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Main Types of Phylogenetic Methods

Data Method Evaluation
Criterion

Maximum Parsimony Parsimony

Characters
(Alignment)

 Statistical Approaches:

Likelihood, Bayesian


Evolutionary

Models

Distances Distance Methods
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Introduction: ML on Coin Tossing

Given a box with 3 coins of different fairness
(
1
3,

1
2,

2
3 heads

)
We take out one coin an toss 20 times:

H,T, T, H,H, T, T, T, T,H, T, T, H, T,H, T, T,H, T, T

Probability Likelihood

p(k heads in n tosses|θ) ≡ L(θ|k heads in n tosses)

=
(

n

k

)
θk(1− θ)n−k

(here binomial distribution)
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Introduction: ML on Coin Tossing (Estimate)

coint tossing: 7 heads, 13 tails
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Three coin case

L(θ|7 heads in 20) =
(

20
7

)
θ7(1−θ)13

for each coin θ ∈
{

1
3,

1
2,

2
3

}

For infinitely many coins θ = (0...1)

ML estimate: L(θ̂) = 0.1844 where
coin shows θ̂ = 0.35 heads
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From Coins to Phylogenies?

While the coin tossing example might look easy, in phylogenetic analysis,
the parameter (set) θ comprises:

• evolutionary model

• its parameters

• tree topology

• its branch lengths

That means, a highly dimensional optimization problem.
Hence, some parameters are often estimated/set separately.
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Substitution Models

Evolutionary models are often described using substitution rate matrices.
Here, 4× 4 matrix for DNA models:
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R =

A C G T
− a b c
a − d e
b d − f
c e f −


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DNA Substitution Models

The rate matrix R and the character frequencies Π

R =

0BB@
− a b c

a − d e

b d − f

c e f −

1CCA Π = (πA, πC, πG, πT )

are transformed into the instantaneous rate matrix Q

Q =

0BB@
•A aπC bπG cπT

aπA •C dπG eπT

bπA dπC •G fπT

cπA eπC fπG •T

1CCA
•A = −(aπC + bπG + cπT )

•C = −(aπA + dπG + eπT )

•G = −(bπA + dπC + fπT )

•T = −(cπA + eπC + fπG)

where the row sums are zero.
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How to Get Substitution Probabilities?

Given now the instantaneous rate matrix Q, we can compute a substitution
probability matrix P

P (t) = eQt

With this matrix P we can compute probability values for changes over a
time t.

Time t is normalized by a factor µ such that∑
i 6=j

πiPij(1) = 0.01 or
∑
i 6=j

Qij =
∑
i=j

Qij = 1
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Computing ML Distances Using Pij(t)

The Likelihood of sequence s evolving to s′ in time t:

L(t|s → s′) =
m∏

i=1

(
Π(si) · Psis

′
i
(t)

)
Likelihood surface for two sequences
under JC69:

GATCCTGAGAGAAATAAAC
GGTCCTGACAGAAATAAAC
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Likelihoods of Trees (Single column, given tree)

A

G
C

T

1

T
G
C
A 0.0009

0.0273
0.0273
0.0009

U

Ut =10 tV=10

V

1

A

G
C

T

A

G
C

T

1

t =10Tt =10S

TS

A
C
G
T 0.000075

0.023402
0.000075

0.000771

W

Likelihoods of nucleotides at inner nodes:
LW (i) =

[∑
u=

ACGT
Piu(tU)LU(u)

]
·

[∑
v=

ACGT
Piv(tV )LV (v)

]
Site-Likelihood of an alignment column k:

L(k) =
∑
i=

ACGT

πi · LW (i) = 0.024323
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Likelihoods of Trees (multiple columns)

G

CT T

AA

10 10

1010

U

W

T

V

S
CAA

0.047554

0.047554
0.024323

Considering this tree with n = 3 sequences of
length m = 3 the tree likelihood of this tree
is

L(T ) =
m∏

k=1

L(k) = 0.0475542 · 0.024323

= 0.000055

or the log-likelihood

lnL(T ) =
m∑

k=1

lnL(k) = −9.80811
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Adjusting Branch Lengths Step-By-Step

To compute optimal branch lengths do the following. Initialize the branch
lengths.

Choose a branch (A.). Move the virtual root to an adjacent node (B.).
Compute all partial likelihoods recursively (C.). Adjust the branch length
to maximize the likelihood value (D.).

A. B. C.
D.

Repeat this for every branch until no better likelihood is gained.

12



Number of Trees to Examine. . .
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Finding the ML Tree

Exhaustive Search: guarantees to find the optimal tree, because all trees
are evaluated, but not feasible for more than 10-12 taxa.

Branch and Bound: guarantees to find the optimal tree, without searching
certain parts of the tree space – can run on more sequences, but often
not for current-day datasets.

Heuristics: cannot guarantee to find the optimal tree, but is at least able
to analyze large datasets. Typically involve tree optimization procedures
like NNI, SPR, or TBR.
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’Solution’

Heuristics are used to reduce the number of trees to be examined. Some
well-known methods are:

• stepwise insertion (DNAML from PHYLIP, fastDNAml, PAUP∗)

• star decomposition (PROTML, NUCML from MOLPHY)

• Bayesian sampling from the universe of trees (MrBayes)

• Genetic Algorithms (MetaPIGA)

• quartet puzzling (TREE-PUZZLE, Qstar)
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Star Decomposition
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Stepwise Insertion
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Refinements

What if we have multiple maxima in the likelihood surface?

Common optimization techniques:

• Global rearrangements, SPR
(DNAML from PHYLIP)

• Local rearrangements, NNI

• fast NNI (PHYML, IQPNNI)

• lazy NNI (RAxML)

• TBR (PAUP*)
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Tree Optimizations
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Posterior Probabilities and Empirical Bayes

• We can now reconstruct ML trees, but how comparable are the
likelihoods, how reliable the groupings?

• Branch reliability can be checked, support values computed using:

– Bootstrapping, Jackknifing alignment columns + consensus.
– Randomizing input orders in stepwise insertions (TREE-PUZZLE).
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Posterior Probabilities and Empirical Bayes

• Problem: How different are likelihoods? Just from the value of likelihoods
one often cannot tell whether they are significantly different.

• Nomalization: Posterior probabilities are computed:

pi =
L1∑
n Ln

• Usage:

– Which sites along an alignment support a tree most?
– Are there sites/partitions not supporting a tree?
– Which model of evolution (e.g. dependent, independent) is supported

by which site/partition? (PAML)
– Is a site fast/medium/slowly evolving? (PAML, TREE-PUZZLE)
– Constructing confidence sets on posterior tree likelihoods (MrBayes)
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LRT – Likelihood Ratio Test (1)

The Likelihood function offers a natural way of comparing nested
evolutionary hypothesis using the Likelihood Ratio (LR) statistics:

∆ = 2(ln L1 − lnL0)

L1 maximum likelihood under the more parameter-rich, complex model
(alternative hypothesis, H1)

L0 maximum likelihood under the less parameter-rich simple model (Null-
hypothesis, H0)

If the models are nested, i.e., H0 is a special case of H1 and the Null-
hypothesis (H0) is correct, ∆ is asymptotically χ2-distributed with the
number of degrees of freedom equal to the difference in number of free
parameters between the two models.
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LRT – Likelihood Ratio Test (2)

• If the LRT is significant (i.e., p < 0.05 or p < 0.01): the use of the
additional parameters in the alternative model H1 increases the likelihood
significantly.

• If ∆ is close to zero, that is, p > 0.05: the alternative hypothesis H1

does not fit the data significantly better than H0, that means using the
additional parameters of H1 does not explain the data better.

• Only nested models can be tested:
One model (H0, Null-model, constraint model) is nested in another
model (H1, alternative, unconstraint model) if the model H0 can be
produced by restricting parameters in model H1.
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LRT – Typical cases of nested models

• Different levels of evolutionary models:

equal base frequencies

JC69

2 transitions)
(transversions,
3 subst. types 6 subst. types

(4 transversions,
2 transitions)

frequencies
different base

2 subst. types
(transitions vs.
transversions)

frequencies

1 substitution type,

different base

F81

2 subst. types
(transitions vs.
transversions)

HKY85 TN93 GTR

K2P

• rate-homogeneous models (H0) are nested in rate-heterogeneous models (H1)

• A tree assuming molecular clock (H0) are nested its non-clock version (H1)
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How to Compare Tree Topologies

Since tree topologies are no normal parameters, they are generally not
nested in each other. Hence, other methods have to be used.

Usually, the alignment (or the site-likelihoods) are bootstrapped, i.e.,
sampled with replacement, to produce a distribution of likelihoods which is
then used for

• pairwise tests against the best trees (Kishino-Hasegawa test)

• multiple tests among user defined trees (Shimodaira-Hasegawa test)

to decide which trees are significantly worse.
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Methods to derive distributions for testing

• Bootstrapping from the alignment columns

• Bootstrapping from the alignment columns’ site-likelihood

• Parametric bootstrap, i.e., simulation with fixed model (parameters) on
a given tree, to produce alignments.
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Overview over Likelihood-based Analyses

• Comparing hypothesis with Likelihood-Ratio-Test (=LRT)

– different models of evolution (ModelTest)
– testing molecular clock assumption and root position (TREE-PUZZLE)

• Parameter estimation (TREE-PUZZLE, PAUP)

• Testing for phylogenetic content (TREE-PUZZLE)

• Comparing/testing different tree topologies with Kishino-Hasegawa test,
Shimodaira-Hasegawa test (TREE-PUZZLE)

• Constructing confidence sets on posterior likelihoods (MrBayes)
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Software using Likelihood

• dnaml (PHYLIP), fastDNAml (stepwise insertion+SPR)

• IQPNNI (BioNJ-tree + randomization + fast NNI)

• PAUP* (several methods)

• PHYML (BioNJ-tree + fast NNI)

• RAxML (MP-tree + lazy NNI)

• MetaPIGA (optimizing trees with genetic algorithms)

• TREE-PUZZLE (quartet puzzling with random orders)

• PAML (Model analysis on given trees)

• MrBAYES (’Random’ MCMC sampling from the universe trees and
parameters)
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