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Phylogenetic Information

The information about the true tree, might be obscured or unextractable
from an alignment due to

too similar sequences
(no differences → no information)

sequences are to divergent
(saturated sequences → information drowned in noise)

Are there ways to check for this?
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Reminder: Jukes-Canter Correction for Multiple Hits
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Plotting Substitutions vs. Distance for DNA
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Transitions (ts) usually occur much more often the transversions (tv).
Thus, the ts-curve rises faster but reaches the plateau earlier.

The tv-curve can only ’overtake’ the ts-curve if the latter is quite saturated!
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Saturation Plots for DNA in DAMBE

Saturation Plots can be created, e.g., with the DAMBE program as follows

Take every pair of sequences

Count the number of observable substitutions
(e.g., transitions, transversions)
Compute the distances of the sequence pair (e.g., with ML)

. . . and plot the evolutionary distance (x-axis) against the observed
substitutions (y-axis) for each class of mutations.
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Saturation Plots for AA (AsaturA, van de Peer et al. 2002)

The same can be done for amino acids

, but

There is not intuitive division into fast and slow substitutions,

AsaturaA orders the the substitution types according to the
probabilities in a substitution probability matrix (e.g., PAM, WAG).

Then, the user has to set a cutoff between fast slow.
(There is no guideline for that choice.)

Then the numbers of fast and slow substitutions are plotted against
the distance accordingly.
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Posterior Probabilities and Empirical Bayes

We can compute a likelihood value for a tree based given an
alignment and model. . . (more on that tomorrow).

Problem: How different are the likelihoods?
Just from the value of likelihoods one often cannot tell whether they
are significantly different.
Normalization: Posterior probabilities are computed:

pi =
Li∑
n Ln

We can use that on the three different quartet topologies to assess
phylogenetic information in our data.
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Plotting Posteriors: Likelihood Mapping
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Since p1 + p2 + p3 = 1, 3D points (p1, p2, p3) fall into a triangular
(simplex).
If we repeat this for all quartets (or a large random subset) in a dataset we
can assess the amount of phylogenetic signal in the dataset.
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Likelihood Mapping (Cluster Analysis)

(Crenarch.,Bacteria)-(Eucaryota,EF-1a/Tu)

(Crenarch.,EF-1a/Tu)-(Bacteria,Eucaryota) (Crenarch.,Eucaryota)-(Bacteria,EF-1a/Tu)

1.8%

0.2% 98.0%

0.0%

0.0% 89.9%0.8%

4.8%

4.4%

0.
0%

The Simplex Plot can visualize the relationship among (4) sets of taxa.

The taxa/sequences are assigned to four sets (A,B,C,D) one for each leaf
of a quartet tree.
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Likelihood Mapping (Information Content)

32.5%

32.3% 33.5%0.3%
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0.2%
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3%

4.3%

4.5% 4.8%4.2%

74.3%

3.9%

4.
0%

The Simplex Plot can also visualize the information content in an alignment.

By not assigning taxa to clusters, four are chosen randomly for each leaf. We
have to add the percentages in the corners (resolved) or rectangles (partly
resolved), respectively. Center means unresolved.
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Likelihood Mapping to Validate Outgroups

ingroup sister out

B
C

A
(a, a’)

We can check the reliability of an outgroup by assigning taxa to three
sets: A - the examined ingroup, B - an early sister group, and C - the
outgroup.
random quartets are drawn from the sets: two from A and one each
from B and C.
if not a, a′|b, c (upper corner) is the support topology, C is not a
good outgroup (or B is not a proper sister group).
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