees
are evaluated, but not feasible for more than 10-12 taxa.

Branch and Bound: guarantees to find the optimal tree, without searching
certain parts of the tree space – can run on more sequences,
but often not for current-day datasets.

Heuristics: cannot guarantee to find the optimal tree, but are at least
able to analyze large datasets.
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Build up a tree: Star Decomposition
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Build up a tree: Stepwise Insertion
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Local Maxima

What if we have multiple maxima in the likelihood surface?

Tree rearrangements to escape local maxima.
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Tree Rearrangements
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ML programs: DNAML (PHYLIP), fastDNAml

Build tree with stepwise insertion

after each insertion optimize using NNI/local rearrangement (default,
but user-adjustable gradually up to SPR; only fastDNAml)

after the last insertion optimize using SPR/global rearrangement (in
DNAML; in fastDNAml user-adjustable gradually down to NNI)

repeat rearrangements until no better tree found.
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ML programs: MOLPHY

Build tree with star decomposition

after the last insertion optimize using NNI/local rearrangement

repeat rearrangements until no better tree found.
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ML programs: (R)AxML family

Descendant on fastDNAml, but . . .

Starting with MP tree.

Many smart algorithmic and numerical optimized ML computation.

Uses lazy rearrangements, i.e., only the 3 insertion branches are
optimized.

(Several versions with slightly different algorithms, e.g., Simulated
Annealing.)
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ML programs: PHYML

Start with BioNJ tree.

Do fastNNIs to optimize trees, i.e., evaluate all NNIs simultaneously
and then accept all best ones which are non-conflicting.

Repeat until no better tree found anymore.
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ML programs: PHYML-SPR

Start with BioNJ tree.

Evaluate SPR by fast non-ML criterion to find best candidates.

Evaluate the candidate(s) more rigorously with ML and fastNNI.

Repeat until no better tree found anymore.
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ML programs: IQPNNI

1 Start with BioNJ tree.

2 Do fastNNIs to optimize trees, i.e., evaluate all NNIs simultaneously
and then accept all best ones which are non-conflicting. (after first
round, identical to PHYML).

3 Remove randomly a certain amount of taxa and re-insert them by a
fast and rough quartet-based method. (some randomization)

4 Repeat until stop criterion is met.
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ML programs: Genetic Algorithms (GARLI, MetaPIGA)

Start with some (random) tree.

View tree topology, branch lengths, and model parameter as part of a
’genome’.

Evolve the ’genome’ by mutating (slightly changing) its parts.

Accept or reject new tree topologies from a pool of suggested trees
according to their likelihood.
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ML programs: Simulated Annealing

Start with some (random) tree.

Start a ’hot chain’ to suggest tree topologies (being far away).

Accept proposals according to their likelihood.

Cool down the chain, until the suggestions end up in some (local)
optimum.
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How reliable is the reconstructed tree:

Usually programs deliver a single tree, but without confidence values
for the subtrees.

How can we assess reliability for the subtree?
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Quartet Puzzling

The Quartet Puzzling algorithm implemented in the TREE-PUZZLE
program is a three step procedure:

maximum-likelihood step: compute ML trees for all quartets of an
alignment.

puzzling step: compose intermediate tree from quartet trees
(this is done multiple times).

consensus step: construct a majority rule consensus tree from the
intermediate trees and evaluate the branch lengths.
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Branch Support

We can now reconstruct ML trees, but how comparable are the
likelihoods, how reliable the groupings?

Branch reliability can be checked, support values computed using:

Randomizing input orders in stepwise insertions (TREE-PUZZLE).
Jackknifing alignment columns + consensus.
Bootstrapping alignment columns + consensus.
Trees from Bayesian MCMC sampling + consensus.
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Estimating Confidence: The Bootstrap
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Summarizing Trees: Consensus Methods
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Summarizing Trees: Consensus Methods
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Summarizing Trees: Consensus Methods
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Summarizing Trees: Consensus Methods
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Overview over Likelihood-based Analyses

Comparing hypothesis with Likelihood-Ratio-Test (=LRT)

different models of evolution (ModelTest)
testing molecular clock assumption and root position (TREE-PUZZLE)

Parameter estimation (TREE-PUZZLE, PAUP, ModelTest, . . . )

Testing for phylogenetic content (TREE-PUZZLE)

Comparing/testing different tree topologies with Kishino-Hasegawa
test, Shimodaira-Hasegawa test (TREE-PUZZLE), SOWH-test, ELW

Constructing confidence sets on posterior likelihoods (MrBayes)
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Posterior Probabilities and Empirical Bayes

Problem: How different are likelihoods? Just from the value of
likelihoods one often cannot tell whether they are significantly
different.

Normalization: Posterior probabilities are computed:

pi =
L1∑
n LnUsage:

Which sites along an alignment support a tree most?
Are there sites/partitions not supporting a tree?
Which model of evolution (e.g. dependent, independent) is supported
by which site/partition? (PAML)
Is a site fast/medium/slowly evolving? (PAML, TREE-PUZZLE)
Constructing confidence sets on posterior tree likelihoods (MrBayes)
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LRT – Likelihood Ratio Test (1)

The Likelihood function offers a natural way of comparing nested
evolutionary hypothesis using the Likelihood Ratio (LR) statistics:

∆ = 2(ln L1 − ln L0)

L1 maximum likelihood under the more parameter-rich, complex model
(alternative hypothesis, HA)

L0 maximum likelihood under the less parameter-rich simple model
(Null-hypothesis, H0)

If the models are nested, i.e., H0 is a special case of HA and the
Null-hypothesis (H0) is correct, ∆ is asymptotically χ2-distributed with
the number of degrees of freedom equal to the difference in number of free
parameters between the two models.
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LRT – Likelihood Ratio Test (2)

If the LRT is significant (i.e., p < 0.05 or p < 0.01): the use of the
additional parameters in the alternative model HA increases the
likelihood significantly.

If ∆ is close to zero, that is, p > 0.05: the alternative hypothesis HA

does not fit the data significantly better than H0, that means using
the additional parameters of HA does not explain the data better.

Only nested models can be tested:
One model (H0, Null-model, constraint model) is nested in another
model (HA, alternative, unconstraint model) if the model H0 can be
produced by restricting parameters in model HA.
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LRT – Typical cases of nested models

Different levels of evolutionary models:

equal base frequencies

JC69

2 transitions)
(transversions,
3 subst. types 6 subst. types

(4 transversions,
2 transitions)

frequencies
different base

2 subst. types
(transitions vs.
transversions)

frequencies

1 substitution type,

different base

F81

2 subst. types
(transitions vs.
transversions)

HKY85 TN93 GTR

K2P

rate-homogeneous models (H0) are nested in rate-heterogeneous models
(HA)
A tree assuming molecular clock (H0) are nested its non-clock version (HA)
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