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1.1 Introduction

1.1.1 The evolutionary process
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1.1.2 Reconstruction of phylogenetic relationships

It is maybe the most fundamental assumption in evolutionary biology that any two species on
earth share a common ancestor at a certain time point in their history. One of the major tasks
in evolutionary research is therefore the reconstruction of these phylogenetic relationships.
Unfortunately, in most cases no direct evidences –such as a comprehensive fossil record–
exists about when a particular pair of species split from their most recent common ancestor,
nor about the succession of ancestors for more than two species. It remains then as the only
option to reconstruct the phylogenetic tree from its leaves, comprised by the species, or more
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general by the taxa we observe today.
Tree reconstruction can be divided into two sub-problems: First, what is the topology of the
tree, i.e. what is the order the individual taxa branch off? Having inferred the tree topology, we
will obtain valuable information about the relative relationships of the species to each other.
Obviously, this is invaluable for a meaningful systematic classification concept. Second, what
is the evolutionary time that has passed since any two taxa in the reconstructed tree last shared
a common ancestor. Finding its reflection in the branch lengths of the tree, evolutionary time
can be informative both about the absolute time in years (or generations) two taxa evolved
independently and about the extent of evolutionary change that has accumulated on either
lineage.

Reconstructing a tree from its leaves

Aims

• Reconstruction of the tree topology (branching order)

• Reconstruction of the tree shape/parameters? (branch lengths)

Means

• Comparison of evolved characters between taxa to trace the evolutionary signal

• Modelling the evolutionary process to dissect the evolutionary signal from noise

• Account for heterogeneous evolutionary signals in the data

• Find the appropriate character class (candidates range from body plan to molecules) as
well as the appropriate character whithin the chosen class to reconstruct phylogenies.

Molecular sequence data as the relevant character class

1.2 Modelling DNA sequence evolution

It is well-known that a variety of evolutionary forces act on DNA sequences (see Chapter 1).
As a result, sequences change in the course of time. Therefore, any two sequences derived
from a common ancestor that evolve independently of each other eventually diverge. The pat-
tern and extent of divergence between the two sequences can then be used to reconstruct their
evolutionary history. The substitution of nucleotides or amino acids in a sequence is usually
considered a random event. As a consequence, an important prerequisite for the reconstruction
of phylogenetic relationships among species is the prior specification of amodel of substitu-
tion which provides a statistical description of this stochastic process. Once a mathematical
model of substitution is assumed, then straightforward procedures exist to infer genetic rela-
tionships from the data.
To count the number of mutations X(t) that occurred during the timet we introduce the so-
called Poisson process: at any point in time an event, i.e. a mutation, can take place. That
is to say, per unit of time a mutation occurs with intensity or rateµ. Let Pn(t) denote the
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probability that exactlyn substitutions occurred during the timet. Then we can say that the
number of substitutions up to timet is Poisson-distributed with parameterµt:

Pn(t) = [(µt)nexp(−µt)]/n! (1.1)

On average,µt substitutions with varianceµt are expected. Note that the parametersµ (nu-
cleotide substitutions per site per unit time) andt (the time) are confounded. That is, they
cannot be estimated separately but only through their productµt (number of substitutions per
site up to timet.
The nucleotide substitution process of DNA sequences described by the Poisson process can
be generalized to a so-called Markov process that uses a Q matrix –that is a matrix, which
specifies the realtive rates of change of each nucleotide along the sequence. The most general
form of the Q matrix is shown in figure1.1. Rows follow the order A, C, G and T so that,
for example, the second term of the first row is the instantaneous rate of change from base A
to base C. This rate is given by te frequency of base C (πC) times a relative rate parameter,
describing (in this case) how often the substitution A to C occurrs during evolution with re-
spect to all other possible substitutions. Thus, each non-diagonal entry in the matrix represents
the flow from nucleotidei to nucleotidej, while the diagonal elements are chosen to make
the sum of each row equal to zero. They represent the the total flow that leaves nucleotide
i. Accordingly, we can write the total number of substitutions per unit time (i.e. the total
substitution rateµ) as

µ = −
n∑

i=1

Qiiπi (1.2)

Nucleotide substitution models like the one summarized by the Q matrix in figure1.1belong
to a general class of models known as time-homogenous time-continuous stationary Markov
models. When applied to modelling the nucleotide substitution process these modells share
the following set of underlying assumptions:

• The rate of change fromi to j at any nucleotide position in a sequence is independent of
the nucleotide that that occupied this position prior toi (Markov property)

• Substitution rates do not change over time (homogeneity).

• The relative frequencies of A, C, G, and T (πA, πC , πG, πT ) are at equilibrium (station-
arity).

. Obviously, these assumptions are not necessarily biologically plausible. However, they are
the consequence of modelling nucleotide substitutions as a stochastic process. As soon asany newer approaches to mention where these as-

sumptions are relaxed?
the evolutionary model – and thus the Q matrix – is specified, it is possible to calculate the
probabilities of change from any nucleotide to any other during the evolutionary timet, P (t)
by computing the matrix exponential:

P (t) = expQt (1.3)

This equation resembles the equation under the Poisson distribution with the sole difference
that the mean substitution rateµ in the exponential is replaced by the Q matrix, specifying
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Q =


−(aπC + bπG + cπT ) aπC bπG cπT

gπA −(gπA + dπG + eπT ) dπG eπT

hπA iπC −(hπA + iπC + fπT ) fπT

jπA kπC lπG −(jπA + kπC + lπG


Figure 1.1: Instantaneous rate matrixQ. Each entry in the matrix represents the instantaneous sub-
stitution rate from nucleotidei to nucleotidej (rows and columns follow the orderA, C, G, T. a to
l are rate parameters describing the relative rate one nucleotide is substituted by any other nucleotide.
πA, πC , πG, πT correspond to the nucleotide frequencies. Diagonal elements are chosen such that each
row sums up to zero.

the relative rates for each possiblei → j substitution according to the evolutionary model
represented by the Q matrix.

Nucleotide substitution models From the instantaneous substitution rate matrix Q depicted
in figure1.1various sub-models of the nucleotide substitution process can be obtained. Among
these, the so-called time-reversible models are the ones most commonly used. These models
assume that for any two nucleotidesi andj the rate of change fromi to j is the same as from
j to i (a = g, b = h, c = j, d = i, e = l, f = l in figure1.1).If all of the remaining eight free
parameters of a reversible substitution rate matrix Q are specified, the general time reversible
(GTR) is derived. At the other extreme it can be assumed that the equlibrium frequencies of
the four nucleotides are 0.25 each, and that any nucleotide has the same rate to be replaced by
any other. These assumptions correspond to a Q matrix withπA = πC = πG = πT = 1/4,
anda = b = c = d = e = f = 1 reflecting the simplest nucleotide substitution model,
namely the Jukes and Cantor (JC69) model. An overview of the hierarchy of the most com-
mon substitution models is shown in figure XXX.add figure 4.7 from Strimmer and Haeseler

1.2.1 Modelling rate heterogeneity

The nucleotide substitution models, as we have described them so far, implicitly assume that
the rate of nucleotide substitution is the same for any position in the DNA sequence, i.e. rate
homogeneity applies. However, it is a well-known fact that this is a due oversimplification.
For example, substitutions are about 10 times more frequently accumulated at C and G nu-
cleotides when the C is followed by a G. Similarly, constraints in maintaining functional DNA
sequences can result in substitution rates varying along a DNA sequence. To account for such
a site-dependent rate variation, a plausible model for distribution of rates over sites is required.
Most commonly, aΓ-distribution with expectation1 and variance1/α is used for this purpose.
By adjusting the shape parameterα, theΓ-distribution allows varying degrees of rate hetero-
geneity. Forα > 1, the distribution is bell-shaped and models weak rate heterogeneity among
sites. Forα < 1, theΓ-distribution takes on its characteristic L-shape, which describes situ-
ations of strong rate heterogeneity, i.e. some positions have very high substitution rates, but
most other sites are practically invariable.
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qij =


0 if i andj differ at two or three nt posititions,
πj if i andj differ by one synonymous transversion,
κπj if i andj differ by one synonymous transition,
ω(h)πj if i andj differ by one non-synonymous transverion
ω(h)κπj if i andj differ by one non-synonymous transition.

Figure 1.2: Instantaneous rate that codoni at siteh is replaced by codonj. pij representes the
marginal frequency of codonj, κ denotes the transition/transversion rate ratio, andω the nonsynony-
mous/synonymous substitution rate ratio.

1.2.2 Codon models

Heterogeneous substitution rates become a particular issue for such DNA sequences that code
for proteins. Amino acid sites in a protein sequence are expected to be under different selective
constraints, depending on their relevance for the protein function. Accordingly, nucleotide
substitutions causing the encoded amino acid to change (replacement mutations) will have
probabilities to become fixed in a population varying with the selective constraint imposed on
the encoded amino acid position. In contrast, silent substitutional changes – that is the change
in the DNA sequence has no effect on the protein sequence level – are invisible to selective
forces acting on the protein sequence. As a result, the nonsynonymous/synonymous substitu-
tion rate ratio (ω = dN/dS) will vary among sites in a DNA sequence, withω = 1 indicating
no selection,ω < 1 purifying selection by removing replacement mutations, andω > 1 diver-
sifying positive selection/adaptive evolution. Codon models of DNA sequence evolution have
been specifically designed to model the evolution of protein coding DNA sequences. An ex-
ample is shown in figure1.2based on a extension of the F84 model (Figure XXX). Note, that
in contrast to the conventional substitution models, codon models consider the replacement
of one nucleotide triplet (codon) by another. By that, the number of letters in the alphabet of
the model increases to sixty four possible codons, rendering codon models computationally
highly intensive. Obviously, the assignment of a distinctω(h) to each codon position would
lead to a vast over-parameterization of the model. Therefore, distinctω-classes or statistical
distributions –both discrete and continuous– are used to account for heterogeneousω-values
among sites.

1.3 Tracing the evolutionary signal
note that we assume that those taxa are related
that share the same character state.We have briefly outlined above that any two DNA sequences tracing back to a shared ancestor

will – mediated by the nucleotid substitution process – eventually diverge. Given a set of
related DNA sequence, we can – assuming their genealogy is known – make inferences about
the evolutionary forces molding the contemporary DNA sequences from their shared ancestral
sequence. Conversely, with an assumption/model at hand of how DNA sequences evolve, we
can aim to reconstruct the phylogenetic tree along which the DNA sequences in our data set
have evolved. In both cases, however, a representation of the data set is needed, which allows a
comparison of such positions in the individual sequences that trace back to a single position in
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the common ancestor of all sequences. In an alignment, each of these sequences is represented
by a row and is written such that positionally homologous nucleotides form a single column.
To account for the insertion and deletion of positions during sequence evolution, gaps can be
introduced to achieve positional homology. However, we will not go into details of alignment
reconstruction and assume in the following that an alignment for a given set of sequences is
available. Based on this alignment several criteria exist to find the tree that best reflects the
evolutionary relationships of the sequences in the alignment.

1.3.1 The parsimony principle of evolution

Parsimony methods share as an optimality criterion that among various alternative hypotheses
the one, which requires the minimum number of assumptions should be chosen. In the context
of DNA sequence evolution this results in a model of Maximum Parsimony proposing that
contemporary DNA sequences evolved from their shared ancestor via a minimal number of
nucleotide substitutions. Consequently, that sequence tree will be chosen which explains the
sequence variability in the corresponding alignment by a minimum number of substitutions.

Generalized Parsimony To date a vast number of modifications of the initial criterion of
maximum parsimony exist. Instead of referring to each and every modification separately, wecite some of them

would like to give the idea of the generalized parsimony from which the individual modifica-
tions can be easily derived. In a mathematical terminology, one aims to identify those trees incite: Sankoff 1975, Sankoff and Rousseau 1975,

Sankoff and Cedergren 1983, Swofford et al.
Textbook the space of all possible trees which minimize the following equation:

L(τ) =
B∑

k=1

N∑
j=1

ωj × diff(xk′j , xk′′j) (1.4)

whereL(τ) id the length of the treeτ , B is the total number of branches in the tree,N
is the number of characters analyzed,k′ and k′′ are two nodes on a branchk having the
character statesxk′j and xk′′J . These can be either the observed character states present
in the data matrix or in the case of internal nodes the optimal character state assignments.
Eventually,diff(x, y) is the cost for the transition from character statex to statey, andωj

allows to assign a weight to each character in the tree reconstruction. The transition costs can
be summarized in am×m matrixS, with m as the number of different character states. The
entrySij then represents the increase in tree length associated with a transition from character
statex to y. Depending on the choice of the cost matrixS and of the weight parameter
ωj different extents of prior information about the evolutionary process can be introduced
into the parsimony model. In the simplest case, corresponding to no prior knowledge, all
characters have equal weights (ωj = 1forj = 1...N ) and all changes between the character
states invoke the same cost (Figure1.3A). A slightly more specialized model considers that
nucleotide substitutions that leave the base type unchanged (Transitions: Purine↔Purine and
PyrimidineleftrightarrowPyrimidine) occur more frequently than nucleotide substitutions
altering the type of the base (Transversions: Purin↔Pyrimidine). As a consequence, the
phylogenetic signal might decay more quickly into noise for transitional changes than for
transversional changes. To account for the resulting difference in the information content, it
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A =

A C G T
A − 1 1 1
C 1 − 1 1
G 1 1 − 1
T 1 1 1 −

B =

A C G T
A − 5 1 5
C 5 − 5 1
G 1 5 − 5
T 5 1 5 −

Figure 1.3: Cost matrices for generalized parsimony. In matrixA substitutions between all four nu-
cleotides invoke the same cost. In matrixB a slightly more sophisitcated model is presented that lays
more weight on transversions in the process of tree reconstruction than on transitions.

might be justified to a assign a smaller weight to transitional changes than to transversional
changes in the phylogeny reconstruction procedure. An example for the correspondingS-
matrix is shown in figure1.3B.

Multiple/parallel hits Parsimony principles rely on the assumption that a group of related
taxa share a certain character state due to its inheritance from their common ancestor. How-
ever, this approximates the true evolutionary events only then in a realistic way when the
overall amount of sequence changes is low. Thus, multiple changes of the same character in
the same taxon or parallel independent changes of the same character in different taxa – both of
which are incompatible with the parsimony principle –, are sufficiently infrequent not to causereally incompatible or just requires additional hy-

potheses such a parallel evolution, reversal etc
any problems. However, when considerably diverged sequences are used for tree reconstruc-
tion, or marked substitution rate heterogeneity among sites exists, character inconsistencies
can cause severe problems in both assessing the correct number of character changes along
the phylogenetic tree and in inferring the correct tree topology.

1.3.2 Distance based methods

In contrast to parsimony methods with their straightforward biologically interpretable ap-
proach to phylogenetic tree reconstruction, other methods chose a mathematical access to
accomplish this task. Distance based methods utilize the principle of the least squares. Ini-rephrase

tially, a distance matrixD is calculated from all pairwise comparisons between the sequences
in the data set. Thus, entryDij represents the pairwise distance between sequencesi and
sequencesj. In a simple approachDij is computed as the edit distance (Levenstein distance)
– that is the minimum number of substitutions required to transform sequencei into j. How-
ever, in order to account for superimposed changes occuring at a single sequence position,
which have no effect on the edit distance, an appropriate model of sequence evolution can be
used to correct the observed distance by estimating the expected number of ’unseen’ changes
given the model. These corrected distances reflect the number of changes that occurred in
two sequences after their emergence from a common ancestor. Once the matrixD has been still this requires rephrasing

computed, a phylogenetic tree can be inferred such that the difference between the evolution-
ary distancesdij of any sequence pairij in the tree and the corresponding entries inD are
minimized. The best tree under this criterion minimizes the following equation:

R(T ) =
∑
i<j

(dij −Dij)2 (1.5)
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Additive and ultrametric distances Under the hypothesis that biological sequences indeed
evolve in a tree-like manner, evolutionary distances have the convenient property of tree addi-
tivity. That is, the evolutionary distance between any two sequences is equal to the total length
of the branches connecting the two sequences in the phylogenetic tree. Under these conditions
the four-point metric condition is satisfied for any four taxa A, B, C, and D connected by thecite Buneman 1971

tree show in figure?? such that

dAB + dCD ≤ max(dAC + dBD, dAD + dBC) (1.6)

In reality, however, the critertion of exact tree additivity is frequently not met. Firstly, stochas-
tic error in the sampling of phylogenetically informative positions can result in a devia-
tion from perfect tree additivity, even when the underlying data has evolved exactly accord-
ing to the model used for distance correction. Secondly, the evolutionary model for dis-
tance correction might be inappropriate. Lastly, additional evolutionary mechanisms –such
as recombination– can have the effect that a sequence does not evolve according to a sin-
gle evolutionary tree. Obviously, the first two problems can be approached by enlarging the
sample size and by chosing more appropriate/realistic sequence evolution models for distance
correction. Furthermore, although approaches to infer the phylogenetic tree along which a set
of sequences have evolved from thei pair-wise distances are based on the assumption of tree
additivity, they allow for a certain degree of deviation from additivity and still obtain the true
evolutionary relationships. In contrast, the issue of sequences that do not evolve in a strictlycite appropriate papers

tree like manner remains problematic. We will return to this problem in the sectionN̈etworks̈.be more specific?

The concept of additive distances can be extended to the more constrained scenario of ul-
trametric distances. For any set of three taxa A, B, and C these can be summarized in the
following three-point condition:

dAC ≤ max(dAB , dBC) (1.7)

That is, two of the three genetic distances have to be equal and at least as large as the third
distance. From this it can be easily followed that any two taxa in the tree are equally distant
from their shared ancestral node. As a consequence, by finding that node in the tree which
has the same distance to all terminal taxa, the root of the tree –that is the common ancestor of
all taxa in the data set– can identified. In the same way, the evolutionary relationships of the
taxa are put in a temporal order. However, for the inference of ultrametric distances the same
limitations apply as mentioned for the inference of additive distances. Thus, it is frequently
more convenient to refer to alternative concepts to determine the root of a tree (see below).

1.3.3 The criterion of likelihood

The third method of tree reconstruction is based on the principle of Maximum Likelihood
(ML) [ 21] which was introduced into the field of sequence based tree reconstruction by Felsen-cite R.A. Fisher - DONE

stein in 1981. The general idea of ML is as simple as it is appealing: For a given modelM
and the corresponding parameter vectorθ the probability or likelihood of observing dataD
can be calculated. That parameter vector set is then chosen that maximizes the likelihood of
observing the data. For the specific problem of reconstructing a phylogenetic tree from bio-
logical sequence data, a further parameterτ representing the tree topology is introduced such
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that

(τML = argmaxτP (D|τ,M, θ). (1.8)

Note the subtle but substantial difference to the principle of Maximum Parsimony methods de-
scribed above. In Maximum Likelihood approaches, a general concept of sequence evolution,
namely that one sequence is transformed into another via the smallest number of changes,
is replaced by an explicit model of sequence evolution, which specifies the rates with which
evolutionary changes occur. From this the most significant advantage of Maximum Like-
lihood becomes apparent: It allows the incorporation of any model of biological sequence
evolution into the tree reconstruction process. By that, it opens access to the full use of sta-
tistical approaches to e.g. compare alternative phylogenetic hypotheses, as well as to test fit
and robustness of individual models of sequence evolution. A further advantage compared to
the previous two approaches is the possibility to make full use of the sequence information,
including those sites in the data set where no change is observed.

1.3.4 Calculating the likelihood of a tree

We have described above how to calculate the probability of observing a difference at a given
site in two sequences. We now extend this to the question of how to compute the probability of
finding a certain nucleotide pattern (Ds) in a columns in a set ofn aligned DNA sequences.we should stay with DNA sequences in the whole

manuscript
Obviously this probability depends on the model of DNA sequence evolution and on the tree
relating then nucleotides in the alignment column:P (Ds|τ,M, θ). An efficient way how to
efficiently compute this probability has been described by Felsenstein (1981). Superimposing
the constraints that all positions in an alignment of lengthL evolve according to the same
evolutionary model but independently from each other, the probability of the alignment given
a tree and a model is

P (D|τ,M, θ) =
L∏

s=1

P (Ds|τ,M, θ) (1.9)

To avoid underflow errors during the calculation, probabilities are always≤1, the likelihood
of the data is usually calculated in log-scale, such that

log[P (D|τ,M, θ)] =
L∑

s=1

log[P (Ds|τ,M, θ)] (1.10)

This equation allows us to compute the likelihood of an alignment, if we knew the evolu-
tionary model, the topology of the tree connecting the sequences in the alignment as well as
its branch lengths. In reality, however, we face the reverse situation. Starting from a given
alignment, we aim to infer the underlying phylogenetic tree together with its branch lengths.
In order to do so we regard these parameters as variables. Once we have decided for an evo-
lutionary model and have specified its parameter values, we can adjust the tree topology and
the branch lengths such that equation1.10is maximized. While straightforward and efficient
ways exist to obtain Maximum Likelihood branch lengths for a specific tree topology, it is
both a computationally as well as intellectually demanding problem to obtain an optimal tree
topology. Section ”Finding the optimal tree” deals in detail with this problem. rephrase last sentence!
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1.3.5 Rooting trees / Molecular clock

So far we have introduced various methods to infer the relative relationships of sequences (or
taxa) to each other. In many cases, however, it is the temporal order in which the individual
taxa in a tree branch off one is mainly interested in. Unfortunately, most of the methods
described above lack an inherent criterion to assign directionality to the evolutionary process.
As a consequence they are unable to identify the root –that is the internal node dating farthest
back in time– of a phylogenetic tree. To nevertheless arrive at a rooted tree, it is required (and
possible) to add supplementary information into the tree reconstruction procedure.

Outgroup rooting Among the various methods to root a tree, it is certainly most intuitive
to divide the set of taxa into two subgroups: a monophyletic ingroup and an outgroup, whose
more distant relationship to any member of the ingroup is either known or at least reasonable
to assume. It is then straightforward to conclude that the node where the outgroup joins thestill rephrase

ingroup taxa represents the root of the tree [55, 41]. Although of tempting simplicity, this ap-
proach requires some considerations in order to be applied in a meaningful way. Outgroup taxa
should be, despite their clear position outside the ingroup, as closely related to the ingroup taxa
as possible. This will increase the probability to reliably identify homologous sequence posi-
tions using standard alignment procedures. Furthermore, it minimizes the risk that outgroup
taxa are represented by little more than randomized, fully saturated sequences with respect to
the ingroup [67, 33]. In such cases it is impossible to extract the evolutionary signal from the
sequence comparisons, and thus outgroup/root placement lacks support by the data[51]. In
addition to these more general requirements, some additional guidelines exist to root phyloge-
netic trees by the use of an outgroup. First, where applicable more than one taxon should be
included into the outgroup [34]. Furthermore, different outgroup taxa should be used to check
whether the root placement changes with the chosen outgroup [62]. Finally, hyper-variable
sites in the sequences should be identified and excluded from the analysis where applicable
since they tend to blur the phylogenetic signal in distantly related sequences [24].

Midpoint rooting and Molecular clock As we have seen, the choice of a meaningful out-
group to root a phylogenetic tree can extend to an unsolvable problem, especially when an-
alyzing groups whose phylogenetic relationship is largely unclear. In such cases additional
assumptions about the evolutionary process can be imposed that help to root the tree without
any prior knowledge about the phylogenetic relationships of the taxa under study.
Phylogenetic trees can be rooted under the assumption of a molecular clock. That is, per
unit of time any lineage accumulates the same amount of sequence changes. In other words,
the branch lengths in the tree represent the evolutionary time since two taxa split from their
common ancestor. Under these conditions, the point in the tree that is equally distant from all
terminal taxa will be assigned as the root. In reality, however, the assumption of a molecu-
lar clock is frequently violated. If this is neglected, rooting under the clock assumption will
tend to place the root on that part of the tree that is evolving with a higher evolutionary rate.
Midpoint rooting relaxes the constraints imposed by the molecular clock assumption slightly.
It places the root on the midpoint of the path connecting the two most distantly related taxa
in the phylogenetic tree. Compared to the molecular clock assumption this retains only the
constraint that the evolutionary rate has to be the same on the two most divergent lineages in
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the data set. However, when this criterion is met midpoint rooting identifies the localization
of the root correctly [61].

1.4 Finding the optimal tree

Up to now we dealt mainly with the principles to evaluate a phylogenetic tree under a certain
evolutionary model. However, people are usually only moderatly interested in a statement how
likely a particular tree reflects the true evolutionary relationships among a set of taxa. Rather,
they require the tree that most likely reflects these relationships. We can differentiate betweenmaybe replacemost likelywith best?

two general concepts to search the tree space, that is the set of all possible trees for a set ofn
taxa, for the desired optimal tree(s): 1) exact searches which guarantee the identification of the
optimal tree, and 2) the computationally less demanding heuristic searches which, however,
not necessarily obtain the optimal tree.

1.4.1 Exact searches

In the conceptually simplest approach, the exaustive search, each and every possible bifur-
cating tree in the tree space is evaluated under the selected optimality criterion. The identi-
fication of the optimal tree is then straightforward and the computationally challenge in this
search limits to an algorithm that assures a walk through the entire tree space. To accomplish
this, one usually starts with a selection of any three taxa from the data set since they can be
connected only by a single unrooted tree. Subsequently, the remaining taxa are added in a
step-wise fashion such that theith taxon is added separately to each of the2i − 5 branches
of every possible tree for thei − 1 previous taxa. Going through this approach on a piece of
paper with a set of five taxa immediately clarifies the procedure. Obviously, the addition of
every taxon increases the number of possible trees by the number of branches the new taxon
can be connected to. Thus, the total number of unrooted trees for a set ofn taxa calculates as:

B(n) =
n∏

k=3

(2k − 5) =
(2n− 5)!

2n−3(n− 3)!

[20] The limitations of the exaustive search are perspicuous. Already a compilation of 20
taxa, a data set that is nowadays easily exceeded, requires the evaluation of over2 × 1020

different trees. Not much imagination is needed to comprehend that this is –and presumably
will remain– computationally infeasible.
However, an alternative approach exists that assures a globally optimal solution to the problem
of tree search without the need to evaluate every possbile tree for a set of taxa. Branch-and-
Bound methods perform an exact but guided search in the tree space omitting those subspaces
where the optimal tree cannot be contained in . The rationale is simple and depends onlycite Hendy and Penny 1982

on the requirement that the criterion of tree evaluation, e.g. total tree length, is non-decreasing
with the addition of new taxa to a particular subtree. For the following we assume that we aim
to minimize the valueL of this evaluation criterion. We start with the definition of an upper
bound forL. This can be obtained for example by evaluating any arbitraryn-taxon tree as a
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reference. Subsequently, using again a three taxon tree as a primer we recursively reconstruct
the possiblen-taxon trees. However, as we move on in our reconstruction procedure, i.e. with
the addition of more and more taxa into the trees, we compareL of the resulting subtrees with
Lupper. As soon asLsubtree exceeds the predefined upper limit ofL we can be certain that
our combined reconstruction/search path leads to a subspace where no tree equally good or
better than the reference tree can be found. Thus, no further reconstruction is required and
a new path has to be followed up. Alternatively, if we end up with a tree including all taxa
that is equally good or better than the reference tree, we will store this as a candidate and
updateLupper to the new value. Meanwhile a number of improvements have been added to
increase the efficiency of Branch-and-Bound methods in the tree search process. Thesecite Hendy and Penny 1982 and Swofford 1996

refinements are mainly designed to facilitate earlier cut-offs in the tree search. They include
methods to obtain a near optimal tree for an assessment of the initial upper bound, as well
as considerations in the order taxa are added to the subtrees; e.g. to add divergent taxa first,
thereby increasing the length of the initial subtrees.
Despite these improvements exact searches eventually run into computational problems when
data sets become large. In these cases, faster heuristic methods are required for tree recon-
struction.

1.4.2 Heuristic methods

Summarizing heuristic methods for tree reconstruction with the attribute ’quick and dirty’ is
not entirely inappropriate. The jettison of a guaranteed globally optimal solution to the tree
search problem –therefore ’dirty’– earns a substantial speed up in computating time. With
contemporary software it is nowadays possible to reconstruct trees from data sets of more
than thousand taxa, e.g. [?]. From the Bioinformaticists point of view, we are therefore for the
first time in the pleasant situation that biological datasets hardly ever reach the computational
limits of tree reconstruction software.

Hill-climbing and the problem of local optimization

The problem of finding an optimal tree for a set of taxa can be illustrated by the metaphor of
a night time hiker aiming to reach the point with the highest altitude in a hilly area. Due to
the poor visibility, the highest peak cannot be identified a priori. Thus, the hiker remains with
the only option to climb any slope he encounters first until he has reached its top. Up there he
checks his altimeter and is either confident to have reached one of the highest points in this
area and finishes his search, or he invests more effort and climbs another hill. The analogy to
the tree search problem is obvious. Starting off with any tree we modify it in a stepwise fash-
ion usually accepting only such modifications that lead, according to the chosen optimality
criterion, to an improved tree. At a certain point no further improvement is possible, and thus
we have reached the top of the hill. At this point of the search, however, we have no means
to decide whether we have found the globally optimal tree, or merely a local optimum. Thus,
these kinds of tree searches have to cope with three challenges: first, the identification of a
reasonable tree to start the search with, second the implementation of a stepwise hill climbing
algorithm for the tree search, and third the avoidance of local optima.
Reasonable starting trees are usually quickly obtained via so called ”greedy” strategies. Here,
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the problem –i.e. finding an optimal tree– is divided into several subproblems. These are then
sequencially solved by choosing always that solution that looks best given the current situa-
tion.
In star decomposition methods (Figure1.4), e.g. Saitou and Nei’s Neighbor Joining algo-

rithm [?], we begin with an assignment of all taxa in the data set to the terminal nodes of a star
like tree. Subsequently, all trees are evaluated that can be obtained by joining any two of the
terminal taxa into a new group. The tree that scores best under the chosen optimality criterion
forms then the basis for the next step. The iteration of pairwise joining and tree evaluation
continues until the tree is fully resolved, that is an optimal binary tree is obtained.
Alternatively, we can directly construct a binary tree from scratch by inserting the taxa into

a tree in a stepwise fashion (Figure1.5). First, a set of three taxa is used to form a uniqueAny suggestions for citation. E.g. Farris 1970?
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binary tree. Next, a fourth taxon is chosen for insertion into the intial tree. Since the this can
be attached on any of the three branches of the initial tree, we have three possible topologies
for the four-species tree. All of these will be evaluated and the best tree will be stored for
insertion of the fifth taxon. The iteration continues until the tree includes all taxa in the data
set.
It is straightforward to see why both star decomposition methods as well as the stepwise in-
sertion procedure are prone to obtain only locally optimal trees. Once a decision has been
made about the position of a taxon in the tree, this decision is fix for the remaining part of
the reconstruction procedure. However, to increase the flexibility, and by that to escape from
local optima, tree-rearrangement methods exist to secondary override the strict dependency
on previous decisions. In brief, the initial ’optimal’ tree is modified such that a part of the
tree is excised and re-inserted at a different position. The trees resulting from such ’branch
swapps’ are evaluated and subjected to one or more acceptance criteria. While a better tree
will be always accepted, trees inferior to the one already obtained can be accepted under cer-
tain conditions. This deviation from the strict hill climbing approach facilitates the transition
to better trees that are more than one rearrangement apart from the currently best tree. Cur-
rently, three alternative ways of branch swapping are in use (Figure1.6). Nearest Neighbor
Interchange, the computationally least demanding approach (O(n)), takes any internal branch
of the tree and swaps two of the four connected subtrees. Note that only swapping of two sub-
trees located on the opposite sides of the internal branch leads to the formation of a new tree!
Subtree pruning and regrafting (O(n2)) excises a subtree and regrafts it with the cut surface
at any branch on the tree. Tree-bisection and reconnection is the most complex way to swap
branches (O(n3). The tree is bisected along an internal branch and the resulting subtrees are
rejoined at any pair of branches.
As noted, any of the branch swapping methods is capable to guide the tree reconstruction pro-
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cedure out of a local optimum. However, no guarantee is granted that it does not simply lead
into the next local optimum, in which the benefit would is only limited. Apparently, if the
branch swapping is performed only sufficiently long it becomes likely that sooner or later the
global optimum will be found. However, two problems are associated with this: First, how
shall we recognize the globally optimal tree, and second how long do we have to continue the
tree search?

When (better) trees go extinct It is inherent in the heuristic approach that no matter how
long we search, we can never be sure that we have found the globally optimal tree. Thus,
we need an idea whether the tree we are looking at is just good and we can expect to find a
better one soon, or whether it is already ’pretty good’ and it will take a fortune to find a better
one (although it might exist...). Generally, it is entirely up to the endurance of the researcher
how long he allows his program to search for the best tree. Either a predefined number of
optimization steps or a lower limit by which new trees improve led to a truncation of the
search. Both criteria are arbitrary and a more stalwart basis would be desireable to decide
whether to continue or end the tree search.
Recently, a method implemented into the software IQPNNI [64] was suggested that is based
on the time of occurrence (i.e. number of iterations) of better trees during the search. Let
L1, L2, . . . , Lj denote the log-likelihoods for the firstj iterations, then the sequenceτ(k) of
record times (i.e. iteration number, when a better tree is found) is defined by Replace log-likelihoods with a more general

word

τ(1) = 1, τ(k + 1) = min{j|Lj > Lτ(k)}.

This sequence is used to estimate the point in time,τstop, at which to stop the search, i.e.,
when it appears unlikely that a further search will lead to a better tree. Using the theory
detailed in [14] and [47], one can estimate during the run of the tree search an upper 95%
confidence limitτ95% of τstop. Onceτ95% iterations have been carried out and a better tree
was not detected the program will stop and output the best tree found. It can then be concluded
that with a probability of 95% no better tree will be found during this search. On the other
hand, if a better tree is found beforeτ95% is hit, theτ95% is recomputed on the basis of the
new record time added to the sequenceτ(k).

• Heuristics for large data sets (Vinh)

– RAxML [ 57]

– IQPNNI [64]

– PhyNav [63]

– PHYML [23]

– MetaPIGA [32]

• Parallel computing (Heiko)

– message passing (MPI [22, 56]), shared memory (OpenMP [16])

– fastDNAml [58, 42]

– RAxML [ 57]
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– TREE-PUZZLE [53, 52]

– DPRml [31]

– parallel GAML [9, 69]

– TrExML [68, 69]

– maybe parallel IQPNNI

1.5 The advent of Phylogenomics (Heiko)

1.5.1 Multi-locus data sets

• Consensus tree vs. concatenation
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• Incomplete sampling

1.5.2 Supertree methods

• Direct supertrees

• Indirect supertrees

• Medium level combinations

1.5.3 Introduction

The large amounts of molecular sequence data currently available serve two needs in the phy-
logenetic analysis of the relationship of species. On the one hand, the number of interesting
species available for analysis grows (vertical growth). On the other hand, more different se-
quences per species get available (horizontal growth). Unfortunately, the number of sequences
is not distributed evenly among species of interest. This often makes collecting a dataset for
phylogenetic analysis a painful decision on the trade-off between the amount of taxa and the
number of sequences.

While methods abound to infer phylogenies from a set of aligned sequences [61], only a
small number of methods exists to combine data of different genes, proteins, or genomic areas
for joint analysis.
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There has been a large ongoing debate how to combine different datasets to reconstruct
trees (cf. [17], [8], and [44], chap. 8 for review). Two paradigms have been discussed, which
we will classify by the ’distance’ of the combination event from the underlying data intolow
levelandhigh levelmethods (cf. Fig.1.7). Note thatlow andhigh does not imply a quality
rating.

The first paradigm istotal evidence(also often calledcombinedor simultaneous analysis)
where the data is combined directly by concatenating the alignments. Hence,total evidence
methods will be referred to aslow level methods(cf. Fig. 1.7).

The other paradigm is the so-calledseparate analysis(also calledtaxonomic congruence
andconsensusor supertree approach). Such methods combine trees reconstructed separately
from the single datasets. Since the combination takes place far from the underlying data, such
methods are referred to ashigh level methods(cf. Fig. 1.7).

Both paradigms have their advantages and drawbacks (for review see [17], [8], and ref-
erences therein). Major criticisms are, e.g., the problems to jointly model the evolutionary
process for the concatenated dataset inlow level methodsand the loss of information in the
high level methodssince the underlying data is in general not considered when the trees are
combined. These arguments gave rise to the design of an alternative method which will be
proposed in this chapter.

The method presented here follows amedium levelparadigm, according to the level of
combination (cf. Fig.1.7). Before particularizing the procedure (section1.5.5), commonly
usedhighandlow level methodsare described (section1.5.4). Then the new method is applied
to a biological dataset in section??. The results are discussed in the context oftotal evidence
and consensus/supertree methods. Finally, problems will be discussed and an outlook on
further improvement and extensions will be given.

1.5.4 Methods to Combine Datasets

Low LevelCombination: Total Evidence

As mentioned above,low level methodsare commonly referred to astotal evidence, combined
or simultaneous analysismethods. Claiming that all information (evidence) available should
be used for phylogenetic analysis, all single datasets are combined into one single’supermatix’
[50] as shown in Fig.1.7. This is achieved by concatenating all source alignments filling
missing data with gap characters. The overall alignment is then used as input for phylogenetic
analysis. This method seems unproblematic for complete datasets, where for each species
one sequence in each source dataset exists. Howtotal evidenceapproaches handle missing
data crucially depends on the method used to reconstruct a phylogeny from the concatenated
alignment. Since some programs exclude alignment columns with gaps, such programs will
end up only with data from genes which are available for the whole set of species. Datasets
with missing sequences are discarded.

High Level Methods

While low level methodscombine the source datasets directly,high level methodsconstruct a
tree for each source dataset. The trees from the source datasets are then combined to an overall
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Figure 1.7: Level of combination with regard to distance from the underlying datasets

tree (Fig.1.7). If all source datasets contain the full set of species, consensus techniques can
be applied combining all the equally sized trees into one consensus tree. To combine sets of
trees with unequal, but overlapping sets of species, so-calledsupertreemethods have been
developed which amalgamate the input trees into one overallsupertree.

Combining Equal-Sized Datasets: Consensus MethodsConsensus methods aim to con-
struct a consensus tree from a set of trees preserving common topological details of the source
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trees. Commonly applied consensus methods are strict consensus, majority-rule consensus
[36], semi-strict consensus [10], and Adams consensus [1].

Most consensus methods are based on splits or bipartitions (cf.??) found in a majority
of the source trees (Ml consensussensu[38], wherel represents the percent occurrence of
included splits). Sets of non-contradicting bipartitions are chosen to reconstruct the consensus
tree.

The majority-rule consensus[36] uses all splits occurring in the majority of input trees.
Usually amajority-rule consensusis assumed (Ml consensus withl > 0.5, [38]). This means
all splits occurring in more than50% of the source trees (see Fig.1.8). Consideringl > 0.5
ensures that all splits can be incorporated in a tree topology, because no two contradicting
splits are able to occur in more than50% of the input trees.

For thestrict consensustree only bipartitions are chosen that are found in all input trees
(M1.0, see Fig.1.8). Thesemi-strict consensus[10] contains all splits that are not contradicted
in any of the input trees, e.g. the splitABCD|EF is uncontradicted by theABC-trifurcation
in tree A and B in Fig.1.8. Note that such splits can occur in less than half of the source trees.
If all trees are binary treesstrict andsemi-strict consensuswill always produce the same trees.

Contrary to most consensus methods which are based on bipartitions and their percent
occurrence in the source trees, theAdams consensusis based on common nestings in trees,
i.e., taxa frequently occurring together in the same subtree. This method tries to find groups
of sequences that are commonly occurring together in the source trees [1]. Adams consensus
treescan contain groups that cannot be found in any of the source trees. This makes it difficult
to interpret. Yet it can be informative when there are sequences that are difficult to place. Such
sequences are moved to the root of theAdams consensus tree(Fig. 1.9).
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Figure 1.10: Coding schemes to encode tree topologies for MRP methods: Baum/Ragan and Purvis’
scheme

Combining Overlapping Datasets: Supertree Methods Supertree methods have been de-
veloped to combine sets of overlapping trees into’supertrees’containing all leaves found in
the source trees. Some of the methods are restricted to rooted trees, based on the argument
that the broad majority of trees published are rooted trees. Input trees cannot be produced
from different datasets only, but can also be obtained from the literature.

Matrix Representation Methods
A commonly used method to construct supertrees isMatrix Representation using Parsi-

mony(MRP, [6, 46]), which uses binary coding to represent the input trees. The splits induced
by all source trees are coded into a matrix with binary characters (’0’, ’1’) with missing data
(’?’). The binary matrix is then used to construct an overall tree (cf. Fig.1.7) usingMaximum
Parsimonymethods [61]. The most abundant coding schemes are those independently sug-
gested by [6] and [46] and the modified scheme by [45]. Baum/Ragan code the bipartitions of
an input tree assigning ’1’ to all leaves in the one part of the bipartition and ’0’ to the other
that contains the root. All missing taxa are assigned the missing data character ’?’ (Fig.1.10).
[45] differs in that only the sistergroup of a clade is assigned ’0’, while all other leaves of that
part outside the clade are assigned ’?’ (Fig.1.10).

To give input trees different weights in the analysis, different weighting schemes have
been suggested (see [49], [50], and references herein for more details).

Recently, another method has been proposed calledMatrix Representation using Flipping
(MRF, [13]), which also uses a binary matrix coding of the trees as described above. The
MRF supertree is constructed by ’flipping’ conflicting character states from ’1’ to ’0’, or vice
versa to produce a matrix that does not contain contradictions. Their optimal solution is the
tree that needs the least ’flips’.

Direct Supertree Methods
Another family of supertree methods use a more graph theoretical approach. Members
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of that family are the ONETREE/BUILD algorithm [2, 12], M INCUT SUPERTREEalgorithm
[54], and the modified MINCUT SUPERTREEalgorithm (MODM INCUT SUPERTREE, [43]).
These algorithms take as input sets of rooted trees. The BUILD algorithm and the ONETREE

algorithm produce a supertree only if the input trees are compatible, i.e., the trees are not
contradictory (cf. strict consensus in1.5.4). Since this is almost never the case for biological
data, these algorithms are mainly useful to test for compatibility of trees.

M INCUT SUPERTREEtries to yield a supertree applying a minimum cut algorithm to the
graphST constructed from the set of input treesT , following Alg. ?? (see also Fig.?? and
Fig. 1.7). The notations follow [43] – for further details see there.

[43] suggested a modification (here called MODM INCUT) to choose the minimum cuts,
that takes into account preserving uncontradicted information from the source trees. The
MODM INCUT SUPERTREEalgorithm marks all edges in the graphST (step??) not contra-
dicted by any tree inT . If ST has to be cut in step?? minimum cuts are preferred which
do not cut uncontradicted edges. Hence, the amount of uncontradicted information from the
source trees is preserved in the supertree (cf. Fig.??).

Quartet-Based SupertreeRecently a quartet-based supertree method has been proposed
by [48]. Instead of using a matrix representation, all source trees are decomposed into sets
of quartets contained in the topologies (Fig.1.7). Each quartet is weighted by the highest
support value found on the path of the quartet’s middle edge in any of the input trees (the
authors used the TREE-PUZZLE package to compute the trees and support values). From this
set of weighted quartets an overall tree is constructed with the quartet method implemented
in the AllTree program [7]. In a first step, this method computes all subsets of taxa and keeps
those satisfying the most quartets. In a second step, it performs an exact search on each subset
constructing an overall tree satisfying most quartets.

1.5.5 Medium LevelCombined Phylogenetic Analysis

Notation

In the present chapter we assume a collectionS = {s1, . . . , sn} of n species andk different
genes to be used for combined analysis.

With S1,S2, . . . ,Sk we denote subsets ofS, such that

|Sg| ≤ 4 for each g and
k⋃

g=1

Sg = S. (1.11)

EachSg represents the subset of species for which a multiple alignment based on geneg is
available. These subsets will be called genesets. Finally,Qg, g = 1, . . . , k represent the
corresponding sets of possible quartets.

Instead of reconstructing the treesT (Sg) for each setSg, we will compute an over-
all tree T (S) combining the information provided from the evaluation of the quartet sets
Q1,Q2, . . . ,Qk from the k different alignments. Note that a taxon is not represented by
one sequence any more.
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The Combined Quartet Method to Combine Genesets

Combining the ML Quartets In the method proposed, the genesets will be combined on
the level of the quartets. As a guideline to combine the quartets we use the log-likelihood
`
(g)
ab|cd, `

(g)
ac|bd, and`

(g)
ad|bc for quartet{a, b, c, d} ∈ Qg on the genesetSg.

To combine the datasets for each genesetS1, S2, . . .Sk, all threelog-likelihoods for each
quartet inQ1,Q2, . . .Qk are evaluated first (cf.ML stepin ??).

Then, we compute

`ab|cd =
k∑

g=1

`
(g)
ab|cd (1.12)

`ac|bd =
k∑

g=1

`
(g)
ac|bd (1.13)

`ad|bc =
k∑

g=1

`
(g)
ad|bc (1.14)

for each quartet. For the sake of simplicity, the log-likelihoods`
(g)
τ = 0 if the quartet with the

sequencesL(τ) is not represented by alignmentg.
Alternatively, one can also compute

`ab|cd =
`ab|cd

| {g : {a, b, c, d} ∈ Qg} |
(1.15)

`ac|bd =
`ac|bd

| {g : {a, b, c, d} ∈ Qg} |
(1.16)

`ad|bc =
`ad|bc

| {g : {a, b, c, d} ∈ Qg} |
. (1.17)

`τ can be viewed as the average support a quartet treeτ receives from the set of sequence
alignments. In case that a quartet is not represented by any alignment the averages are set
equal to zero.

Computing the Overall Tree To reconstruct a phylogenyT (S) based on the collection of
log-likelihoods from Equations1.12to 1.14or 1.15to 1.17we apply the PUZZLE idea from
??. The straightforward application of theQP algorithm is only possible if information exist
for each quartet inQ. This, for instance, is the case if at least one alignmentSg comprises all
the species inS.

If some quartets are missing, which usually happens if eachSg is a proper subset ofS, then
these quartets are treated as unresolved. A quartet tree is selected randomly among the three
possible topologies. In this case it is necessary to examine whether the overlapping genesets
can be combined. This will be explained in the following.

Assessing Whether Genesets Can Be CombinedTo combine two genesetsSi andSj a
minimum pairwise overlap of 3 sequence among the two subsets is required,

|Si ∩ Sj | ≥ 3. (1.18)
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We call Eq.1.18thepair-overlap condition. Thepair-overlap conditionis different from the
overlap condition(Eq.??) in section??where the subsets were constructed from one complete
set of sequences to ensure combinability of the subsets. Here the subsets are genesets. Their
sizes and overlap are defined by the availability of sequence data for the species inS. Note,
that not every pair of genesets might share a sufficient overlap.

To assess whether these gene datasets can be combined, we construct an overlap graph
Govl = (V, E) with a set of nodesV (genesets) and a set of undirected edgesE (overlaps)
with

V = {S1,S2, . . .Sk} (1.19)

E = {e(Si,Sj) for |{Si ∩ Sj}| ≥ 3} 1 ≤ i < j ≤ k. (1.20)

The edge weights consist of the amount of overlap fulfilling thepairwise-overlap condition
(see for an example Fig.??). This representation of the datasets provides insight into several
properties of the entire dataset.

If the graph consists of unconnected subgraphs, not all data is suited for a combined analy-
sis. According to thepairwise-overlap conditiongene datasets from different connected com-
ponents cannot be used simultaneously in the same analysis because no quartet information is
are available to reasonably guide the insertion of the sequences.

Genesets from one connected component, however, can be used for combined analysis.
Although genesets might exist within a connected component which do not share sufficient
overlap with each other to be combined, they can be linked by means of other genesets which
first have to be added satisfying thepairwise overlap condition, to connect the two.

Note, that by applying theoverlap conditionfrom Eq.??, sets from one connected com-
ponent can gain an overlap≥ 3 to the leafsetL(Ti) of a treeTi so far reconstructed from
genesets of another connected component. Nevertheless, combining those sets will produce
a very doubtful tree, because too little information is available to guide the insertion of se-
quences.

The combinability of the genesets from a connected component is characterized by two
features of theoverlap graph. A high connectivity within a component (each geneset shows
overlap to many other geneset) results in network-like quartet information among the genesets.
This reduces the need for mediating sets to connect non-overlapping genesets. Even more
important is the size of the overlap. The higher the overlap, the more quartets are shared
among two neighboring genesets. Consequently, a higher amount of information is available
to guide the insertion of sequences from a geneset into a tree already reconstructed.

Overlap-Guided Puzzling Step As described above, sufficient overlapping information is
needed to reasonably insert a new leafsi+1 into a treeTi. Hence, instead of using a ran-
dom permutation of leaves, the permutation has to follow certain restrictions. To satisfy the
pairwise overlap condition, we apply a graph based procedure similar to Prim’s minimum
spanning tree (MST) algorithm (see, e.g., [15]) assuming equal edge weights. We start with
the leaves from a randomly picked genesetS ′ ∈ {S1 . . .Sk}. We define a front setF con-
taining all unused nodes (genesets) from the overlap graph that are connected by an edge to
any geneset already used in the tree. From the sequences inS ′ we construct the treeT (S ′)
applying the usual puzzling step algorithm (see section??and chapter??). Then we randomly
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draw one genesetS ′′ from F . We removeS ′′ from F and add the sets connected toS ′′, but
not yet used toF . The sequences ofS ′′ are then added to the tree. Guided by the overlap
graph we thus construct an intermediate tree by sequentially adding the genesets. As in the
usualpuzzling stepmany intermediate trees are constructed using different orders of leaves
and genesets.

Relative Majority Consensus Since missing data adds more ambiguity, this naturally ham-
pers the construction of a resolved majority-rule consensus tree. We therefore decided to
apply a majority consensus which is slightly different from the majority-rule consensus used
in section??. Instead of using only splits occurring in more than50% (Ml with l > 0.5) of
the intermediate trees, also splits below50% are considered. The aim is to use as many splits
as are supported by relative majority to extract a maximum uncontradicted information from
the intermediate trees.

The relative majority consensusMrel adds all congruent splits from the set of intermediate
trees in descending order of occurrence. No splits will be accepted for the consensus that have
the same or lower percentage occurrence as any incongruent split. This consensus procedure
does not imply a fixed threshold but uses a variable percentage down to the first incongruence
guided by the relative majority.

1.6 Networks

1.6.1 Incongruent phylogenies

Reasons

• Methodological reasons

– randomized taxon order

– sampling sites (bootstrapping)

• Biological reasons

– Lineage sorting and recombination

– Horizontal gene transfer

– noise in the data

– ring of life [37, 70] + Martin (1999) BioAssays (cf. doolittle1999a.science.pdf)

1.6.2 Constructing networks

• early models [65], ML on networks [59, 60]

• Median Networks [4, 3]

• Neighbor-Net [11]

• Split decomposition/splits trees [18, 19, 27, 28]
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• Spectronet [26]

• Consensus Networks [25]

• Splits graphs/supernetworks [19, 29]

• Moulton and Huber (2005) for review

• ausserdem [5, 35, 39, 40, 66],

• Maximum Agreement of Two Nested Phylogenetic Networks [30]

1.7 Other data sources for tree reconstruction

• linear order / presence-absence of genes

• Hybridisation data, cot

• restriction data

• Expression data (Michael R.)

1.8 Outlook

1.8.1 Model selection
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