

Needleman-										
	0	1 T	2 G	3 C	4 T	5 C	6 G	7 T	8 A	
0	0	-6	-12	-18	-24	-30	-36	-42	-48	
1	T -6									
2	T -1	2								
3	C -1	в								
4	A -2	4								
5	T -3	0								
6	A -3	6								
s	(a_i, b_j)) = {	+5, į –2, į –6, f	$f a_i$ $f a_i$ for in	$= b_j$ $\neq b_j$	luct	ion (of a	gap	

The Needlem	edleman-Wunsch algorithm: Recursion									CIBIV MFPL	
		0	1 T	2 G	3 C	4 T	5 C	6 G	7 T	8 A	
0	_	0	-6	-12	-18	-24	-30	-36	-42	-48	
1	т	-6	5,	-1							
2	т	-12									
3	С	-18									
4	A	-24									
5	т	-30									
6	A	-36									
S	(a _i	, <i>b</i> _j)	= {.	+5, į –2, į –6, f	$f a_i$ $f a_i$ for in	$= b_j$ $\neq b_j$ ntroe	luct	ion o	of a	gap	

Income and still

Needlemai	1-V	Vun	sch	algo	oritl	ım:	Bac	ktra	nck		CIBIV MFPL
		0	1 T	2 G	3 C	4 T	5 C	6 G	7 T	8 A	
0	_	0	-6	-12	-18	-24	-30	-36	-42	-48	
1	т	-6	5	-1,	-7	-13	-19	-25	-31	-37	
2	т	-12	-1	3	-3	-2	-8	-14	-20	-26	
3	С	-18	-7	-3	8	2	З.	-3	-9,	-15	
4	A	-24	-13	-9	2	6	0	1	-5	-4	
5	т	-30	-19	-15	-4	7	4	-2	6	0	
6	A	-36	-25	-21	-10	1	5	2	0	11	
			(*T(*T-	GCT T	'CG' 'CA'	TA* TA*	AI	ignn	nent	Score: 11

Needlemar	1-Wun	sch a	lgoritl	nm: B	acktra	ıck	
0	0	1 T	2 3 G C	4 5 T C	6 6 6 6	7 T	3
1	T -6	5	-1 -7	-13-1	925	-31	37
3	T -12 C -18	-7	-3 8	23	8 -14	-20 -	15
4	A -24 T -30	-13 -19	-9 2 15 -4	6 0 7 4) 1 2	-5 - 6 -	4 D
6	A -36	-25-	21 -10	1 5	5 2	0 1	1
				TA TA	*		

- gap opening penalties are locally reduced in stretches of 5 or more hydrophilic residues (indicative of loop or random coil
- regions).

 gap penalties are locally increased within eight residues of existing gaps.
- > sequence weighting

Table 2. So	ome elem	ents of v	validatio	on on BA	NiBASE.	Tatal
DiAliana	Reri	Reiz	Ref3	Re14	Ref5	iotal 57.0
DiAlign	/1.0	25.2	35.1	/4./	80.4	57.3
ClustalW	78.5	32.2	42.5	65.7	74.3	58.7
Prrp	78.6	32.5	50.2	51.1	82.7	59.0
T-Coffee	80.7	37.3	52.9	83.2	88.7	68.7
Each method BAIIBASE. The alignment usi Results obtain statistically sig contains a hor sequences and Ref4 contains ref5 contains	in the Metho alignments ng aln_comp ed in each ca nificant, as a mogenous se d an outlayer sequences th sequences th	d column i were then are [34]. Re ategory we issessed by t of sequer , ref3 conte at require at require	vas used to compared af1-5 indic re average the Wilco: nces, ref2 c nces, ref2 c nins two di long inter long-termi	o align the with the ru ates the fir d. All the con rank-b ontains a l stantly rela nal gaps to nal gaps to	141 test-se eference B/ e BAliBASi observed di ased test [2 omogenou ited groups be proper be proper	ets contained in AliBASE E categories. ifferences are 64,47]. Ref1 us group of is of sequences. ly aligned and ly aligned. Total

Focus	ing on stable parts of the a	lignment	
Gbl Obj Defi be u	cks (Castresana (2000) Mol. I ctive: ne a set of conserved blocks i sed in phylogeny reconstucti	Biol. Evol. 17:540 from an alignmer on	-552 at to
Approach: 1) Classifica > > >	on of Columns non-conserved : <n +="" 1="" 2="" identical="" res<br="">conserved :≥n/2 + 1 and < 85% highly conserved :>85% identical residu</n>	sidues, or a gap identical residues ues	
 2) discard of 3) from rem end with hig positions th 	ntiguous stretches of non-conserved po ining blocks: remove flanking positions u ly conserved positions, i.e. selected blo t can be aligned with high confidence	sitions (default I = 8) until blocks begin and cks are anchored by	

