Tracing phylogenetic signal in datasets

Heiko A. Schmidt

Center for Integrative Bioinformatics Vienna (CIBIV)
Max F. Perutz Laboratories (MFPL)
Vienna, Austria
heiko.schmidt@univie.ac.at

Phylogenetic Information

The information about the true tree, might be obscured or unextractable from an alignment due toll

- too similar sequences (no differences \rightarrow no information)
- sequences are to divergent (saturated sequences \rightarrow information drowned in noise)

Is there a way to check for this?

Remember Correction for Multiple Hits

Plotting Mutation Values

- Take every pair of sequences
- Count the number of observable differences (e.g., transitions, transversions)
- Compute the distances of the sequence pair:.
- and plot the distance (x -axis) against the observable differences (y -axis)

Plotting Mutation Values (2)

Posterior Probabilities and Empirical Bayes

- We can now reconstruct ML trees, but how comparable are the likelihoods, how reliable the groupings?
- Branch reliability can be checked, support values computed using:
- Bootstrapping, Jackknifing alignment columns + consensus.
- Randomizing input orders in stepwise insertions (TREE-PUZZLE).

Posterior Probabilities and Empirical Bayes

- We have learnt to reconstruct ML trees and heard that one can compare their posterior probabilities. . .
- Problem: How different are likelihoods? Just from the value of likelihoods one often cannot tell whether they are significantly different.I
- Nomalization: Posterior probabilities are computed:

$$
p_{i}=\frac{L_{1}}{\sum_{n} L_{n}}
$$

Plotting Posteriors: Likelihood Mapping

Since $p_{1}+p_{2}+p_{3}=1$, 3D points $\left(p_{1}, p_{2}, p_{3}\right)$ fall into a triangular (simplex). If we repeat this for all quartets (or a large random subset) in a dataset we can assess the amount of phylogenetic signal in the dataset.l

Likelihood Mapping (Cluster Analysis)

(Crenarch.,Bacteria)-(Eucaryota,EF-1a/Tu)

(Crenarch.,EF-1a/Tu)-(Bacteria,Eucaryota) (Crenarch.,Eucaryota)-(Bacteria,EF-1a/Tu)

The Simplex Plot can visualize the relationship among clusters.

Likelihood Mapping (Information Content)

The Simplex Plot can also visualize the information content in an alignment.

