Introduction to recombination detection
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15.1 Introduction

Genetic exchange, henceforth recombination, is a widespread evolutionary force.
Natural populations of many organisms experience significant amounts of recom-
bination, sometimes with markedly different underlying molecular mechanisms.
Although mutation is the ultimate source of genetic variation, recombination can
easily introduce allelic variation into different chromosomal backgrounds, gener-
ating new genetic combinations. This genetic mixing can result in major evolu-
tionary leaps, for example, allowing pathogens to acquire resistance against drugs,
and ensures, as part of meiosis in eukaryotes, that offspring inherit different com-
binations of alleles from their parents. Indeed, when organisms exchange genetic
information they are also swapping their evolutionary histories, and because of this,
ignoring the presence of recombination can also mislead the evolutionary analysis.
Because of its fundamental role in genomic evolution and its potential confounding
effect in many evolutionary inferences, it is not surprising that numerous bioin-
formatic approaches to detect the molecular footprint of recombination have been
developed. While the next chapter discusses methods to detect and characterize
individual recombination events with a particular focus on genetically diverse viral
populations, the aim of this chapter is to briefly introduce different concepts in
recombination analysis and to position the approaches discussed in Chapter 16 in
the large array of currently available recombination detection tools.

15.2 Mechanisms of recombination

493

Before we briefly review genetic recombination in different organisms, it should
be pointed out that there are several scenarios for genetic exchange. On the one
hand, the donor nucleotide sequence can neatly replace a homologous region in
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the acceptor molecule (homologous recombination). On the other hand, recombi-
nation can also occur as a result of crossovers at non-homologous sites or between
unrelated nucleotide sequences (non-homologous recombination). From another
perspective, the exchange can occur in both directions (symmetrical recombination)
or there can be a donor organism and an acceptor (non-symmetrical recombination).

Different organisms have evolved and integrated various processes of genetic
exchange in their life cycle. Biologists are generally most familiar with the process
of genetic recombination that is part of the sexual reproduction cycle in eukaryotes.
In males and females, a special type of cell division called meiosis produces gametes
or sex cells that have halved the number of complete sets of chromosomes. During
meiosis, crossing over between homologous chromosomes occurs as part of the
segregation process. Whether genetic recombination occurs in a particular chro-
mosome depends on how chromatides or chromosome arms are cut and ligated
before the chromosome homologues are pulled apart. Half of the time, the original
parental chromosome arms can be rejoined. This mechanism is not present in all
eukaryotes; in a few systems, crossing does not occur during meiosis, and asex-
ual reproduction is frequent. It is noteworthy that recombination rate variation
in some human genome locations has been directly estimated from the analysis
of sperm samples (Jeffreys et al., 1998; Jeftreys et al., 2000). Although the difficulty
of carrying out such experiments prohibits a detailed and comprehensive picture of
genomic recombination rates, this information can be extremely valuable in evalu-
ating recombination rate profiles estimated from population genetic data (Stumpf
& McVean, 2003), and in stimulating the development of more realistic statistical
models of recombination (e.g. Wiuf & Posada, 2003).

In bacteria, unidirectional genetic exchange can be accomplished in at least three
ways. A bacterium can pass DNA to another through a tube — the sex pilus — that
temporarily joins to bacterial cells. This process of lateral gene transfer is called
conjugation and only occurs between closely related bacteria. The second process,
transduction, occurs when bacteriophages transfer portions of bacterial DNA from
one bacterial cell to another. In the third process, referred to as transformation, a
bacterium takes up free pieces of DNA from the surrounding environment. These
mechanisms for lateral transfer and recombination are the bacterial equivalent of
sexual reproduction in eukaryotes. Comparative analysis has revealed that many
bacteria are genomic chimaeras, and that foreign genomic regions can be often
associated with the acquisition of pathogenicity (Ochman et al., 2000; Ochman &
Moran, 2001). For bacteria, recombination rates can also be estimated in the lab-
oratory and, interestingly, these are in general agreement with population genetic
estimates (Awadalla, 2003; Ochman & Moran, 2001).

Viruses can exchange genetic material when at least two viral genomes co-infect
the same host cell, and in the process of infection, they can even acquire genes
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from their hosts. Indeed, the physical process of recombination can occur between
identical genomes, but the evolutionary impact of genetic recombination is only
noticeable when these two genomes are genetically different. Physically exchang-
ing genetic segments within nucleotide molecules can occur in both segmented
and non-segmented genomes. Genetic mixing among viruses is greatly facilitated
when their genomes are segmented (multipartite viruses). In these cases, these
segments can simply be reshuffled during co-infection, a process called reassort-
ment. Antigenic shift in influenza A is an important example of the evolutionary
significance of reassortment. For DNA viruses, recombination is probably similar
to that seen in other DNA genomes involving breakage and rejoining of DNA
strands. For RNA genomes, it was long thought that recombination was absent
until recombinant polioviruses were detected (Cooper et al., 1974). The most sup-
ported model of RNA virus recombination nowadays is a copy-choice mechanism
during replication, which involves mid replication switches of the RNA-dependent
RNA polymerase between RNA molecules. A similar template-switching mecha-
nism during reverse transcription has been invoked for retroviruses (discussed
in more detail in the next chapter). However, alternatives to the copy-choice
model of RNA virus recombination have been suggested (e.g. Negroni & Buc,
2001).

Viral recombination can have important biological implications. Recombina-
tion events have been demonstrated to be associated with viruses expanding their
host range (Gibbs & Weiller, 1999; Vennema et al., 1998) or increasing their vir-
ulence (Suarez et al, 2004). In addition, for many virus examples, the theoreti-
cal advantages of recombination (discussed below) have been experimentally put
to test (Chao et al., 1992; Chao et al, 1997), analyzed through simulation (e.g.
Carvajal-Rodriguez et al., 2007), or demonstrated by naturally occurring examples
(Georgescu et al., 1994). There appears to be a considerable variation in recombina-
tion rate estimates for different viruses (Chare et al., 2003; Chare & Holmes, 2006).
Different constraints in viral recombination will be, at least partially, responsible
for this observation (for review see Worobey & Holmes, 1999). In addition, genome
architecture and networks of interactions will shape the evolutionary consequences
of recombination along the genome (Martin et al., 2005).

15.3 Linkage disequilibrium, substitution patterns, and evolutionary inference

In population genetic data sets, the extent to which recombination breaks up
linkage between loci is generally reflected in the pattern of linkage disequilibrium.
Linkage disequilibrium is observed when the frequency of a particular multilocus
haplotype is significantly different from that expected from the product of the
observed allelic frequencies at each locus. Consider, for example, two loci, A and B,
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with alleles A/a and B/b respectively. Let P4 denote the frequency of allele A, and so
forth. Similarly, let P4p stand for the frequency of the AB haplotype. The classical
linkage disequilibrium coefficient is then D = P45 — P4 Pg. Recombination breaks
up linkage disequilibrium. When a population is recombining “freely,” segregating
sites become independent, and the population is in linkage equilibrium. Measuring
linkage disequilibrium as function of the distance between loci is the cornerstone of
population genetic methods to estimate recombination rates, 4N, 7, where N, is the
effective population sizeand ris the recombination rate per site per generation. It is
also interesting to note that intermediate levels of linkage disequilibrium, and thus
intermediate levels of recombination, assist us in identifying disease markers or
drug resistance-genes in genome-wide association studies. Recombination ensures
that only particular genome regions will be associated with a particular phenotype.
Full independence among sites, however, will break up all the associations between
markers and the phenotype (Anderson et al., 2000).

When measuring linkage disequilibrium in sequence alignments, it is important
to realize that haplotype structure can be shaped in a similar way by recombination
and recurrent substitution (see Box 15.1). Because population genetic analyses have
traditionally been performed on closely related genotypes, analytical methods were
initially developed under an infinite sites model (Kimura, 1969), which constrains
each mutation to occur at a different nucleotide site. Under this assumption, the
possibility of recurrent substitution does not exist. For most populations, however,
infinite site models are not appropriate and recurrent substitution needs to be
accounted before attributing incompatible sites — sites for which the character
evolution cannot be reconciled on a single tree, see Box 15.1 — to recombination.
In particular, homoplasies as a result of convergent changes at the same site can
be relatively frequent in sites under positive selection (especially under directional
selection, but also under diversifying selection), even more than in neutral finite
site models. In sequence analysis, the contribution of recombination and selection
has been notoriously difficult to separate (Grassly & Holmes, 1997).

15.4 Evolutionary implications of recombination

Shuffling genes or parts of genes through recombination inevitably results in mosaic
genomes that are composed of regions with different evolutionary histories, and
in the extreme case, this will result in the complete independence of segregating
sites. Conversely, sites in which allelic combinations are inherited together across
generations, because recombination never separated them, are said to be linked,
and share a single, common evolutionary history. In this way, recombination can
be considered as a process that releases allelic variation at neutral loci from the
action of selection at nearby, linked sites.
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Box 15.1 Recombination and recurrent substitution

Consider four taxa with the following nucleotide sequences:

Taxonl ATTG
Taxon2 AATG
Taxon3 AATC
Taxon4 ATTC

Both sites 2 and 4 are parsimony informative sites: they contain at least two types of
nucleotides, and at least two of them occur with a frequency of two. However, these
two site patterns are incompatible because there is no single tree that can represent the
evolutionary history of these taxa. In order to reconcile the evolutionary history of two
incompatible sites, either recombination or recurrent substitution needs to be invoked:

AT|TG AT|TG
4 4
AT |TG G AT|TG G
2 é 2 é
T T
{ {
A AT|TC A ATlTC
2
AA|TG 1_
AJALT|C A
ATTG AATG AATC ATTC ATTG AATG AATC ATTC
Taxon 1 Taxon 2 Taxon 3 Taxon 4 Taxon 1 Taxon 2 Taxon 3 Taxon 4
Recombination Recurrent mutation

In this figure sequence characters are indicated at the internal and terminal nodes. Sites
that have mutated along a branch are indicated in bold. In the left graph, the site patterns
are explained by a recombination event, represented by the joining of two branches into
the lineage of taxon 3, which carries a recombinant sequence. In the right graph, character
evolution is explained by recurrent substitution: change T— A has evolved independently
and in parallel at site 2 in taxa 2 and 3. Both recurrent substitution and recombination
result in homoplasies.

To fully understand the implications of this, let us consider a population that
recently experienced a severe population bottleneck or a founder effect. Such pop-
ulations will only show limited genetic diversity because much ancient diversity
has been lost due to the bottleneck event or through the founder effect. Similarly,
a beneficial mutation can be rapidly fixed in the population through a selective
sweep. In non-recombining populations, neutral mutations at all other linked sites
in the variant harboring the beneficial mutation will reach a high frequency in
the population (a process known as genetic hitchhiking), which will lead to a
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genome-wide low degree of genetic diversity. When recombination occurs, how-
ever, the fate of neutral variation in the genome can become independent from the
action of selection at another site. And this is increasingly so for neutral variation
that occurs at genomic sites more distantly located from the site where selec-
tive pressure operates because of the higher probability of a recombination event
between them. This can be of major importance when, for example, a beneficial
mutation occurs in an individual that has a less favorable genetic background.
The presence of (slightly) deleterious mutations in this individual will seriously
delay the time to fixation for the beneficial mutation in the population (if it
will become fixed at all). However, recombination can remove deleterious muta-
tions in the genetic background and thus speed up the fixation of the beneficial
mutation. It has been predicted that in finite, asexual populations deleterious
alleles can gradually accumulate because of the random loss of individuals with
the fewest deleterious alleles (Felsenstein, 1974; Muller, 1932). Purging a popu-
lation from lower fitness mutations has therefore been a longstanding theoreti-
cal explanation for the evolution of recombination and some aspects of sexual
reproduction.

15.5 Impact on phylogenetic analyses

A first step in understanding the impact of recombination on phylogenetic inference
is to consider the result of a single recombination event in the evolutionary history
of a small sample of sequences. Figure 15.1 illustrates how the recombination event,
described in Box 15.1 results in different phylogenetic histories for the left and right
part of the alignment.

The impact of a single recombination event on the genetic make-up of the
sampled sequences, and hence on further evolutionary inference, will strongly
depend on how fast substitutions are accumulated in the evolutionary history and
on which lineages recombine at what time point in the history. We illustrate this in
Fig. 15.2 for three different evolutionary scenarios. Note that the top three diagrams
represent the processes of recombination and coalescence of lineages as we go
back in time; mutation will be added later. For simplicity, we will assume that all
breakpoints occur in the middle of the sequences, represented by the blocks under
the diagrams. In Fig. 15.2a, a recombination event occurred shortly after a lineage
split into two lineages. None of the “pure” parental lineages persist and only the
recombinant taxon B is sampled. In the second example, an additional splitting
event has occurred before two lineages recombine (Fig. 15.2b). Taxon or sequence
C represents a descendant of one of the parental lineages of recombinant D. In the
last example in this row, two relatively distinct lineages recombined, after which
the recombinant lineage split into two lineages leading to recombinant individuals
B and C that share the same breakpoint (Fig. 15.2¢). Note that we have described
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Recombination generates different phylogenetic histories for different regions in the
genome. (a) Reticulated history for the alignment discussed in Box 15.1. A recombina-
tion event between lineages 2 and 4 results in recombinant lineage 3. The recombination
breakpoint was places between sites 2 and 3. (b) Phylogenetic tree for sites 1-2. (c) Phy-
logenetic tree for sites 3—4.

these histories of ancestral and descendent lineages without referring to mutation.
In fact, these could represent extreme cases where no mutations have occurred. In
this case, none of the recombination events resulted in any observable effect on the
DNA sequences.

To illustrate an observable effect on the genetic sequences, we have added 8 (low
substitution rate) and 20 (moderate substitution rate) non-recurrent substitution
events to these histories (Fig. 15.2d—f, and Fig. 15.2g—i respectively). Horizon-
tal lines in the evolutionary history represent the substitutions; a small circle on
either side of the line indicates whether the substitution occurs on the left or
right side of the genome, which is important to assess the presence and absence
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Effect of different recombination events on the genetic make-up of molecular sequences.
Three evolutionary histories with a different recombination event are represented in (a),
(d), (®; (b), (e), (h), and (c), (f), (i), respectively. Different substitution processes are
superimposed onto these histories resulting in different amount of substitutions in the
sampled sequences: no mutation in (a), (b) and (c), a low mutation rate in (d), (e), and
(), a moderate mutation rate in (g), (h), and (i). A circle on either side of a horizontal line,
representing a mutation in the evolutionary history, indicates whether a mutation occurs
in the left or right part of the sequences, which are represented by boxes underneath the
diagrams. Vertical lines in the sequence boxes represent inherited mutations.

Fig. 15.2
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of substitutions in recombinant lineages. For a recombinant, we assume that the
left part of the genome was inherited from the leftmost pathway in the diagram
and the right part from the rightmost pathway in the diagram (if the diagram
could be disentangled into two evolutionary histories, similar to Fig. 15.1, then
the left part of the genome evolved according to the left history, whereas the right
part of the genome evolved according to the right history). For the first example
(Fig. 15.2d and g), both low and moderate mutation rate leave no trace of incompat-
ible sites or mosaic patterns and hence it will not impact our evolutionary analyses.
Mutations that occur after the splitting event and before the recombination will
be inherited by the recombinant depending on where in the genome they occur
(Fig. 15.2g). In the second example, and under low substitution rate (Fig. 15.2¢),
the sequences have the same genetic make-up as in the first example (Fig. 15.2d).
This is not the case for a higher substitution rate; sequence C and D have become
more similar due to the recombination event (Fig. 15.2h). In this case, although
it will impact the estimation of branch lengths, the recombination event does not
generate incompatible sites, and estimates of the tree topology will not be affected.
In the last example, incompatible sites are generated for both low and moderate
substitution rates (Fig. 15.2h and i). Some mutations that were shared for A-B and
C-D are now also shared for both recombinant lineages. The relative proportions
of sites shared among A-B-C and B—C-D determine whether the recombinants
will cluster with A or D. As a consequence, this recombination event will affect
estimates of both tree topology and branch lengths.

The examples above illustrate the different impact of a single recombination
event in the middle of the genome. The complexity of how recombination shapes
genetic variation increases enormously as multiple recombination events occur
during evolutionary history, each shuffling different parts of the genome. This is
illustrated in Fig. 15.3, where different histories were simulated using a population
genetic model with increasing recombination rates. The shaded boxes represented
the sequence alignments, and alternate white and shaded areas indicate differ-
ent phylogenetic histories. Recombination events similar to the three types we
described in Fig. 15.3 can be observed, but now overlapping recombination events
occur. If not only random substitutions, but also recurrent substitutions and selec-
tion processes generating convergent and parallel changes occur in these histories,
it is not difficult to imagine how complex the impact on evolutionary inferences
can be and how challenging the task of recombination detection will be.

Generalizing our arguments above, no single strictly bifurcating tree can accu-
rately capture the true evolutionary relationships if different genome regions have
evolved according to different phylogenetic histories. In this respect, phylogenetic
network methods can be very useful to visualize complex evolutionary relationships
(Posada & Crandall, 2001b)(Chapter 21). We illustrate some of the consequences
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Different population histories simulated for five sampled individuals using a population
genetic model with increasing recombination rates. Each recombination event results in
differently positioned breakpoint; n recombination events generate n + 1 different phylo-
genetic histories, represented by alternating white and shaded boxes. The histories were

simulated using the HubsoN RECOMBINATION ANIMATOR (http.//www.coalescent.dk/) with
increasing population recombination rate: 0, 1, 2, 3 for a, b, ¢, and d, respectively.

of including a mosaic sequence in phylogenetic inference in Box 15.2. The first
one is the effect on branch lengths and tree shape; phylogenetic simulation of
recombinant data sets show a reduced ratio of internal branch lengths relative to
external branch lengths. This agrees with population genetic simulations showing
that relatively frequent recombination in the evolutionary history of larger data
sets can create star-like trees (Schierup & Hein, 2000a). This effect on tree-shape
is important to keep in mind when applying, for example, variable population
size models that relate demography to tree shape (see the chapters on population
genetic inference in this book). Phylogenetic simulations have also demonstrated
the confounding effect of recombination on tree topology inference (Posada &
Crandall, 2002), especially when the recombining lineages were divergent and the
breakpoints divide the sequences in half (Fig. 15.2i). In some cases, a phylogeny
can be inferred that is very different from any of the true histories underlying the
dafaigure 15.2 suggests that recombination homogenizes the alignments; this is also
evident from the simulations showing a reduced variance in pairwise distances in
Box 15.2. Not surprisingly, the variance of pairwise differences has been interpreted
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Box 15.2 The impact of recombination on phylogenetic inference

To demonstrate some of the effects of recombination on phylogenetic analyses, 100 data
sets of five sequences were simulated under three different scenarios A, B and C:

B C

A
0.00
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0.10 +
020
025

A B C R D A B R C D A B C R D A B R C D

Substitutions per codon site

In A and B, sequences were simulated according to phylogenetic trees that only differ with
respect to the position of taxon R. One hundred alignments of sequences encompassing
500 codons were simulated using a codon model of evolution with three discrete site
classes: 40% with dy/ds = 0.1, 30% with dy/ds = 0.5 and 30% with dy/ds = 1.0,
representing strong negative selection, moderate negative selection and neutral evolution
(for more information on codon models and dy/ds, see Chapter 14). In the case of C, 100
data sets were constructed by concatenating the alignments obtained in A and B. As a
consequence, these data sets contain a mosaic sequence R that has a different evolutionary
history in the first and second 500 codons.

Tree shape and branch lengths

Maximum likelihood trees were inferred using the best-fit nucleotide substitution
model. The inferred tree topologies were the same for all data sets within their specific
simulation scenarios, but branch lengths varied. Topologies with branch lengths averaged
over all data sets are shown below:

B C
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0.025
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R
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°
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C D

For the non-recombinant data sets in A and B, tree topologies were correctly reconstructed
with mean branch lengths in nucleotide substitutions being almost exactly one third of
the branch lengths in codon substitution units used for simulation. In the case of C, the
best “compromise” tree is similar to the one used for simulation in A, however, with
remarkably different branch lengths. Although R clusters with D, the branch lengths
indicate a much larger evolutionary distance between R and D, but a lower evolutionary
distance between R and A/B/C. This markedly reduces the ratio of internal branch lengths
relative to external branch lengths; the mean ratio of external/internal branch lengths is
3.26 and 6.89 for A and C, respectively.
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Box 15.2 (cont.)

Genetic distances

The effect on tree shape results from the homogenizing of sequences induced by
recombination. This should also be apparent from pairwise genetic distances; histograms
for the pairwise distances of all data sets are shown below:

o
o

o]
o

Frequency

n fo2}
o t=}
LA L L L Y B

0.1 0.15 0.2 0.25
Pairwise genetic distances

In general, the pairwise distance distributions appear to be trimodal, with data sets from
A having a higher frequency of large pairwise genetic distances. For the data sets including
the recombinant R sequence (C), the distances regress to the average value. This has little
effect on the average pairwise genetic distance (0.174, 0.153, and 0.162 substitutions
per site for A, B, and C, respectively), but it reduces the variance to some extent in the
recombinant data sets (0.00175, 0.0022 and 0.00118 for A, B, and C, respectively).

Rate variation among sites

In addition to branch lengths, also parameters in the evolutionary model are affected
when including mosaic gene sequences. In particular, the shape parameter of the gamma
distribution to model rate heterogeneity among sites is lower in the recombinant data sets
(median value of 1.96, 2.10, and 1.17 for A, B, and C, respectively), indicating higher rate
variation in this case (see Chapter 4). This is because the tree with the mosaic sequence
will require extra changes at some sites to account for the homoplasies introduced by
recombination. So, although R clusters with D, assuming extra changes at some sites in
the region where R is most closely related to sequence B will be required.

Rate variation among lineages

Sequences were simulated according to an ultrametric tree meaning that each tip is
exactly at the same distance from the root. The inferred trees with mean branch lengths
for A and B are perfect reproductions of such trees. Because the tree with mean branch
lengths in C is far from ultrametric, the presence of a recombinant might be erroneously
interpreted as rate variation among branches (Schierup & Hein, 2000). To demonstrate
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this more formally, we have performed a likelihood ratio test (LRT) for the molecular
clock in each simulated data set and compared the distribution of the LRT statistic with
the expected x? distribution with three degrees of freedom:

— chi? 0.30 F
2(InL1-InLO) 0.25F
0.20 F
0.15F

(a) (b)
0.10F
0.05 |

— chi? 0.25 H — chi?
2(nL1-InL0) | o020 2(InL1-InLO)
0.15f
0.10
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Both simulated and expected distributions should be very similar under conditions of
asymptotic normality. This appears to be the case for the non-recombinant data sets.
In fact, the 95% cut-off values are very similar for simulated (9.1 and 7.6 for A and B,
respectively) and expected distributions (7.8). The picture for the recombinant data sets
is remarkably different. In this case, the LRT would strongly reject the molecular clock
for each simulated data set based on the x? distribution cut-off.

Positive selection

The codon sequences were simulated under a selection regime that did not allow for
positively selected sites. Although a sample size of five sequences is not very powerful to
estimate site-specific selection parameters, we can still compare the fit of a codon model
representing neutral evolution (M7; Yang et al., 2000) and a model that allows an extra
class of positively selected sites (M8) (for codon models, see also Chapter 14). These
models can be compared using a LRT, similar to the molecular clock test, and significance
can be assessed using a x2 distribution with two degrees of freedom. For a 95% cut-off
value of 5.99, a proportion of 0.06 and 0.02 simulated data sets in A and B, respectively
rejects the neutral model in favor of a model that allows for positively selected sites,
which are very close to the expected 5%. For the recombinant simulation, however, there
is a proportion of 0.10 data sets that reject the neutral model. This tendency confirms a
more elaborate simulation study showing that the LRT often mistakes recombination as
evidence for positive selection (Anisimova et al., 2003).

as a measure of linkage disequilibrium and this and other summary statistics have
been employed to estimate recombination rates (Hudson, 1985). The simulations
in Box 15.2 also indicate inflated apparent rate heterogeneity, an important param-
eter in phylogenetic reconstruction (see Chapters 4 and 5). This observation has
motivated the development of a specific test for recombination (Worobey, 2001).
Finally, any evolutionary analysis that models shared ancestry using a single
underlying bifurcating tree will be affected by recombination. The simulations in
Box 15.2 clearly indicate that recombination results in apparent rate heterogeneity
among lineages. This corroborates the claim that even small levels of recombination
invalidate the likelihood ratio test of the molecular clock (Schierup & Hein, 2000b)
(but see Posada, 2001). Likewise, likelihood ratio tests for detecting selection using
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codon models are also invalid in the presence of recombination (see also Anisimova
et al., 2003). Importantly, also non-synonymous/synonymous rate ratios (dy/ds)
can be overestimated and high number of sites can be falsely identified as positively
selected (Shriner et al., 2003) (see Chapter 14 for inferences of this type). Because
of this, several approaches have been recently developed to estimate this ratio and
recombination rate simultaneously (e.g. oMEGAMAP: Wilson & McVean, 2006), or
to accommodate the presence of obvious mosaic sequences when estimating dy/ds
(Scheffler et al., 2006). In summary, it is important to be aware that recombination
affects many of the evolutionary analyses discussed in this book.

15.6 Recombination analysis as a multifaceted discipline

The myriad of available recombination analysis tools probably reflects the difficulty
of evaluating recombination in molecular sequence data and the different questions
we can pose about it (Posada et al., 2002). Different bioinformatics strategies can
be explored to tackle the problem, and very importantly, with different objectives.
Identifying specific questions prior to data analyses will therefore be an important
guidance in choosing among several approaches. In this chapter, we will distinguish
four major goals: (i) detecting evidence of recombination in a data set, (ii) identi-
fying the mosaic sequences, (iii) delineating their breakpoints, and (iv) quantifying
recombination.

15.6.1 Detecting recombination

The first goal is determining whether recombination has occurred during the
evolution of the sampled sequences. Although a judgment can be made based
on different approaches, including graphical exploration tools, statistical tests are
required to appropriately evaluate any hypothesis. Typically, substitution distribu-
tion and compatibility methods have been developed for this purpose and were
among the earliest available recombination detection tools. These methods exam-
ine the uniformity of relatedness across gene sequences, measure the similarity or
compatibility between closely linked sites or measure their composition in terms
of homoplasies or two-state parsimony informative sites. The null distribution of
the test statistic, which determines the level of significance, can be obtained using
specific statistical models; it can be generated by randomly reshuftling sites, or by
simulating data sets according to a strictly bifurcating tree. The latter approach to
determine p-values is often referred to as Monte Carlo simulation (or parametric
bootstrapping). Both permutation and simulation procedures have made different
approaches amenable to statistical evaluation (including, for example, popula-
tion genetic methods). Substitution distribution and compatibility methods are
generally relatively powerful compared to methods that measure phylogenetic dis-
cordance (Posada & Crandall, 2001a).
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15.6.2 Recombinant identification and breakpoint detection

If significant evidence for recombination can be detected in a data set, the ques-
tion naturally arises which sequences are responsible for this signal. The methods
that try to answer this question are usually, but not necessarily, methods that
also attempt to localize recombination breakpoints. Obviously, if a mosaic pattern
can be demonstrated for a particular sequence, then this also provides evidence
for the recombinant nature of the sequence. Scanning methods employing dis-
tance or phylogenetic methods are generally well suited for this purpose, but also
substitution distribution methods that examine the uniformity of relatedness across
gene sequences can be used in this context. The next chapter expands on detecting
and characterizing individual recombination events using these types of methods.
It is, however, important to be aware of some caveats in using sliding window
approaches for detecting recombinants and delineating breakpoints. First, scan-
ning methods usually require a priorispecification of a query sequence and putative
parental sequences (or rather, the progeny thereof). So, if this approach is used in
an attempt to identify recombinant sequences in a data set, the analysis needs to
iterate through every sequence as possible recombinant, which obviously generates
multiple testing problems. Second, Suchard et al. (2002) pointed out that scanning
approaches fall into a “sequential testing trap,” by first using the data to determine
optimal breakpoints and parental sequences for a particular query sequence and
then using the same data to assess significance conditional on the optimal solu-
tion. To overcome this, a Bayesian approach was developed to simultaneously infer
recombination, breakpoints, and parental representatives, avoiding the sequential
testing trap (Suchard et al., 2002). Interestingly, such probabilistic models have also
been extended to map recombination hotspots in multiple recombinants (Minin
et al., 2007).

15.6.3 Recombination rate

A different goal would be to quantify the extent to which recombination has
shaped the set of sequences under study. Simply estimating the proportion of
mosaic sequences in the data set does not provide adequate information because
different sequences might share the same recombinant history and/or different
recombinants might have different complexity resulting from a different number
of recombinant events in their past. Some substitution distribution methods that
measure homoplasies or two-state parsimony informative sites also determine the
expected value for this compositional measure under complete linkage equilibrium.
The ratio of the observed value over the expected value for complete independence
of sites therefore provides some assessment of how pervasive recombination is
(e.g. the homoplasy ratio and the informative sites index, Maynard Smith & Smith,
1998; Worobey, 2001). However, this is not always suitable for comparative analysis
because the number of recombination events also depends on the time to The
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Most Recent Common Ancestor (TMRCA) for a particular sample of sequences
(and related to this, the effective population size of the population from which the
sequences were sampled). The same criticism is true for methods that simply count
the number of recombination events that have occurred in the history of a sample.
This can be achieved by counting the occurrences where all allelic combinations are
observed for two bi-allelic loci (AB, Ab, aB, ab). If an infinite sites model is assumed
(see above), such an occurrence can only be explained by a recombination event.
Because this four-gamete test only scores a recombination event if all four possible
two-locus haplotypes can be observed in the sample, it is only a conservative
estimate of the minimum number of recombination events that have occurred in
the absence of recurrent mutation.

A quantitative estimate of recombination that takes into account the evolution-
ary time scale of the sampled sequences would be an estimate of the population
recombination rate. Very importantly, this implies a completely different scenario.
Now we are trying to estimate a population parameter from a sample (paramet-
ric methods), while before we were trying to characterize the history of a given
alignment (non-parametric methods). In this setting it is very important that the
random sample provides a good estimate of the frequency of the different alleles
present in the population. Note that now we will work with all the sequences,
when before, we just used the different haplotypes. In Chapter 17, a population
genetics model is introduced that describes the genealogical process for a sample
of individuals from a population (the coalescent). Recombination can easily be
incorporated into this model, in which case the coalescent process is represented
using an ancestral recombination graph (ARG) instead of a single genealogy. (In
Figs. 15.2 and 15.3, most graphs represent ARGs, whereas the graph in Fig. 15.3a
represents a genealogy.) Parametric methods based on linkage disequilibrium
attempt to estimate the population recombination rate, p, which is the product of
the per-generation recombination rate, r, and the effective population size (N,): p =
4N,r (for diploid populations). The ARGs in Fig. 15.3 were simulated using increas-
ing population recombination rates. If the population mutation rate ©, a funda-
mental population genetics quantity equal to 4N,m in diploid populations, can
also be estimated, then the recombination rate estimate can be expressed as p/®
= r/m, which represents importance of per generation recombination relative to
per generation mutation. As discussed above (Box 15.1), applying such estima-
tors on diverse sequences, like many bacterial and viral data sets, requires relaxing
the infinite site assumption. Other assumptions that we need to make under the
parametric approaches are also important to keep in mind. The standard, neutral
coalescent process operates under a constant population size, no selection, random
mating, and no population structure. Although this ideal might be far from biologi-
cal reality, the model can still be useful for comparing recombination rates among
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genes and for the purpose of prediction (Stumpf & McVean, 2003). Nevertheless, it
is clear that factorslike population structure and demographic history may affect the
ability of coalescent methods to correctly infer the rate of recombination (Carvajal-
Rodriguez et al., 2006). Despite the disadvantage of having to make simplifying
assumptions, population genetic methods offer a powerful approach to estimating
recombination rates across the genome, which can lead to a better understand-
ing of the molecular basis of recombination, its evolutionary significance, and the
distribution of linkage disequilibrium in natural populations (Stumpf & McVean,
2003).

15.7 Overview of recombination detection tools

Although we have attempted to associate different objectives to different recombi-
nation detection approaches, this does not result in an unequivocal classification
of the available bioinformatics tools. Many tools share particular computational
approaches or algorithmic details, but none of these are ideal classifiers. Both in
terms of algorithms and objectives, the line has become blurred in many software
packages. To provide a relatively detailed overview of different methods and soft-
ware packages available, we have compiled a table that includes relevant features
from a user perspective and particular algorithmic details (Table 15.1). To provide
an approximate chronological overview, the methods are roughly ordered accord-
ing to the year of publication. An updated version of this table will be maintained
at www.thephylogenetichandbook.org and URLs for the software packages will be
provided at www.bioinf.manchester.ac.uk/recombination/.

The criteria we list as important from a user perspective are statistical support,
the ability to identify recombinant and parental sequences, the ability to locate
breakpoints, and the speed of the application. A method is considered to provide
statistical support if a p-value can support the rejection of the null hypothesis
of clonal evolution. Methods that are designed to detect recombination signal in
sequence data based on some test statistic are generally well suited to provide sta-
tistical support (e.g. through a Z-test, a chi’-test, a binomial p-value or parametric,
and non-parametric bootstrapping; see Section 15.5 and the next chapter). Statis-
tical support can also be obtained in the form of a posterior probability (Suchard
et al., 2002) or using an incongruence test (e.g. the Shimodaira—Hasegawa test in
GARD; Kosakovsky Pond et al., 2006). Methods that are more graphical in nature
do not always provide such support. For example, we do not consider bootscanning
to be statistically supported, even though bootstrap values might give a good indi-
cation of the robustness of different clustering patterns in different gene regions.
Bootscanning might not only fall into the sequential testing trap, but it also does



Surd£youald

U : Lsv1g
(5007 “10 32 YoAnD
UBA 8661 “IV 12 OBD)) : : : : : : : LSIJOVE]
(5661 “Iv 12 [2do1S) : : ‘ : : : : ang
(500 “1v 42 UnIE) ) ) ) ’ €aay
SIOUDIJRI
(6661 “Iv 12 3[0T) 'sA A1onb ou sak jsey saf ou ou LOTdWIS jo[d aoue)stp/A)rreqrurg
UOT)BUIQUIODAT
Jo sts[eue
(€661 “UIdH) saouanbas Je sak ou 1% sak ou ou SAVIOTY Auouursred onysumay
(s661
I 12 U0S}I2qOY) j911enb ou SISTY
(100T “1v 12 A3110() : : : LAVLS
(9007 “v 12 uaniq) . : . . ou : . MOV JIH]
(1007 (eaaeWIYD)
‘[repueI)) X epesod) 1o1din : : sak : caay
,SIOUIIDJAI “SA
(00T “v 12 UnIRN) A19nb/sy01dIny : saf (Tyoxewr) €aay
(2661 agavnog-1H)
aprug preudepy) syordin ou sak 158 saf ou sak WAWIXV]N ~ parenbs-myo wnwixep
(100 “1v 12 A3170() ’ ’ ’ ’ ’ ’ LAVLS
JERliEhe) et
(6007 “Iv 12 UNIBN)  "SA A1onb \uﬁ&b . cday
(98e10A® UOTSI2AT0D JUdF 10§
(6861 “Todmeg) jsurede) sired ou ou 1seJ saf saf sa ANODINED)  1$3) [eOTISTILIS S JoAmeg
DUdIJAI spow umy 3oUSNISUOOU]  MOPUIM paadg syurodyearq siepuared  310ddns weidoig POUYISIN
wei301d/poyIdN onouafoldyg  Surpys S91BDOT  /SJUBUIQUIODAI  [BOTISTIRIS
SIghHUap]
BLILID OTWILIOZY BLINID 2A1dadsiad 1asn)
$|00} UOI}12919p UOIIeUIqUUOD3I JUSISYIP JO MIIMSAQ  L'SL d]qel



(‘1u02)
(00T “1v 12 UnIR)

(6661 “1v 12 SSWOH)
AmODN 73 12 Gﬁuwzv

(8661 “IAT[IOM)

(8661 ‘ypeaus)
AGOON ..NS 12 Gvdhmv
(100T “v 12 >m:ob

(8661 ‘yaruig
3 (g preude)

(L661
‘SoWIO}] X3 A[SseIn))
(00T “1v 12 UnLIRIA)

(£661 “Iv 42 SINDIN)
(L661 “Ip 12 U3sqoe()

(9661
‘Teaiseq X uasqoye()
(s00t
“Iv 42 BIAIO 3P)
(00T “1v 12 UnIRN)

(6661 “1v 12 3107)

o1din

,S90UDISJI
'sA A1onb
sired

saouanbas e
saouanbas qe

sjoyrenb
saouanbas Je

saouanbas [e

saouanbas e

&mvuﬁo.ﬂomm.ﬁ

'sA A1onb

sak

ou
ou

ou

saf

sak
ou

ou

sak

sak

sak
ou

ou

saf

sak
ou

ou

saf

MO[S

jsey
jsey

15¥j
jsey

MO[S
jsey

4

JseJ

Jsej

sk

sk
ou

ou

saf

sak
sak

ou

sak

sak

ou

sak
sak

ou

ou

Sk
ou

2

ou

ou

sak

ou
sak

sak

saf

sak
ou

saf

ou

faay

a’¥vy
cday

O¥JTAHJ
LSHLVENS
MOVJIHJ
LIVLG
(surerdoxd
o1seqb)

oLvV1d
caay

SSA¥/TITVIO.L
XILLVINILAV J

HLVINDILEY

voIyg
caay

LOTdINIS

VNa
Ul UONRUIqUIOddY

Jo sisk[euy pooyr[aIy

sa[gyo1q d1ouddo[Ayg

Sursn uonoajep

UOT}RUIQUIODAT
[eorydern

1S9, UBWLIOYS PAYIPOIA

159} Asejdowro
uoneLIeA
snauadody{ rereds

JO UON219p POOYIAIT

poyiow sarenbg
JO swng Ul DUIPIJ
SIOLIJBW UOTILIE]
21008 AjLre[ruris
IoquSrou pue
xtyewr Aypiqrieduro)

Suruuessjoogq



syurodyeaiq

,SOUAIJAI SSOIO® UOT)e[NO[ed
(#007 “Iv 32 19qnH) 'sA A1onb ou sak JseJ saf saf ou  NOHJOWATIAg XLIJRUI-20Ue)SI(]
(£00T “1v 12 Suey) : YTHLO¥GO
Surepowx
DUIIJAI jutod-aguerp
(200T “1v 12 pIEYONS) ‘sa A1onb saf ou  MO[S saf ou soA  swaH1O0¥gIVA(J srdnu uersafeq
(¥00T “1v 42 SUTIN) ) T pMOIs ,0u NAJdY/TIVAOL
OO
(9100T Sursn porpjowr
QUSLIA 3@ ToToWISNE]) saouanbas e saf sok  Mmo[s saf ou saf JAENV[  2OUIZIAAIP OBSI[IqeqoId
(¥00T “1v 12 SUTIN) ’ ‘ T pMOTs ‘ ,ou * JININHY/TTVdOL
(€007 9IMOIN
X3 IDTOWISNE]) : : : JHOAYY
9OUDIAJUT UeTSafeyg
(e1002 7(qepeN) M [9pOT AGYIBIN
QUSLIM X IoTWISNE] ) joyrenb saf ou  MoO[s saf ou saf avyag uapp1y oneuadodyd
(1007 42qo10M) saouanbas [[e ou ou JseJ ou ou sah Ls1d 159) SIS QAT BULIOJU]
(000z
‘DPIGAY X9 UTIIRIN) 1o1din ou sak JseJ saf sak sak fday poyew J(y Y2
,SIOUIJAI
'sA A1onb
(500Z “iv 72 unrely)  /9[din/errenb . sak sak caay
(0002 “Iv 12 sqQQqID) jo1diny3a11enb ou sak i saf ou ou NVOSI§  pOoyjour Suruuess 12)s1g
DUAIJAI spow umy ousnuduoou] mopumm  paadg sjurodyeaiq sreyuared  j10ddns urerdorg GE A
Eﬁmoi\ﬁoﬁuz uumnomovﬁa wc:u:m $9)8207] /SIUBUIQUIODII  [edTISTIe)S
SIGRUSPI
BLID)LID OTWIIIOZTY BLINIID 2AndadsIad 195
(u0d) 1's19jqelL



("1u02)

(00T “1v 12 UnIRN)

(£00T “v 12 TUOY)
(9007 “Iv 12 ZAPS)

(9002 “1v 42
puod AYsaoqesoy])

(900t
aoneSua 33 JpAeN)
(9002
YO[OM X spuowIS)
(8661 ‘uoSNE)
(9007 “v 12 waniq)

(5007 “v 12 ureyeIn))

AmOON TNE 12 EEHNEV

(00T “Iv 12 UNIEIN)

(5002

“1v 10 WO)SULIYIY )

(€007 “Iv 32 JoWWILNS)

SIOUIIJAI
'sa A1onb/syo1din . : .
syordin ou ou 1seJ

2oUIAI
‘sa A1anb saf ou MO[S
saouanbas Tre saf ou MOTS
saouanbas [re ou ou MOTS
saouanbas e sak saf MO[S
saouanbas Jre ou ou Ise]

s30)1enb juapuadap

x s1o[din sk sak poyiowr
syordin sak saf Jsej

,SI0UAIRJAI
*sA A1onb ou sak jsey
sja)renb sak sak 1s¥j

saf

sak

saf

sak

sak

ou
siuapuadap
poyjow

sk

sak

saf

sak

saf

ou

ou

sak

saf

ou

sk

sak

saf

ou

saf

ou

safk

sak

ou

sak

sak

sak

ou

ou

cday

[ek:(N%

INNHAL

aavo

000y

SOINOWINIG
HHY ] SLITdS

MOVJIHJ
(a8exped-y)
HSIMJELS

cday

cday

vy

AUSIA

SY[em Wopuer
srawoas-1odAy
Sursn wonoalep
UOT)RUIQUIOINYT
S[oPOW AOMIEUI
uappry ogoid Surdum(
S(§REIET)
UOT}RUTqUIODAT
10J WIOS[E d12UID)
uonezrumndo
3500 Susn
SISAJeUR UONBUIQUIODY
popaw Lyiquedurod
snauadodyg

xopur
Asejdowroy asimireq
UoT)22)9p
uoneuIquIodaI asimdalg
saypeordde oydnnux
Sursn wonoajop
UOTIRUIqUIOdYY
(ueds9y)
Suruuessjooq
parewrony
[001 sisA[eue
UOT)BUIQUIOJAT
paseq-aoueIsi(q
Suruuess 3931enb
Sursn uorp
UOTJBUIQUIODAT [BNSTA



“19)se3 Apueoyruss uni [im sasdeue s dD s[dnnuw uo peaids usym Jnq T0ssa001d S[SUIS B UO UNI UIYM MO[S A[[eISUS dIB IMYdOL Ul SPOYIdW YL, |
IYdOL Ut pajuswd[dur pojowr Aue utsn pagnuapt st urs)jed jueurquiodar e 19)je parjdde aq wed urprrode sty Jutodyeaq uoneuIquIoddT JULdYIuSIs-uou e
ur $)[Nsa1 J1 SUTAOWIAI JT JueUIquIOdaT darieInd © sT 90uanbas y *pajenuurs axe syuswrudife 00T OIUBIYTUSIS sSIsse OF, *auin) & Je 2duanbas auo no Juraea] pajenored are
jurodyea1q yoea 10§ $2100s §S(J YL, ‘poyrow Aue Suisn paynuapr ‘sjurodyealq 2y} uaam3aq suordal snodauaowoy Y} SMOPUIM Se SIS POYIAUT  JNO-IU0-2ABI[, SIYT,
“sjutodyealq uoneuIquIoda1 3y 10y A[qrsuodsar aq o) readde (s)aouanbas yorym puy o) pasn aq ued PoyIawW (SS(J) sa1enbs Jo sWNS UT 2OUIIPIP PIYIPOUI B ‘ITYdOL U] ,
">uanbas £1anb remonred e jo
SurIasn( 33 3081} 03 110149150d b SWIAYPS  DOUIYAI ‘sa £19nb, 9y3 $951 INq ¢(dUL1FUT 913 dURZO[AYd) A[snodue LIS SPOUINDSS [e sozA[eue Yorordde uedssiooqayy,
*13s eJep 2} UT saduanbas jueuIquiodar aaneind Aynuapr o) yoeordde [nyasn e sopraord Sunias 1anye] 9y, “19[d1n 10 3a11enb srqissod L1949 sajenyead
ey sisA[eue  pajewolne ue uriojiad o) 10 saduanbas [ejuared pue L1onb e SuruSisse Aq sis[eue  [enueur e wrojiad 0] 1asn oY) smof[e £day ‘saypeordde asoyy 10
‘yoeordde swres o) Junuswayduir adeyoed a1eMIJOS 1SIY ) SB JUAIUOD dUILS 3Y) 0] SIJAI S[[D Y UTIOP Y .

Sunsay

ONeI pOOYII
(¥00T “1v 12 SUIN) saouanbas Je sak sah , mols sak Lou Sok  IMTY/ITVJOL  Sursn soaon Jurredwo)

sojdures

(£00¢ ‘ueyuISEIRN ,puspuadap [BLI3S JO SYI0MIDU
3 erpuang) saouanbas [re poyiow sak 1seJ sak 3k ou (JNIJN ONIAITS  Areuonnjoad Surpying
0UIJAI Jpow umy 3oUSNISUOOU]  MOPUIM paadg syurodyearq stepuared  310ddns weadorg POTIAIN

weido1d/poyIN onouadoldyg  Surprs S9JeD0T  /SJUBUIQUIODDI  [BO1ISTIBIS
SogNUap]
BLINLID OTWILIOZY BLID)LID dATdadsIad 1950

(7u0d) 1'S13|qeL



"MOpUIM
JudwuSI[e Yoea 10J $991) SIYUT POYIaw SUIUULISI00q pIepuels oY) A[uQ "poylawl SUruUeds100q DULISIP B PUE POYIdW JUIUURISI00q PIEpUE]S B ‘(dIY ‘weISoxd
UO0T10919C UOTIBUTqWODIY Y] ul pajudwa[dwl se) poyaur £1nuapr aejuadiad e :sjueuIquIodd1 AJUIPI 0] SPOYIDW JUIYIP 3213 syuawdduur qgNIW DNIANS
‘yoeoxdde astmdas 1) UT pasn ST Jet[} POYIAW 3} UO

puadap erra)Ld oy I, “syutodyeaiq jo sajewrss sopraoid pue 3s9) uonjeinuriad e sasn Jey) poylouw uond}p uoneurquioddr Aue oy parjdde oq ues yoeordde astimdays ay T,
*Sureq awm 9y} 10§ JULDLJUT

Areuonendwiod pue mofs st uonejuawdduwr sty ‘A[oyeuniiojun Inqg (/WINH0j4yd /siuawaiddng /yuup ~ [yn-ovssoiqmmm [ /:diay) wreidoid gy TV e ul pajuawaduur
U29q Sey PoOYI_W A, *(S00Z) IPIWISNE Ul PIQLIdSIP UI3q SBY] [PPOW AOYIR]A UIPPIY [BLI0108] © BlA Wa[qo1d s1y) sassaIppe 1ey) poylaw pasoiduwr uy Krouadorsiay
9)e1 Suoxs smoys JuaWUSIe 20UaNbas YN(J B UIYM SJU2A UOTJBUIqUIOIDT SNOJUOLID J0Tpaid Aewr poyjaur 30¥vg 33 ey 2J0N S[00) dnsouderp uriojiuowr aurf-uo
[BI9A3S puUe [N5) A[pudLI-19sn € sapraoid ydIyMm ITyYdOL 0IUT PajeISajur uaaq aAey 3gWv[ pue 3dvg yiog "(werdoxd ++7)) 3duvg Jo 1osimdaid gV TIVIN oY) ST avdas
‘syueuIquIodax aaneInd Surdruapt ur

[ngasn aq ued saypeordde asat)) 210J219Y T, *saouanbas 12110 [[e 01 2d>uanbas £1943 Jo Ajrreqruuts 1) 21en[ead 0) uondo  oIeas oyne, Ue Sey Lvy "SMOPUIM JUDL(Pe 0M] 10]
SIOLIJBL JDUB)SIP OM] UIIM]IIq UOTIBIAIP 2)N[0SQE 3] 0] UOIINGLIIUO0D 3} 2duanbas yoes 10 sajen[esd NOHdO¥IT13g “sanbruysay mopurm-Surprys Sursn uonisod L1942 e
JuswruSiye ayy ur 2>uanbas [enprArput Yoes 10y panduwiod axe ‘sadue)sIp o1oud3 asimired Uo paseq AT YOIYM ‘SUOTR[1I00 d1auS0[Ayd ‘0¥d1AHd U] A1onb e se pauSisse
Suraq 195 eIep o)) UT 2dUNbIs A1945 103 TOSTIRAUIOD STTY) TI0§1ad Ured 451} ‘saouanbas 1110 o1 [1e IsureSe souanbas A1onb e sredwros sagexped aremizos asatp) ySnoyy

“—

£



516

Philippe Lemey and David Posada

not assess how much topological variability can be expected as a result of chance
alone (under the null hypothesis).

The ability to detect recombinant sequences and breakpoint locations has been
discussed above (see Section 15.5). It should be noted that methods examin-
ing every possible triple or quartet combination in a data set (e.g. RopP3 and
3SEQ), are generally designed to identify (a) combination(s) of taxa for which the
null hypothesis can be rejected, with appropriate multiple testing correction (see
Section 15.5 and next chapter), but cannot always discriminate between the recom-
binant and parental sequences within that triplet/quartet. In terms of speed, we
have only used a slow/fast classification based on user-experience or input from
the original authors. If the analysis of a moderate size data set was thought to take
no more than a coffee break, we classified it as “fast.” Of course, coffee breaks
are stretchable, software speed can heavily depend on the settings involved, and a
more objective evaluation on benchmark data sets is required to provide a more
accurate and quantitative classification.

The algorithmic criteria in Table 15.1 include the use of a sliding window
approach, “phylogenetic incongruence” and “run mode.” Methods are classified
as using a phylogenetic incongruence criterion if phylogenetic trees form the cor-
nerstone of the inference. Whereas sliding window refers to a particular form
of alignment partitioning, the “run mode” refers to a taxa partition used by the
method. Several methods do not partition the taxa in their analysis strategy and
detect recombination in the complete data set (“all sequences”). Other methods
focus on subsets like pairs, triplets or quartets. In some cases, these methods
analyze all possible combinations of this partitioning scheme in an attempt to
pinpoint putative recombinants and their parental sequences (e.g. RDP3 and 3SEQ)
or in an attempt to provide a graphical visualization of phylogenetic incongru-
ence (e.g. VIsRD). In other software programs, the application of the algorithm is
simply restricted to such subsets (e.g. a quartets in BARCE and TOPALI/RHMM and
a triplet in the original MAxIMUM CHI-SQUARED program). Methods that use the
“query vs. reference” setup focus on the relationship — frequently inferred from
pairwise genetic distances (e.g. PHYLPRO, SISCAN, SIMPLOT, BELLEROPHON and RAT)
— between one particular sequence and all the other sequences in the alignment.
Some of these programs iterate through all sequences when evaluating these rela-
tionships (see footnote e in Table 15.1), while others restrict themselves to the
a priori assigned query sequence.

Because population genetic inferences are considered as a different class
of methods with the primary objective of quantifying recombination (see
Section 15.5), they are not included in Table 15.1. A list of population genetic
methods is provided in Stumpf and McVean (2003), which includes software pack-
ages like SEQUENCELD and FiNs (Fearnhead & Donnelly, 2001), LDHAT (McVean
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et al., 2002) and its four-allele extension that implements more complex evolu-
tionary models (Carvajal-Rodriguez et al., 2006) (http://darwin.uvigo.es), RECMIN
(Myers & Griffiths, 2003) and LAMARC (Kuhner et al., 2000) (see Chapter 19).

15.8 Performance of recombination detection tools

Probably the most important user criterion to make an objective choice is lacking
in Table 15.1; how good are these methods at achieving their goal? Two aspects
are important in their evaluation: power (or false negative rate) and false positive
rate. The power and false positive rate of detecting recombination signal in molec-
ular data has been evaluated for different methods (Brown et al., 2001; Posada &
Crandall, 2001a; Smith, 1999; Wiuf et al., 2001). For this purpose, coalescent-based
simulations appear to be very useful. To evaluate power, two variables are important
in the simulation procedures: recombination rate and mutation rate. Increasing
recombination rates result in an increasing number of recombination events in
the history of the sampled sequences (Fig. 15.3). Although not all events leave a
molecular footprint of recombination (Fig. 15.2), the frequency of simulated data
sets in which recombination can be detected should increase towards 100% as
higher recombination rates are used in the simulation. However, also the muta-
tion/substitution process that is superimposed onto the ancestral recombination
graphs to simulate the sequences will impact the power of recombination detection
(Fig. 15.2). The higher the mutation rate per site per generation, the larger the
genetic difference between two randomly drawn sequences and the higher the fre-
quency of incompatible sites and conflicting phylogenetic information (compare
Fig. 15.2¢, f, and i). For every tool, it is hoped that the sensitivity in detecting
recombination is not at the expense of the rate of false positive detection (Type I
error). To evaluate this, genealogies are simulated without recombination events.
In the mutational process, not only increasing genetic divergence is now important,
but also increasing rate heterogeneity among sites (Posada & Crandall, 2001a) (see
Chapter 4 on how this is modeled in the nucleotide substitution process). The
latter increases the probability of recurrent substitution, which also increases the
frequency of incompatible sites in the generated sequences (see Box 15.1).

The most comprehensive study comparing 14 different methods using such
simulations revealed that recombination detection tools are generally not very
powerful, but they do not seem to infer many false positives either (Posada &
Crandall, 2001a). Methods that examine substitution patterns or incompatibility
among sites appeared more powerful than phylogenetic methods, a conclusion also
shared by smaller-scale studies (Brown et al., 2001; Wiuf et al., 2001). This might
not be surprising in case of low sequence diversity. If the boxes in Fig. 15.2 would
be translated to real sequences, no well-supported trees could probably be inferred
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from either side of the breakpoint, even for those representing “moderate” muta-
tion rates. However, the substitution patterns and the amount of incompatible
sites can still exhibit significant deviations from clonality. In real molecular data,
such deviations might also result from other evolutionary process. So comparisons
on empirical data sets (Posada, 2002), and those for which recombination is well
characterized in particular (Drouin et al, 1999), can provide important insights.
Particular processes that can lead to false positive results are now also being imple-
mented in simulation procedures (e.g. substitution rate correlation, Bruen et al.,
2006). Finally, it is worth noting that methods have only been systematically eval-
uated for their performance in revealing the presence of recombination. Similar
studies to evaluate the accuracy of identifying recombinant sequences within a
data set and locating breakpoints will greatly assist the selection among available
methods (e.g. Chan et al., 2006).
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