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An efficient tree reconstruction method (IQPNNI) is introduced to reconstruct a phylogenetic tree based on DNA or
amino acid sequence data. Our approach combines various fast algorithms to generate a list of potential candidate
trees. The key ingredient is the definition of so-called important quartets (IQs), which allow the computation of an
intermediate tree in O(n2) time for n sequences. The resulting tree is then further optimized by applying the nearest
neighbor interchange (NNI) operation. Subsequently a random fraction of the sequences is deleted from the best tree
found so far. The deleted sequences are then re-inserted in the smaller tree using the important quartet puzzling (IQP)
algorithm. These steps are repeated several times and the best tree, with respect to the likelihood criterion, is
considered as the inferred phylogenetic tree. Moreover, we suggest a rule which indicates when to stop the search.
Simulations show that IQPNNI gives a slightly better accuracy than other programs tested. Moreover, we applied the
approach to 218 small subunit rRNA sequences and 500 rbcL sequences. We found trees with higher likelihood
compared to the results by others. A program to reconstruct DNA or amino acid based phylogenetic trees is available
online (http://www.bi.uni-duesseldorf.de/software/iqpnni).

Introduction

One objective in phylogenetic analysis is the re-
construction of the evolutionary relationship of species
based on their genetic information. In recent years, the list
of methods for building a phylogenetic tree from modern-
day species has increased steadily (Swofford et al. 1996;
Felsenstein 2004). New tree search heuristics have been
developed to reduce the computational burden caused by
increasing amounts of sequence data (e.g., Bruno, Socci,
and Halpern 2000; Gascuel 1997; Huson, Nettles, and
Warnow 1999; Lemmon and Milinkovitch 2002; Schmidt
and von Haeseler 2002; Guindon and Gascuel 2003; Vos
2003). In addition, Monte Carlo methods have been
employed to explore the space of possible tree topologies
(Larget and Simon 1999; Ronquist and Huelsenbeck
2003). Finally, attempts to parallelize tree-reconstruction
programs were introduced (Olsen et al. 1994; Charleston
2001; Brauer et al. 2002; Schmidt et al. 2002, 2003).
Setting aside statistical issues, the recently published
PHYML method (Guindon and Gascuel 2003) seems to be
faster than other existing methods.

Another attempt to reduce computation time is the
reconstruction of quartet trees, which are subsequently
used to puzzle an overall tree (cf., Strimmer and von
Haeseler 1996; Willson 1999; Ranwez and Gascuel 2001).
However, the complexity of O(n4) prohibits an application
of quartet methods to data with more than approximately
100 sequences, because it is necessary to evaluate all
quartet trees. We propose the Important Quartet Puzzling
Method, IQP, which uses only O(n2) quartets to construct
a tree to overcome this computational drawback. The IQP
approach is implemented as a part of an algorithm which
efficiently elucidates the landscape of possible optimal
trees. To this end, we introduce a search strategy that
alternates between the nearest neighbor interchange (NNI)
method and the sequential sequence-by-sequence as-

sembly approach based on IQP. This combined strategy
reduces the risk of getting stuck in a local optimum. For
illustration, two recently analyzed data sets (Guindon and
Gascuel 2003) are re-analyzed. Finally, we apply an
estimator that is based on the time series of sights of better
trees during the tree search to estimate when it becomes
unlikely that a further search for a better tree will be
successful.

The Important Quartet Concept

In the following discussion, we introduce some
notations: Consider a binary, rooted tree T with one
distinguished node r, the root (see figure 1). A node, with
one adjacent branch is called a leaf (typically a contempo-
rary sequence/taxon), all other nodes are called internal
nodes. For each leaf l, we compute the distance to the root
d(l, r) as the number of branches on the path from r to l in
T (in computer science parlance the depth). Leaves l1, l2
with the same distance d(l1, r)¼ d(l2, r) [ d are said to be
on level d. For example, in figure 1 leaves a, b are on level
3, leaves g and h are on level 4, and so on. The distance
d(�, r) induces a natural ordering of the leaves. A set of k-
representative leaves Sk(T) of T is simply a collection of
pairs (l, d(l, r)) that includes at most k leaves with the
smallest distances from the root, where possible ties are
resolved randomly. We say the tree is represented by the k-
representative leaf set. For example, the k-representative
leaf set for k¼ 4 is S4(T)¼f(a, 3), (b, 3), (g, 4), (h, 4)g in
the current tree (fig. 1). For k ¼ 5, the set is not unique;
either of the leaves (c, 5), (d, 5), (e, 5), or ( f, 5) can be
added to S4(T) to form S5(T).

To motivate this abstract concept, think of Sk(T) as
a collection of contemporary sequences that are closest to
the root (with respect to the defined distance). Thus, this
collection resembles the ancestral sequence.

The notation of a k-representative leaf set generalizes
to all rooted subtrees of the rooted tree T. Moreover, the
computation of the corresponding sets can be done in
linear time. Figure 1 shows that the representative leaf set
of T can be computed from the representative leaf sets of
the rooted subtrees T1 and T2. Similarly, the representative
leaf sets of T1 and T2 can be obtained from Sk(T3), Sk(T4),
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and Sk(T5), Sk(T6), respectively, and so on. The 4-
representative leaf sets of subtrees T5 and T6 are S4(T5)¼
f(c, 3), (d, 3), (e, 3), ( f, 3)g and S4(T6)¼ f(g, 2), (h, 2)g.
S4(T2) is obtained from S4(T5) [ S4(T6) by increasing the
corresponding distances by one, choosing the four leaves
with the smallest distances, and breaking ties randomly.
Thus, we obtain S4(T2)¼ f(g, 3), (h, 3), (c, 4), (d, 4)g.

Because the size of the k-representative leaf set of
a rooted subtree Ti is O(k), the cost of computing the
representative leaf set from its child leaf sets is O(k). Thus,
for a rooted tree with n leaves the collection of all k-
representative leaf sets is computed in O(nk) time.

Now consider an unrooted tree T. Each internal node
x splits T into three disjoint subtrees, which we then root
with the original internal node x. Let Tx

1, Tx
2, and Tx

3 denote
the corresponding rooted subtrees with the same root x (see
figure 2, left). For these rooted subtrees we compute
Sk(T

x
1), Sk(T

x
2), and Sk(T

x
3). As in the case of rooted trees the

computation of all representative leaf sets for all rooted
subtrees is efficiently possible. The collections of k-

representative leaf sets are the building blocks for the IQP
algorithm.

Now we are ready to introduce the concept of
important quartets. In the original PUZZLE algorithm
(Strimmer and von Haeseler 1996) a tree with n leaves was
reconstructed sequentially by starting with a randomly
chosen quartet tree into which the next sequence is inserted
by evaluating all quartet trees that contain three sequences
already present in the reconstructed tree and a fourth
sequence, which needs to be inserted in this tree. If a tree
with n leaves is reconstructed O(n4) quartets need to be
evaluated.

We call a quartet q¼ (t1, t2, t3, y) an important quartet
of an internal node x of an unrooted tree T if and only if

� the sequence y does not belong to the leaves of tree T,
and

� the sequences t1, t2, and t3 are elements of Sk(T
x
1),

Sk(T
x
2), and Sk(T

x
3), respectively.

Thus an important quartet consists of three representatives
each from one of the three k-representative leaf sets
derived from the internal node x and a sequence y, which
needs to be inserted in the tree. By construction t1, t2, t3 are
close to x and close to each other; thus the reconstruction
of a quartet tree for the quartet (t1, t2, t3, y) is more likely
to be accurate, because quartets with closely related se-
quences are less affected by the accumulation of evolu-
tionary noise due to parallel and back substitutions.

More generally, a quartet q is an important quartet of
an unrooted tree T if it is an important quartet of some
internal node x of T.

Each internal node splits the tree into three rooted
subtrees, and each of them is presented by at most k
representative leaves. For a new sequence y and an internal
node x, there are O(k3) important quartets. Because T has
O(n) internal nodes, O(nk3) important quartets are possible.

The IQP Algorithm

To put a new sequence y into a tree T, we first
determine the important quartet set of the tree T by

FIG. 1.—A binary tree T with root r. The horizontal lines indicate the
levels of the leaves, T1, T2, . . . denote the rooted subtrees, where the root
of Ti is indicated by the corresponding index i.

FIG. 2.—One internal node splits the tree into three rooted subtrees Tx
1, Tx

2, and Tx
3 with S2(Tx

1)¼fa, eg, S2(Tx
2)¼fb, gg, S2(Tx

3)¼fc, dg. A new y is
needed to insert into the current tree. There are eight important quartets with respect to the internal node x and the new sequence y, i.e., ( y, a, b, c), ( y, a,
b, d ), ( y, a, g, c), ( y, a, g, d ), ( y, e, b, c), ( y, e, b, d ), ( y, e, g, c), and ( y, e, g, d ). The thick lines are the paths from the root x to representative leaves of
three rooted subtrees. The gray circles indicate the representative leaves that are needed to compute the quartet tree ( y, a, b, c). Because Ta,yjb,c is
reconstructed, all branches in the rooted subtree Tx

1 receive a weight of 1.
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specifying important quartets for all internal nodes of the
tree T. Then for each important quartet q¼ (t1, t2, t3, y) the
optimal tree topology (with respect to some objective
function) is computed among the three unrooted topolo-
gies Tt1;t2jt3;y, Tt1;t3jt2;y, and Tt1;yjt2;t3 (see fig. 3). In IQP,
quartet trees are constructed using Neighbor Joining; these
trees are the minimum evolution trees in case of four
sequences (Saitou and Nei 1987). The estimated quartet
trees are then used to place sequence y.

Figure 2 illustrates the procedure. To this end,
consider quartet q ¼ (a, b, c, y) comprising the new
sequence y, leaves a, c, and b are representatives of
subtrees Tx

1, Tx
2, and Tx

3, respectively. Assume that, based
on the sequences a, b, c, y, tree Tayjbc is reconstructed, then
each branch of Tx

1 gets score 1. Then we continue with the
next quartet (a, b, d, y).

Repeating the above procedure for all important
quartets of T and summing the resulting scores assigns
a total score to each branch. Sequence y is inserted on the
branch with the highest score. In case of ties, a branch with
highest score is selected at random. Scores are computed
in O(nk3) time by using a simple recursive procedure
(Schmidt 2003, chapter 4).

In the following, k was set equal to four. Thus, if one
wants to compute a phylogenetic tree following the TREE-
PUZZLE procedure but using only important quartets,
then one would need O(n2) computing time. However, we
will not pursue this approach here, because simulations
showed that the accuracy of this approach is not satisfying
(data not shown).

Combining Tree-Reconstruction Methods

Here we suggest a combination of tree reconstruction
methods to compute an optimal tree.

Combined-Algorithm (IQPNNI)

1. initial step: An initial tree is built applying BIONJ
(Gascuel 1997). Then NNI is performed until no further
improvement of the likelihood function is found
(Guindon and Gascuel 2003). We call the resulting
tree Tbest, with log-likelihood ‘best.

2. optimization step: Delete each leaf with probability 0 ,
pdel , 1 from Tbest. Re-insert the collection of deleted
leaves by applying the IQP. Optimize the resulting tree
Tintermediate using NNI.

3. comparative step: If the log-likelihood ‘intermediate .
‘best, then set Tbest  Tintermediate and update the log-
likelihood.

4. stop criterion: If the number of optimization steps is
less than or equal to a pre-defined number of total
optimization steps M, go to 2; otherwise, stop and
output Tbest.

This combined strategy has two main advantages. First,
deleting and re-inserting some leaves in the optimization
step helps us to escape from a local optimum when
applying NNI. Moreover, deleting and re-inserting only
a proportion of all leaves conserves parts of the optimized
tree and therefore saves computing time.

Accuracy

We tested the accuracy and computing time of
IQPNNI, as well as other methods with simulated data
and two real data sets. Computing time was measured on
a 2.0 GHz PC with 512M RAM. The size of the
representative leaf set was k¼ 4; the probability to delete
a sequence was 0.3 for simulated data and 0.1 for the
biological data.

The accuracy of IQPNNI was compared to Weighbor
1.2 (Bruno, Socci, and Halpern 2000), fastDNAml version
1.2 (Olsen et al. 1994), and PHYML version 2.0.1
(Guindon and Gascuel 2003). Weighbor is a distance-
based method and is combined with DNADIST version
3.5 (Felsenstein 1993); the other programs are maximum
likelihood methods (see Ranwez and Gascuel 2001 for
a detailed reference about the performance of current
quartet-based methods compared to other approaches).
MetaPIGA (Lemmon and Milinkovitch 2002) was not
included in the simulation study because it offers no
version that runs in batch mode.

All methods were run with default options. However,
the parameters of models of sequence evolution were not
estimated but set identical to the simulated conditions.

Accuracy was measured as the percentage of cases
where the inferred tree topology and the true tree topology
are identical. Alternatively, we computed the distance
between the inferred tree and the true tree according to
Robinson and Foulds (1981)—i.e., the number of bi-
partitions present in one of the two trees but not the other.

Small Simulated Data

We generated randomly 3,000 trees with 30 taxa.
Trees were drawn from the Yule-Harding distribution
(Harding 1971). The branch lengths of trees were drawn
from an exponential distribution with mean values equal to
0.03, 0.06, and 0.15 to accommodate for slow, medium,
and high rates of evolution, respectively. Seq-Gen
(Rambaut and Grassly 1997) was used to evolve sequences
along the trees using the Kimura two-parameter model
(Kimura 1980) with a transition/transversion ratio of 2.0,
and a sequence length of 500 bp.

Tables 1 and 2 show that IQPNNI outperforms all
other methods analyzed. However, the performance is, on
average, only marginally better, i.e.—3.50 versus 3.54 for
the Robinson and Foulds distance (table 2). Weighbor,

FIG. 3.—The three tree topologies of 4 sequences t1, t2, t3, and y and
their abbreviations as used in the text.
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a distance-based method, displays the lowest performance
in terms of accuracy.

It may be surprising that the probability to reconstruct
the true tree is so small, an effect that is due to the short
sequence length (500 bp). If we were to use sufficiently
long sequences, then all methods would perform equally
well with respect to accuracy. In this sense, reconstruction
of phylogenetic trees is easy for simulated data. However,
for biological data one typically has short sequences.

The computing time to estimate a phylogenetic tree
with 30 sequences is not really an issue for the four
programs tested. Weighbor is the fastest program; it needs
on average 0.4 seconds to output a tree. PHYML is next
(2.9 seconds), followed by IQPNNI (16.7 s), and
fastDNAML (28.9 seconds). Because computing time is
not an issue for small data sets, one should apply the
program with highest accuracy.

Large Simulated Data

The accuracy of IQPNNI for large data sets was
investigated on one random tree topology that was created
as described above, but with 1,000 sequences of length
500, 1,000, and 2,000 base pairs. The mean branch length
was set to 0.05. We compared Weighbor, PHYML, and
IQPNNI. Unfortunately fastDNAml could not be applied
to 1,000 sequence data sets, because the computing time
was too long. Table 3 displays the Robinson and Foulds
(1981) distance for the three tree reconstruction methods
designed to deal with large numbers of taxa. The numbers
in the table show the results of 10 simulation runs and the
average performance for each method as a function of the
alignment length. Not surprisingly, as the sequence length
increases all methods get better, that is they reconstruct
trees that are closer to the true tree. However, there is
a substantial difference in the performance between
Weighbor and PHYML or IQPNNI. Weighbor shows
substantially reduced accuracy. The differences in perfor-

mance between PHYML and IQPNNI are less pro-
nounced.

IQPNNI is in 21 out of 30 simulations closer to the
true tree; with PHYML, we observe 7 ties and two cases
where PHYML is closer to the true tree. Ties occur for
long sequences. Thus, IQPNNI shows a higher accuracy
for short sequences. For longer sequences the differences
between the two approaches disappear. We should note
however, that the log-likelihood of the IQPNNI tree is
typically higher than that of the corresponding PHYML
tree. This increase in likelihood is associated with an
increase in computing time. Table 4 displays the time
necessary to evaluate one tree. Because we set the number
of intermediate trees to M¼ 100 it took on average 4.5 h
(500 bp), 7.2 h (1,000 bp), or 10.5 h (2,000 bp) for
IQPNNI to run a simulation. On the other hand, because
a large number of different trees were analyzed per run, we
might put more confidence in the resulting tree. Note that
M ¼ 100 iterations do not allow for a thorough search in
tree-space. For biological data sets the number of iterations
must be larger.

Real Data

We applied IQPNNI to two large data sets, the ssu-
rRNA alignment (218 species, 4,182 bp) and the rbcl-gene
alignment (500 species, 1398 bp) recently analyzed
(Guindon and Gascuel 2003), and we compared our
results to PHYML (Guindon and Gascuel 2003) and
MetaPIGA (Lemmon and Milinkovitch 2002). The
parameter settings for IQPNNI are given in table 5. The

Table 1
The Percentage of Cases for Which the Inferred Tree and
the True Tree Are Identical in Small Simulated Data Sets

Weighbor fastDNAml PHYML IQPNNIa

Slow rate 9.7 14.3 14.3 14.7
Medium rate 12.5 19.9 19.9 20.4
High rate 11.2 16.3 15.9 16.5

Average 11.1 16.8 16.7 17.2

a Parameter settings: M ¼ 20, pdel ¼ 0.3, and k¼ 4.

Table 2
Average Robinson and Foulds Distance of Small Simulated
Data Sets

Weighbor fastDNAml PHYML IQPNNIa

Slow rate 4.53 3.71 3.71 3.64
Medium rate 4.12 3.35 3.23 3.22
High rate 4.56 4.05 3.69 3.64

Average 4.40 3.70 3.54 3.50

a Parameter settings: M ¼ 20, pdel ¼ 0.3, and k¼ 4.

Table 3
Robinson and Foulds Distance for 30 Simulations of
Data Sets with 1,000 Sequences

Simulation: 1 2 3 4 5 6 7 8 9 10 Average

500 bp

Weighbor 258 238 196 242 260 234 244 264 202 226 236.4
PHYML 128 122 108 132 96 98 116 148 108 94 115.0
IQPNNIa 118 106 102 118 86 92 110 138 104 92 106.6

1,000 bp

Weighbor 156 146 164 152 146 160 152 158 172 170 157.6
PHYML 86 56 76 76 76 64 76 80 70 80 74.0
IQPNNIa 88 56 72 72 72 62 70 80 66 76 71.7

2,000 bp

Weighbor 94 108 120 124 106 102 112 92 100 104 106.2
PHYML 36 32 48 38 40 32 46 42 42 56 41.2
IQPNNIa 28 30 48 38 38 32 44 44 42 56 39.0

a Parameter settings: M ¼ 100, pdel ¼ 0.3, and k ¼ 4.

Table 4
Computing Times (in minutes) for 1,000 Sequences and
Different Tree-Building Methods

Weighbor PHYML
IQPNNI

(for one intermediate tree)a

500 190.0 6.5 2.7
1000 190.0 13.5 4.3
2000 172.0 19.0 6.3

Average 184.0 13.0 4.4

a Parameter settings: M ¼ 100, pdel ¼ 0.3, and k ¼ 4.
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HKY model (Hasegawa, Kishino, and Yano 1985) was
used for the DNA data and the transition transversion
parameter was estimated from the data. The results are
summarized in table 5.

In both cases IQPNNI found quite a lot of trees with
higher likelihood values than the ones obtained with
PHYML and MetaPIGA (see Figs 4 and 5). For the ssu-
rRNA data, the best IQPNNI tree is 291 and 111 log-
likelihood units higher than PHYML and MetaPIGA,
respectively. For the rbcl-gene the best IQPNNI tree is 180
log-likelihood units larger than the PHYML tree and 69
log-likelihood units higher than the MetaPIGA tree. Thus,
the increase in computation time (see table 5) is rewarded
by a better maximum likelihood tree.

Stopping the Search

Figures 4 and 5 display for the ssu and rbcl DNA data
sets the increase in log-likelihood as the number of
iterations grows. During the first iterations we almost
instantaneously observe a drastic increase in the like-
lihoods. After roughly 100 iterations (220 min or 300 min
computing time) we are finding better trees compared to
PHYML and MetaPIGA. The 1 signs above the lines
labeled MetaPIGA and PHYML in figures 4 and 5 indicate
the better trees that we discovered. As the search
continues, the rate of discovering better trees decreases.
However, as we continue our ‘‘guided tour through’’ tree
space we keep on finding better trees.

Thus, as with MetaPIGA, we need a criterion to stop
our quest for the best tree. Here we suggest applying an
estimation method that is based on the time of occurrence
(i.e., number of iterations) of better trees during our search.
These time points are indicated by the jumps in the graph
in Figures 4 and 5.

More precisely, let L1, L2, . . . , Lj denote the log-
likelihoods for the first j iterations, then the sequence s(k)
of record times (i.e., iteration number, when a better tree is
found) is defined by

sð1Þ ¼ 1; sðk þ 1Þ ¼ min jjLj . LsðkÞ
� �

:

This sequence is used to estimate the point in time, sstop, at
which to stop the search, i.e., the point at which it appears
unlikely that a further search will lead to a better tree.

Using the theory detailed in Cooke (1980) and Robert and
Solow (2003), we estimate during the run of IQPNNI an
upper 95% confidence limit s95% of sstop. More precisely,
consider a sequence of record times s1, s2, . . . , sk, then we
compute an upper (1 2 a)100% stopping time as

sð1�aÞ100% ¼ s1 þ
s1 � sk

� logðaÞ
k

� ��m̂m
�1

;

where the shape parameter of the joint Weibull distribution
m is estimated as follows

m̂m ¼ 1

k � 1

Xk�2

j¼1

log
s1 � sk
s1 � sjþ1

� �
:

Once s95% iterations have been carried out and a better tree
has not been detected, the program will stop and output the

Table 5
Best log Likelihoods and Computing Times for Three Tree
Reconstruction Methods for Real Data

log likelihood

Gene Number of Taxa PHYML MetaPIGA IQPNNIa

ssu rRNA 218 2156,895 2156,715 2156,604
rbcl 500 2100,191 2100,080 2100,011

Runtime (min)

ssu rRNA 218 5.1 74.5 379
rbcl 500 7.5 158.5 672

NoTE.—Although we used the same data as Guindon and Gascuel (2003) our

likelihood differs slightly from the ones published, a difference that is due to the new

version 2.0.1 of PHYML (Guindon and Gascuel 2003). In addition, results of

MetaPIGA (Lemmon and Milinkovitch 2002) depend on the random process.
aParameter settings: M¼ 300, pdel¼ 0.1, and k¼ 4. FIG. 4.—Exploring the likelihood surface of the suu-rRNA

alignment of 218 species. The thick line shows the improvement in log
likelihood during the IQNNI search. The plus signs represent trees
generated according to the combined algorithm. IQPNNI generated 258
different trees; 219 of them had a higher likelihood than the best PHYML
tree (horizontal line) (Guindon and Gascuel 2003), and 121 were better
than MetaPIGA (horizontal dashed line) (Lemmon and Milinkovitch
2002).

FIG. 5.—Exploring the likelihood surface of the rbcl alignment of
500 species (see figure 4). In all, 283 different trees were generated; 192
had a higher likelihood than the best PHYML tree (horizontal line)
(Guindon and Gascuel 2003), and 125 showed larger log likelihoods as
the best MetaPIGA tree (horizontal dashed line) (Lemmon and
Milinkovitch 2002).
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best tree found. We can conclude that we will not find
a better tree with a probability of 95% during this search.
Nevertheless, if a better tree is found before we hit s95%,
we re-compute s95% on the basis of the new record time
added to the sequence s(k).

This additional number of iterations to reach s95%

further increases the computation time; i.e for the 218-ssu
rRNA about 8 hours were necessary and for the rbcl data
we used a total of 15 h. But now we are in the position to
know that, with 95% probability, we would not have found
a better tree when extending the search even longer. If one
is willing to spend more computation time, it is of course
possible to compute s99% or even higher upper bounds.
One could also start a new run of IQPNNI.

Discussion

We have presented the IQP method to reconstruct
trees from large sequence data. Our simulations and the
analysis of biological data show that a combination of
nearest neighbor interchange and IQP leads to trees that
are either closer to the true tree, as defined by the
simulations, or closer to trees with higher likelihoods than
found so far for biological examples. This improved
performance, however, is achieved by an increase in
computing time as compared to other fast programs.
However, the times needed are not unrealistic.

The algorithm presented here turns out to search the
tree space efficiently for better trees. We have used the
maximum likelihood criterion as an objective function;
however, the algorithm is not restricted to maximum
likelihood. Any tree reconstruction method with an
objective function to minimize or maximize will work in
the presented approach.

Although we have only presented results for pdel¼0.3
and k ¼ 4 for simulated data, further studies with pdel
ranging from 0.2 to 0.4 and k from 4 to 6 showed that the
accuracy, based on the Robinson and Foulds distance,
percentage of correctly reconstructed trees is not affected
(data not show). Similarily, various combinations of k (4, 5,
or 6) and pdel, ranging from 0.1 to 0.3 resulted in minor
changes in the log likelihood, which varied from 2156,715
to 2156,604 (k¼ 4, pdel¼ 0.1) for the ssu_rRNA data set
and from 2100,058 to 2100,011 (k¼ 4, pdel¼ 0.1) for the
rbcl-gene alignment. We note that this observation does not
allow any generalizations. In any real application one
should run IQPNNI for different choices of k and pdel.

Our simulations indicate that IQPNNI shows a better
performance than other tested methods in terms of being
closer to the true tree. However, we have only considered
a very narrow range of simulation. We have not taken into
account the posibility of model violations, uncertainty of
estimating the parameters of the model, and various other
sources of uncertainty. Including all this is beyond the
scope of the paper.

Because IQPNNI generates trees with similar high
likelihoods, we have included an option in the program
that allows output of a majority rule consensus tree of all
the intermediate trees found during one search run of the
tree space. We also output the frequencies of the groupings
found in that tree. If one is interested only in the most

frequent groupings found in the collection of trees with
a high likelihood, then this option is helpful.

Finally, we are suggesting a statistic that provides
a guide to stop the search for a better tree. This very simple
and crude estimation procedure proves to be very useful,
although it increases the computation time yet again. To
get additional confidence in the reconstructed tree and its
maximum likelihood value, one needs to repeat the search
with several independent runs of our program. However,
we are sure that we have only scratched the surface when it
comes to applying statistical inference based on record
values to problems of tree reconstruction. Further inves-
tigations into the performance of such methods are
certainly necessary, but beyond the scope of this paper.

Supplementary Material

A computer program, called IQPNNI, is available and
can be downloaded from Web site http://www.bi.
uni-duesseldorf.de/software/iqpnni. The source code will
be released soon and will be free to use for academic
purposes. IQPNNI is written in C11 and can be run on all
popular platforms, i.e., Windows, Linux. The program
consists of over 40 classes, and some parts are taken from
the TREE-PUZZLE package (http://www.tree-puzzle.de)
and BIONJ (http://www.lirmm.fr/~w3ifa/MAAS/BIONJ/
BIONJ.html) software.

The ribosomal sequence alignment can be re-
trieved from http://rdp.cme.msu/download/SSU\_rRNA/
alignments/SSU\_Prok\_rep\_phylip), and the rbcl align-
ment can be downloaded from (http://www.cis.upenn.edu/
~krice/treezilla/record.nex).
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