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ABSTRACT We introduce a graphical method, likeli-
hood-mapping, to visualize the phylogenetic content of a set of
aligned sequences. The method is based on an analysis of the
maximum likelihoods for the three fully resolved tree topol-
ogies that can be computed for four sequences. The three
likelihoods are represented as one point inside an equilateral
triangle. The triangle is partitioned in different regions. One
region represents star-like evolution, three regions represent
a well-resolved phylogeny, and three regions ref lect the situ-
ation where it is difficult to distinguish between two of the
three trees. The location of the likelihoods in the triangle
defines the mode of sequence evolution. If n sequences are
analyzed, then the likelihoods for each subset of four se-
quences are mapped onto the triangle. The resulting distri-
bution of points shows whether the data are suitable for a
phylogenetic reconstruction or not.

The sequence-based study of phylogenetic relationships
among different organisms has become routine. Parallel to
the increasing amount of sequence information available a
variety of methods have been suggested to reconstruct a
phylogenetic tree (1) or a phylogenetic network (2–4). So far,
few approaches have been proposed to elucidate the phylo-
genetic content in a set of aligned sequence a priori (5, 6).
The so-called statistical geometry in sequence space analyzes
the distribution of numerical invariants for all possible
subsets of four sequences. The resulting distributions make
it possible to distinguish between tree-, star-, and net-like
geometry of the data. Moreover, based on the averages of the
invariants, the method allows one to draw a graph that
illustrates the mode of evolution. While the description of
this diagram is straightforward if sequences consist only of
purines and pyrimidines, it gets difficult if more complex
alphabets (nucleic acids, amino acids) are used (7). Statis-
tical geometry in sequence space has been success-
fully applied to study the evolution of tRNAs (8) or HIV
(9).

In this paper, we present an alternative approach, likeli-
hood-mapping, to display phylogenetic information con-
tained in a sequence alignment. The method is applicable to
nucleic acid sequences, amino acid sequences, or any other
alphabet provided a model of sequence evolution (1, 10, 11)
that can be implemented in a maximum likelihood tree
reconstruction program (12, 13). Our approach allows one to
visualize the tree-likeness of all quartets in a single graph and
therefore renders a quick interpretation of the phylogenetic
content. We will exemplify the method by applying it to
simulated sequences that evolved on a star-tree or on a
completely resolved tree. The analysis of two biological data
sets (14, 15) will conclude the paper.

METHOD

Four Sequences. Let us consider a set of four sequences, a
so-called quartet. For this quartet the maximum likelihoods
(not log-likelihoods) belonging to the three possible fully
resolved tree topologies (Fig. 1) are computed, using any
model of sequence evolution (1, 10, 11). Let Li be the
maximum likelihood of tree Ti where i 5 1, 2, 3. We can
compute, according to Bayes’ theorem, the posterior proba-
bilities

pi 5
Li

L1 1 L2 1 L3
[1]

for each tree. Note the pi are true probabilities satisfying p11
p2 1 p3 5 1 and 0 # pi # 1 in contrast to the maximum
likelihoods Li that are only conditional probabilities with L11
L21 L3 Þ 1. The probabilities (p1, p2, p3) can be viewed as the
barycentric coordinates of the point P belonging to the two-
dimensional simplex

S2 5 H O
i51

3

pieiUp1 1 p2 1 p3 5 1, pi $ 0J , [2]

where the ei are real valued and independent. They point to the
three corners of the simplex. As a special case S2 can be
illustrated as an equilateral triangle. This construction allows
an easy geometric interpretation of the pi values. For a given
point P [ S2 the pi are simply the lengths of the perpendiculars
from the point P to the three sides of the triangle (Fig. 2).

If P is close to one corner of the triangle, the likelihoods (p1,
p2, p3) are clearly favoring one tree over the other two. Thus,
every corner of the triangle corresponds to one of the three
quartet topologies T1, T2, or T3. In a typical maximum-
likelihood analysis one chooses the tree Ti with

pi 5 max$p1, p2, p3%. [3]

It is easy to compute the corresponding basins of attraction for
each tree topology (Fig. 3A). The location of a point P in the
simplex gives an immediate impression which tree is preferred.

Unfortunately, this picture is too optimistic. For real data it
is not always possible to resolve the phylogenetic relationships
of four sequences. This is either a consequence of limiting
resolution due to short sequences (‘‘noise’’) or the true evo-
lutionary tree was a star phylogeny. To account for this case,
we introduce a region in the triangle S2 representing the star
phylogeny. The center c of the simplex is the point where
all probabilities take on the value pi5

1
3

that is the three trees
are equally likely. Thus, if P is near the center the phylogenetic
relationship cannot be resolved and is better displayed by a star
phylogeny. On the other hand, it also might be possible that
one can exclude one of the three trees but cannot choose from
among the two remaining alternatives. This is the case, if T1
and T2 show probabilities p15 p25

1
2
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Near point x12 (see Fig. 3A) the phylogenetic relationship is
best displayed by a net-like geometry that excludes tree T3.
Similarly, near points x13 and x23 it is impossible to unambig-
uously favor one tree. Based on these seven attractors in the
triangle (marked with dots in Fig. 3B) the corresponding basins
of attraction are easily computed. Each point in one of the
seven regions has smallest Euclidean distance to its attractor.
By Ap we denote the region where the star tree is the optimal
tree. Its area equals the sum of the areas of A1, A2, and A3, the
regions where one tree is clearly better then the remaining
ones. The regions Aij represent the situation where we cannot
distinguish trees Ti and Tj. The area of Aij equals the sum of
the area of Ai and Aj.

There is yet another way to describe the basins of attraction.
If one considers the three-dimensional simplex S3 where the
fourth corner represents the star phylogeny, the basins of
attraction can be viewed as projections of their corresponding
volumes of the tetrahedron S3 onto the two-dimensional plane.

The General Case. For a set of n aligned sequences there are
exactly (n

4
) different possible quartets of sequences. To get an

overall impression of the phylogenetic signal present in the
data we compute the probability-vectors P for the quartets and
draw the corresponding points in the simplex. If only few
sequences are analyzed, P vectors of all (n

4
) quartets are

considered, otherwise a random sample of, e.g., 1,000 quartets
is sufficient to obtain a comprehensive picture of the phylo-
genetic quality of the data set. The resulting distribution of
points in the triangle S2 forms a distinct pattern allowing us to
predict a priori whether an n-taxon tree will show a good
resolution or not. If most of the points P are found, e.g., in
regions A12, A13, A23, or in the star-tree region Ap, it is clear
that the overall tree will be highly multifurcating. That is,

evolution was either star-like or not tree-like at all. However,
the opposite conclusion is not necessarily true: Even if all
quartets are completely resolved, that is, almost all P vectors
are in A1, A2, and A3, it is possible that the overall n-taxon tree
is not completely resolved (13, 16).

Four-Cluster Likelihood-Mapping. Instead of looking at all
quartets, the analysis of tree-likeness for four disjoint groups
of sequences (clusters) is also possible. Let C1, C2, C3, and C4
be a set of four clusters with c1, c2, c3, and c4 sequences. Then,
we compute the probability vectors P for the c1zc2zc3zc4 pos-
sible quartets and plot the corresponding points on the triangle
S2. While the pi values are randomly assigned to the trees T1,
T2, and T3, when all quartets are studied, the assignment of pi
to tree Ti is now fixed. Each tree represents one of the three
possible phylogenetic relationships among the clusters. As an
illustration, think of the Si in Fig. 1 as a representative of
cluster Ci. The distribution of the c1zc2zc3zc4 probability vectors
over the basins of attractions allows one not only to identify the
correct phylogenetic relationship of the four clusters but also
shows the support for this and alternative groupings. This type
of likelihood-mapping analysis is a helpful tool to illustrate
how well supported an internal branch of a given tree topology
is.

RESULTS
Simulation Studies. Fig. 4 displays the result of a typical

likelihood-mapping analysis. A simulated set of 16 DNA-

FIG. 1. The fully resolved tree topologies T1, T2, and T3 connecting
four sequences S1, S2, S3, and S4.

FIG. 2. Map of the probability vector P 5 (p1, p2, p3) onto an
equilateral triangle. Barycentric coordinates are used, i.e. the lengths
of the perpendiculars from point P to the triangle sides are equal to
the probabilities pi. The corners T1, T2, and T3 represent three quartet
topologies with corresponding coordinates (probabilities) (1, 0, 0), (0,
1, 0), and (0, 0, 1).

FIG. 3. (A) Basins of attraction for the three topologies T1, T2, and
T3. The gray area shows the region where the probability for tree T1
is largest. In the center c 5 (1y3, 1y3, 1y3) all trees are equally likely,
at the points x12 5 (1y2, 1y2, 0), x13 5 (1y2, 0, 1y2), and x23 5 (0, 1y2,
1y2) two trees have the same likelihood whereas the remaining one has
probability zero. (B) The seven basins of attraction allowing not only
fully resolved trees but also the star phylogeny and three regions where
it is not possible to decide between two topologies. The dots indicate
the corresponding seven attractors. A1, A2, A3 show the tree-like
regions. A12, A13, A23 represent the net-like regions and Ap displays the
star-like area.
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sequences was used to show the distribution of probability
vectors P as a function of sequence length and the evolutionary
history.

If evolution was according to a star topology then the
probability vectors are concentrated in the center of the
simplex with rays emanating to the corners of the triangle. This
picture does not change with increasing sequence length.
However, the proportion of quartets found in area Ap increases
(Table 1). If sequence evolution followed a completely re-
solved tree then the proportion of points P located inside A11
A21 A3 increases with longer sequences, as an indication that
noise due to sampling artifacts is diminished. Correspondingly,
the number of quartets in the remaining regions decreases. For
sequences of length 500 bp the non-tree-like regions of the
triangle are empty (Table 1). Thus, Fig. 4 illustrates that
likelihood-mapping enables an easy distinction between star-
like or tree-like evolution. The influence of sequence length
(‘‘noise’’) on tree-likeness of the data is easily recognized.

Data Analysis. We illustrate the power of likelihood-
mapping using two data sets published recently (14, 15). The
first set (14) comprises eight partial cytochrome-b sequences
(135 bp) and nine putative dinosaur sequences (17). The
second alignment (1,850 bp) consists of ribosomal DNA from
major arthropod classes (three myriapods, two chelicerates,
two crustaceans, three hexapods) and six other sequences
(human, Xenopus, Tubifex, Caenorhabditis, mouse, and rat).
Likelihood-mapping suggests (Fig. 5) that the Zischler et al.
(14) data show a fair amount of star-likeness with 17.5% of all

quartet points in region Ap in contrast to only 0.2% for the
ribosomal DNA. This result is corroborated by the bootstrap
analysis as shown in refs. 14 and 15. Because of the short
sequence length the percentage of quartets mapped into
regions A12, A13, and A23 is with 10.1% for the sequences from
ref. 14, very high compared with 1.6% for the rDNA se-
quences. However, the cytochrome-b data still contain a
reasonable amount of tree-likeness as 72.4% of all quartets are
placed in the areas A1, A2,, and A3. The tree-likeness of the
ribosomal DNA is extremely high (A11 A21 A35 98.3%). The
a posteriori analysis based on bootstrap values (15) shows that
all groupings in the tree receive high support.

Four-Cluster Likelihood Mapping. A further application of
likelihood-mapping allows testing of an internal edge of a tree
as given from any tree reconstruction method. As an example
we consider the sister group status of myriapods and cheli-
cerates as suggested by Friedrich and Tautz (15). Fig. 6 shows
that 90.4% of all quartets between the four corresponding
clusters support the branching pattern that groups chelicerates
and myriapods versus crustaceans, hexapods, and the remain-
ing sequences. We find only very low support (6.9%) for the
topology that pairs myriapods with crustaceans plus hexapods
rather than with chelicerates or with the rest. Based on
likelihood-mapping we cannot reject the hypothesis of mono-
phyly of myriapods and chelicerates. However, the outcome of
statistical tests as suggested in ref. 18 remains to be seen. But
this is outside the scope of this paper.

DISCUSSION

The evaluation of the phylogenetic contents in a data set is of
prime importance if one wants to avoid false conclusions about
evolutionary relationships among organisms. Methods abound
that evaluate the reliability of a reconstructed tree a posteriori
(1). Likelihood-mapping† can be viewed as a complementary
approach to existing methods of a priori or a posteriori

†Likelihood-mapping analysis is available as part of the maximum-
likelihood tree reconstruction program PUZZLE Version 3.0 (13, 19).
It can be retrieved free of charge over the Internet from URLs
ftp://ftp.ebi.ac.uk/pub/software and http://www.zi.biologie.uni-
muenchen.de/;strimmer/puzzle.html.

FIG. 4. Effect of sequence length (50, 100, 200, and 500 bp) on the distribution of P vectors for a simulated data set with 16 sequences. (Upper)
Sequences evolving along a perfect star phylogeny. (Lower) Sequences evolving along a completely resolved tree. Sequences evolved according to
the Jukes–Cantor model. The number of substitutions per site and per branch was 0.1. Each triangle shows a result of one simulation and all possible
1,820 P vectors were computed. If tree-like data were generated (Lower) the number of P vectors seems to decrease with increasing sequence length.
This effect is due to the fact that identical P vectors fall on top of each other. Longer sequences increase the probability that one of the trees favored
equals one. That is, most of the 1,820 P vectors superimpose each other in the corners of the triangles (cf. Table 1).

Table 1. Distribution of likelihood vectors P over the basins of
attraction as a function of sequence length

Length

Star tree Bifurcating tree

SAi Ap SAij SAi Ap SAij

50 17.9 77.3 4.8 61.1 32.1 6.8
100 16.2 79.6 4.2 82.0 14.3 3.7
200 11.1 85.3 3.6 91.5 5.2 3.3
500 9.8 86.5 3.7 100.0 0.0 0.0

Occupancies are shown as cumulative percentages for the three
resolved regions (A1, A2, A3), the star-like region (Ap), and the three
net-like regions (A12, A13, A23). Simulation of the data assumed a start
phylogeny or a perfectly bifurcating tree.
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evaluations of tree-likeness. Our method may be helpful when
analyzing controversial phylogenies. Similar to statistical ge-
ometry in sequence space (5–7) likelihood-mapping is based
on the analysis of quartets, the basic ingredients to reconstruct
trees (16). Moreover, the description of seven basins of at-
traction (Fig. 3) that can be characterized as fully resolved (A1,
A2, and A3), star-like (Ap), or intermediate between two trees
(A12, A13, and A23) is also of great importance in the quartet-
puzzling tree search algorithm (13, 19). Using a variant of
likelihood-mapping it is also possible to detect recombination
(A.v.H., unpublished data).

Here, we have provided a simple, but versatile, approach to
visualize the phylogenetic content of a data set. We have shown

that the method has reasonable predictive power. While we
have presented only a visual tool to analyze the phylogenetic
signal of sequences it is certainly necessary to develop solid
statistical tests, that provide evidence as to the significance of
clusters (18) or to a deviation from tree-likeness. For example,
the assumption of equal prior probability for the trees may be
debatable. It remains to be seen how approaches like Jeffrey’s
prior (20) or the inclusion of the variance of likelihood
estimates (21) will influence the analysis.

Finally, one should keep in mind that the interpretation of
the result of a likelihood-mapping analysis strongly depends on
sequence length. The alignment of human mitochondrial
control-region data (22) comprises 1,137 positions, and 82.5%
of the quartets belong to the regions that represent fully
resolved trees. Thus, the result suggests that the data are very
well suited to reconstruct a well resolved tree. However, we
observe 8.3% of all quartets in the star-like region Ap of the
triangle. This value is too high for a completely resolved
phylogeny (see Table 1). Therefore, we expect a phylogeny that
is well resolved in certain parts of the tree only.
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