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Lecturers

This lectures will be held by the following CIBIV members:

Heiko SCHMIDT

Sebastian BURGSTALLER-MUEHLBACHER

Florian PFLUG

Martin FAHRENBERGER

The Center for Integrative Bioinformatics Vienna (CIBIV), headed by
Arndt von Haeseler, is a joint working group of the University of Vienna
and the Medical University of Vienna located at the Max Perutz Labs.
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Tentative Schedule

9:00-13:00 - Morning class (mixed lectures and hands-on) - including
coffee break

13:00-14:00 - Lunch

14:00-18:00 - Afternoon class (mixed lectures and hands-on) -
including coffee break
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Tentative Topics

Day 1: Similarity of sequences, pairwise/multiple sequence
alignment, sequence retrieval, homology searches, determination of
modular architecture, Sequence logos

Day 2: Gene ontologies, online resources, functional gene networks
and pathways, molecular interactions, variations between individuals,
variations between species

Day 3: Unix basics, installing software, command line tools, file
formats, basic workflow steps, genome viewing/genome browser,
alternatives to the command line

Day 4: Introduction to basic statistics, R and Bioconductor; NGS
data in R; accessing databases from R

Day 5: Typical NGS readout after basic data analysis: sequences,
coverage data, count data; ENCODE data; GO analysis; Pathways,
motif detection
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What is Bioinformatics?
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Bioinformatics – a definition

What is Bioinformatics?

In a broad sense Bioinformatics deals with the
application of methods from computer science and computers

to answer biological questions.

(There are a number of differing definitions, depending on where the
researchers come from.)
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Bioinformatics is an inter-disciplinary field

Bioinformatics



biology
- molecular biology
- genetics
. . .

computer science
- algorithms
- data bases
. . .

mathematics
- statistics
- propability theory
- biomathematics

medical sciences/biomedicine
biophysics
. . .
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Pairwise Sequence Alignment
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Alignment

What is an alignment?

Alignment is the procedure of writing two (or more) protein or DNA
sequences in a way that a maximum of identical or similar characters
are placed in the same column by adding gap characters (’-’).

unaligned sequences:

seq1: LGPSKQTGASKGSSRIWDN

seq2: LNTKSAGASKGAILMRLGDAS

aligned sequences:

seq1: LGPSKQTGASKGS--SRIWDN-

| | ||||| | |

seq2: LN-TKSAGASKGAILMRLGDAS

Heiko A. Schmidt Bioinformatics Course 9

What are alignments used for?

Sequence alignment is one of the most fundamental procedures in
Bioinformatics. It is used for

Sequence comparison

Sequencing: to combine sequenced fragments

Search for genes

Estimation of evolutionary distance

Finding genes

Finding relatives in databases

Estimating function of genes and proteins

Estimating structure of RNAs and proteins

the basis to reconstruct evolutionary relationships and trees
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Homology - related sequences

It usually only makes sense to construct alignments from homologous
sequences, i.e., sequences that share a common ancestor.

Species 2 Species 3Species 1

Speciation

Speciation

A1 A2 A3B1 B2 B3

Duplication

Genes originating from

1 . . . speciation are orthologous
(e.g., A1 and A3).

2 . . . duplication are paralogous
(e.g., A2 and B2).

All genes A1, A2, A3, B1, B2, B3 descend
from a common ancestor and are, hence,
homologous.
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Homology–Identity mistake

Some people have published statements like:
Sequences A and B are 30% homologous.

this is wrong!

What they mean is:
Sequences A and B are 30% identical.
That means they differ in 70% of they positions.

Note: sequences either are homologous or the are not!!!
There is no third alternative.
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Point mutations

For alignments we consider the following point mutations in comparison of
two sequences:

substitutions (change of a character, in the alignment: mismatch)

insertion of character(s) in one sequence

deletion of character(s) from one sequence

identical characters in both sequences are called a match
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Direction of evolution

Since we don’t know anything about the ancestral state and, hence, about
the direction of the mutations

we consider the substitution rate between two state equal in either
direction.

Furthermore, we cannot distinguish insertions and deletions

thus we will call them indels.

indels = insertions/deletions

GAC

GCC

GTC CAT

CAT

C−T CAT

C−T

C−TGAC GTC

GAC

GAC GTC

GTC

unknown ancestral states
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What is the optimal solution

Given two sequences A and B and a scoring function for two characters a
and b

S(a, b) =

{
+5 if a = b (match)
−2 if a 6= b (mismatch)
−6 if a or b indel (gap)

to score each alignment column.
Then we are looking for that alignment, that gives us the highest score
S(A,B) summing up the column scores s(a, b) for all columns of the
alignment.
For example:

=4−6+5−2−2+5 +5+5−6

−CAT AT−A

AAA TGGT C
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Why not just scoring all alignments?

There are by far too many.

There are about 22N√
2πN

possible alignments,

for two sequences of length N = 300 that is 10179 alignments.

Hence, we need a smart way to cut the computation short, like the
dynamic programming approach for pairwise alignment by Needleman
and Wunsch (1970).
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Needleman-Wunsch algorithm

Given sequences A and B and scoring function s(a, b) =
{

+5 a = b
−2 a 6= b
−6 a or b indel

6 7 80

T ATGCG A A

A

T

C

T

A

A

1

2

3

4

5

6

0

1 2 3 4 5

0

−36

−30

−24

−18

−6

−12

−48−42−36−30−24−18−12−6

Resulting alignment and score:

=11+5+5−2+5+5+5−6−6

A T AT − − A C

CAGT ATGA

+5−6+5 =11−6+5 +5−2+5

C T−A AT − A

CAGT ATGA

Initialize an N ×M matrix with the
sequences A and B of length M and N.

Starting at the upper left corner set the
intermediate scoring value σ(i , j) =

max

{
σ(i − 1, j − 1) + s(Ai , Bj ) match/mismatch
σ(i − 1, j) + s(Ai ,−) gap in B
σ(i, j − 1) + s(Bi ,−) gap in A

σ(i , j) always holds the optimal score for
the alignment from the sequence start to
(Ai ,Bj).

The optimal score can be found at
σ(N,M).

The optimal alignment is retrieved by
following the best values σ(i , j).

There can be more than one optimal
alignment!
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Local alignments

The Needleman-Wunsch algorithm always aligns the whole sequences
producing a global alignment, while end-free alignments always involve
a start and an end of any of the two sequences aligned.
However, if

only a core of the sequence is conserved,

the one sequence contains several conserved regions (e.g. genes)
separated by regions with little conservation (intergenic regions)

local alignments (aligning subsequences with highest score) are much
more reasonable.
This typically works also for sequences which only share a certain overlap
(e.g. at the ends).
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Smith-Waterman algorithm

Temple Smith and Mike Waterman (1981) found a way to adapt the
Needleman-Wunsch algorithm to produce local alignments:

the scoring function must contain negative values for mismatches,

whenever σ(i , j) < 0 it is set to zero (here a possible backtrace will
stop)

the initial row and column with gap costs are set to zero

the backtrace will start at the maximal σ(i , j)

Temple F. Smith and Michael S. Waterman (source: Wikipedia)
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Smith-Waterman algorithm

Given sequences A and B and scoring function s(a, b) =
{

+5 a = b
−2 a 6= b
−6 a or b indel
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Resulting alignment and
score:

=13

C G T
T C A T
+5+5−2+5

T

Initialize an N ×M matrix with the
sequences A and B of length M and N.

Starting at the upper left corner set the
intermediate scoring value σ(i , j) =

max

{
σ(i − 1, j − 1) + s(Ai , Bj ) match/mismatch
σ(i − 1, j) + s(Ai ,−) gap in B
σ(i, j − 1) + s(Bi ,−) gap in A
0

The optimal local alignment score is the
maximal score among all σ(i , j).

The optimal local alignment is retrieved by
backtracking until the σ(i , j) of the current
cell (i , j) gets zero.
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Scoring Matrices

Using a scoring function like

S(a, b) =


+5 , if a = b (match)
−2 , if a 6= b (mismatch)
−6 , if a or b indel (gap)

is a nice starting point, but has no biological motivation.
Instead more sophisticated scoring matrices and gap costs have been
developed.

Heiko A. Schmidt Bioinformatics Course 21



Gap costs

As you might have recognized, we use linear gap costs, i.e., every gap
position is penalized the same no matter how long ` the whole gap might
have grown.
More biologically meaningful are affine gap costs of the kind:

g(`) = go + ` · ge

That means, that opening a gap is especially penalized with, e.g., gap
opening cost go = 11 and gap extension cost ge = 2.
The total gap cost has then to be subtracted from the current score.
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More biological criteria for aa match/mismatch scoring

differences in the chemical properties of amino acids (acidic/basic,
polar/nonpolar, hydrophilic/-phobic, positively or negatively
charged/neutral, size, . . . )

differences in the underlying codons (Glu↔Asp: 1, Glu↔Phe: 3)

These points should also influence the observed substitution rates among
amino acids and are captured in PAM and BLOSUM matrices:

observed aa exchanges in more closely related proteins (PAM)

observed aa exchanges in conserved blocks of distantly related
proteins (BLOSUM)
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Incorporating more biological scoring schemes - PAM250
82 ■ C H A P T E R  3

At one time, the PAM250 scoring matrix was modified in an attempt to improve the
alignment obtained. All scores for matching a particular amino acid were normalized to
the same mean and standard deviation, and all amino acid identities were given the same
score to provide an equal contribution for each amino acid in a sequence alignment (Grib-
skov and Burgess 1986). These modifications were included as the default matrices for the
GCG sequence alignment programs in versions 8 and earlier and are optional in later ver-
sions. They are not recommended because they will not give an optimal alignment that is
in accord with the evolutionary model.

Choosing the Best PAM Scoring Matrices for Detecting Sequence Similarity. The
ability of PAM scoring matrices to distinguish statistically between chance and biological-
ly meaningful alignments has been analyzed using a recently developed statistical theory
for sequences (Altschul 1991) that is discussed later in this chapter. As discussed above,
each PAM matrix is designed to score alignments between sequences that have diverged by
a particular degree of evolutionary distance. Altschul (1991) has examined how well the
PAM matrices actually can distinguish proteins that have diverged to a greater or lesser
extent, when these proteins are subjected to a local alignment.

Figure 3.14. The log odds form (the mutation data matrix or MDM) of the PAM250 scoring matrix. Amino acids are
grouped according to the chemistry of the side group: (C) sulfhydryl, (STPAG) small hydrophilic, (NDEQ) acid, acid amide
and hydrophilic, (HRK) basic, (MILV) small hydrophobic, and (FYW) aromatic. Each matrix value is calculated from an odds
score, the probability that the amino acid pair will be found in alignments of homologous proteins divided by the probabili-
ty that the pair will be found in alignments of unrelated proteins by random chance. The logarithm of these ODDS scores to
the base 10 is multiplied by 10 and then used as the table value (see text for details). Thus, �10 means the ancestor probabil-
ity is greater, 0 that the probabilities are equal, and �4 that the alignment is more often a chance one than due to an ances-
tor relationship. Because these numbers are logarithms, they may be added to give a combined probability of two or more
amino acid pairs in an alignment. Thus, the probability of aligning two Ys in an alignment YY/YY is 10 � 10 � 20, a very sig-
nificant score, whereas that of YY with TP is �2 �5 � � 7, a rare and unexpected alignment between homologous sequences.
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σ(i , j) = max


σ(i − 1, j − 1) + pam250(Ai ,Bj) match/mismatch
σ(i − 1, j) + s(Ai ,−) gap in B
σ(i , j − 1) + s(Bi ,−) gap in A

Heiko A. Schmidt Bioinformatics Course 24

Using more biological scoring schemes - BLOSUM62

σ(i , j) = max


σ(i − 1, j − 1) + blosum62(Ai ,Bj) match/mismatch
σ(i − 1, j) + s(Ai ,−) gap in B
σ(i , j − 1) + s(Bi ,−) gap in A
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Database Searching
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Sequence Databases

How to determine structure, function, homologs . . . for a yet
unknown query sequence Q?

There are large amounts of sequences and their annotations in the
public databases.
There are very diverse databases:

DNA sequences (INSDC - Intl. Nucl. Seq. Database Collaboration:
ENA at EMBL, GenBank at NCBI, DDBJ at NIG),
protein sequences (SwissProt/UniProt),
genomic data (Ensembl), structures (PDB), etc.

Sequences showing (high) similarity to Q, are likely to share the same
structure, function, and history.

Solution: Searching in the public databases for similar sequences can
help to infer the whereabouts of new (unknown) sequences.

Since it is unlikely to find completely identical sequences, approximate
searches are necessary, to find similar sequences.

Such search methods are usually based on pairwise sequence
alignment comparing the query sequence Q to a large database T .
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Optimal Alignment for Searching

Given a database D (length m) and a query sequence Q (length n).

The Needleman-Wunsch algorithm produces global alignments and is
thus not suitable for database searching

The Smith-Waterman algorithm guarantees to find the result with
optimal score, but is very slow in large databases due to its Θ(n2)
runtime complexity (m × n cells).

Thus, often faster, but heuristic approaches are used.
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BLAST procedure: rough overview

(0) build an index of the databaset look-up

(1) Compile list of high-scoring strings (words)

(2) search for exact hits using index look-ups → seeds

(3) extend seeds → local alignments

(4) assess significance of the score

Heiko A. Schmidt Bioinformatics Course 29



BLAST procedure: w -mer neighborhood of the query

(1) For the query Q construct the list of high-scoring words of length w
(w -mer neighborhood).

words per residue in Q to be stored.

Maximum of L−w+1 words

(typically w=3 for proteins)

Query sequence Q of length L

For each word from the query Q

find the list of words that scores 

at least T e.g. using BLOSUM62.

Typically, this results in about 50  
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BLAST procedure: find w -mer hits in database

(2) Compare the word list to the database and identify exact matches.

from the word list

exact matches of words
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BLAST procedure: extend w -mer hits

(3) For each word match, extend alignment (of hit and query) in both
directions to find the maximal segment pairs (MSPs) that score
greater than score threshold C

maximal segment pairs (MSPs)

Definitions: Given sequences S1 and S2

Segment Pair = a pair of substrings from S1 and S2 of equal length aligned
without gaps

Maximal scoring Segment Pair (MSP) = segment pair which could not be
shortened or extended without reducing the corresponding score

High-scoring Segment Pair (HSP) = is an MSP scoring above a certain
cutoff C.
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BLAST procedure: extend w -mer hits (2)

Extending the word hit alignment in an optimal way to test whether it
is part of a maximal scoring segment pair with score > C → HSP

choice of C is guided by (a) scoring matrix and statistics of (b) Q and (c)

DB, such that a score of C is unlikely to occur by chance in any of the DB

sequences.

Stop the extension if the score falls below certain thresholds (derived
from previous hits) to improve speed

Thus, (due to w -length words and cutoffs) BLAST does not guarantee to

find all segments with score at least C , there is a very small chance of

missing important pairs (computable with DP).

In practice, BLAST is orders of magnitude faster than dynamic
programming and its biological sensitivity/specificity is good for
distant relationships, whereas for analyzing and displaying alignments
Smith-Waterman optimization should be used.
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BLAST output
306
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Figure 7.5. Continued.

C.
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BLAST output

BLASTP 2 . 0.5 [May-5-1998 ] 
Query= human XP- F repair gene (905 letters) 

Database : Non-redundant swissProt sequences 74,596 seque nces; 26,848,718 total letters 

Color Key for Alignnent Scores 
<40 40-50 I ~~~e-0---20-0~~~~-=-2-o~~ 

QUERYh--i 
0 

,,,,,,,,,,,,, -
Distribution of 11 BLAST Bits on the Query sequence 

sequences producing significant alignments: 

sp!Q92889IXPF_HUMAN 
spiP36617 IRA16 SCHPO 
sp !P06777iRADl=YEAST 
spiP40562jYIS2_ YEAST 
spjQ10202 IYAXB_SCRPO 

DNA- REPAIR PROTEIN COMPLEMENTING XP- F CELL 
DNA REPAIR PROTEIN RAD16 
DNA REPAIR PROTEIN RADl 
PUTATIVE ATP- DEPENDENT RNA RELICASE YIR002C 
PUTATIVE ATP- DEPENDENT RNA HELICASE Cl 3F4 . llC 

Score E 
(bits) Value 

1659 o.o 
485 e - 136 
231 4e-60 

37 0.17 
36 0.38 
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BLAST flavors

The BLAST package contain programs for different purposes:

BLAST query type database type
program
blastn nucleotide nucleotide

blastp protein protein

blastx nucleotide protein
(translated in 6 frames)

tblastn protein nucleotide
(translated in 6 frames)

tblastx nucleotide nucleotide
(both translated in 6 frames)
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BLAT - BLAST-Like Alignment Tool (Kent, 2002)

To reduce search time BLAT requires only one single, but longer
exact match (instead on several consecutive ones), to be candidate
for the more rigorous search.

This speeds up the candidate search, but makes the search less
sensitive. . .

that means it might miss (more) relevant hits.

Nevertheless, BLAT works well if the database sequences and the
query are closely related.

However, this is the scenario BLAT was developed for (mapping reads
against a closely related reference).
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Specialized BLAST extension: Phi-BLAST

Pattern-hit initiated BLAST searches for ’regular expressions’ of motifs in
a protein database.

Often we have certain patterns that have to occur in a sequence but
we cannot write them down as one sequence,

then Patterns can help.

If the Patterns we are searching for must contain a Tryptophane and
then after 9-11 residues a Phenylalanine, Valine, or Tyrosine followed
by an Alanine

we can code it as: W-x(9-11)-[FVY]-A

and feed it to Phi-BLAST.
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Multiple Sequence Alignment
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Multiple Sequence Alignment (MSA)

What is a multiple sequence alignment?

MSA is like a pairwise sequence alignment but instead of two
sequences three or more are aligned, trying to maximize the number
of identical or similar characters in a column by adding gaps (’-’).

unaligned sequences:

seq1: LGPSKQTGASKGSSRIWDN

seq2: LNTKSAGASKGAILMRLGDAS

seq3: LGPTKSTGASKGAILSRLGDA

aligned sequences:

seq1: LGPSKQTGASKGS--SRIWDN-

seq2: LN-TKSAGASKGAILMRLWDAS

seq3: LGPTKSTGASKGAILSRLGDA-
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MSA ↔ phylogeny relationship
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Having the ’true tree’ that reflects the history of our sequences
facilitates significantly the alignment.

Phylogenetic trees are usually based on alignments.

typical hen-and-egg problem!!!
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Progressive alignment
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Given a tree

. . . the sequences are aligned progressing from the leaves to the root

. . . aligning the subalignments where the branches meet
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Progressive Alignment: ClustalW (Higgins et al., 1994)

Hbb_Human 
Hbb_Horsc 2 .17 
Hba_Human 3 .59 .60 Pairwise alignment: 
Hba_Horsc 4 .59 .59 .13 
Myg]hyea 5 .71 .71 .75 .75 Calculate distance matrix 
Glb5]ctmn 6 .81 .82 .73 .7-i .80 
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ClustalW is one of the most
frequently used MSA
programs.

however, not necessarily the
best one.

ClustalW Algorithm:

construct all pairwise
alignments and compute
the pairwise distances

construct Neighbor Joining
tree as guide tree

Along the guide tree
(closely related sequences
first) align sequences and
sub-alignments.
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Progressive Alignment: ClustalW, cont. (Higgins et al., 1994)

Multiples Alignment

1

2
3

4

5

Guide Tree

2

1
construct a tree by successively joining nearest neighbors

the tree is no phylogeny, but a guide tree

align the next 2 sequences (or profiles) with dynamic programming

produce a new profile from the new alignment

continue with next pair

Problem: once a gap, always a gap, that means early mistakes are
never corrected
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Iterative alignment: PRRP (Gotoh, 1996)Assessment of Multiple Protein Sequence Alignment 835

complexity was avoided because quite a lot of
calculations with various combinations of gap opening
and extension penalty values, amino acid substitution
matrices and alignment methods were already needed.

As a subsidiary set of structural alignments, I chose 17
of 38 familial entries in 3D ALI (Pascarella & Argos,
1992), so that each 3D ALI entry should share at least two
structures in common with the corresponding Joy3.2
entry. The sequences were processed in the same way as
described above.

Extended sequence-structure data set

SWISS-PROT Release 31 protein sequence database
was searched for sequences similar to each member in a
Joy3.2 entry by use of the BLASTP program (Altschul
et al., 1989). Fragmental sequences partially homologous
to the probe were abandoned, and only the embedded
part of a sequence homologous to the probe was
extracted when the sequence was longer than the
structural domain. The union of the found sequences was
multiply aligned together with the members in the
structural alignment by a progressive method without
referring to the structural alignment. By inspecting a
phylogenetic tree obtained from the preliminary multiple
alignment, I abandoned those sequences that were clearly
not structural members. My intention was not to collect
all known sequences belonging to the family, but to
collect ‘‘followers’’ of each member in the structural
alignment. The numbers of sequences thus picked up for
the 54 families are listed in Table 1. The procedure
ensures that the most remotely related pair of structural
members is among the most remotely related sequence
pairs in an extended entry.

Alignment methods

The four multiple sequence alignment strategies
examined were: (1) a progressive method (CLW =
CLUSTAL W, Thompson et al., 1994); (2) a randomized
iterative (RIO) method that optimizes sum-of-pairs (SP)
score (Gotoh, 1994); (3) a randomized iterative (RIW)
method that optimizes weighted sum-of-pairs (WSP)
score (Gotoh, 1995); and (4) a doubly nested randomized
iterative (DNR) method optimizing WSP. In addition,
the conventional pairwise sequence alignment (PWS)
method based on dynamic programming (Gotoh, 1982)
was used as a control. For the RIO and RIW methods, five
independent series of iterations were carried out from the
same initial alignment, and the alignment associated with
the best score among them was reported.

The doubly nested randomized iterative method is a
new strategy as illustrated in Figure 9. It starts with a
preliminary multiple alignment, which may be obtained
by any simpler method. In the present study, a single
multiple alignment that had been obtained for each
family as described in the previous subsection was used
as the ‘‘seed’’ of all calculations. A set of weights assigned
to all the pairs of sequences is calculated by the three-way
algorithm (Gotoh, 1995) guided by the phylogenetic tree
constructed from the distance values between members
in the initial alignment. This set of pair weights is a good
approximation of the rationale II weights proposed by
Altschul et al. (1989). A fixed value for the ‘‘equalization
factor’’, F = 1.1 (Gotoh, 1995) was used throughout all
DNR and RIW calculations. The first cycle is the same as
that of the RIW method but with only a single series of
iteration. After the convergence, a new phylogenetic tree

Figure 9. Schematic diagram of the procedures of the
doubly nested randomized iterative (DNR) method for
multiple sequence alignment. The details of the
procedures are explained in the text.

and pair weights are calculated, and the second cycle is
started. In this way, the doubly nested iterations are
continued until no change in the total WSP score is
observed.

For tree reconstruction, either the UPGMA (Sneath &
Sokal, 1973) or the Neighbor-Join (Saitou & Nei, 1987)
method may be used. However, the present version of
my program cannot properly deal with negative edge
values, which sometimes appear with the Neighbor-Join
method. Hence, I used the UPGMA method for all the
calculations presented in this article.

A heuristic routine (Gotoh, 1993b) to locate well-con-
served regions in a given multiple alignment is included
in the RIO, RIW and DNR methods. These regions, if
found, act as ‘‘anchor points’’, which are fixed during the
following course of iterative refinement. Setting such
anchor points can greatly reduce the overall calculation
time at the expense of slight loss of rigor. Two factors are
responsible for the reduction in computation time. First,
the space scanned at each iterative group-to-group
alignment step is narrowed depending on the number
and the locations of the anchor points. Second, some
closely related sequences are bundled to form a single
cluster whose internal alignment is fixed. Since the
effective number of independent sequences subjected to
refinement can be diminished in this way, the total
computational cost is also diminished accordingly.

Calculations were made on three network-connected
workstations, SUN SPARCstation 2, IPX and 20 running
under UNIX (SUN OS4.1.3 or Solaris 2.3). The source
codes for DNR/RIW methods written in C programming
language are available through anonymous FTP from

Iterative scheme:

Start with some initial alignment

Construct a phylogenetic tree

Use it to (re-)weight the
sequence pair

Iteratively refine the alignment
to achieve higher score

If the refinement brought
benefit, start again.
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MAFFT (Katoh et al. 2002+2005)

MAFFT is a fast and accurate approach for many sequences:
1 Progressive alignment FFT-NS-1:

compute rough distances and from those a guide tree
perform a progressive alignment using the guide tree

2 Progressive alignment FFT-NS-2:
use the FFT-NS-1 alignment to compute a better guide tree
again perform a progressive alignment

3 Iterative refinement FFT-NS-i:
start from alignment FFT-NS-2
iteratively improve the alignment
by optimizing the weighted sum-of-pairs score

MAFFT uses a mathematical trick, the fast Fourier transform (FFT)
to reduce the time complexity to find homologous regions between
sequences.

This approximation reduces the pairwise comparisons of two sequence
of length n from O(n2) for dynamic programming to O(n log n) using
FFT.
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A comparison of MSA programs (Sievers et al., 2011)

about 10 000 sequences is MAFFT/PartTree (Katoh and Toh,
2007). It is very fast but leads to a loss in accuracy, which has
to be compensated for by iteration and other heuristics. With
Clustal Omega, we use a modified version of mBed (Black-
shields et al, 2010), which has complexity of O(N log N), and
which produces guide trees that are just as accurate as those
from conventional methods. mBed works by ‘emBedding’ each
sequence in a space of n dimensions where n is proportional to
log N. Each sequence is then replaced by an n element vector,
where each element is simply the distance to one of n ‘reference
sequences.’ These vectors can then be clustered extremely
quickly by standard methods such as K-means or UPGMA.
In Clustal Omega, the alignments are then computed using the
very accurate HHalign package (Söding, 2005), which aligns
two profile hidden Markov models (Eddy, 1998).

Clustal Omega has a number of features for adding
sequences to existing alignments or for using existing
alignments to help align new sequences. One innovation is
to allow users to specify a profile HMM that is derived from an
alignment of sequences that are homologous to the input set.
The sequences are then aligned to these ‘external profiles’ to
help align them to the rest of the input set. There are already
widely available collections of HMMs from many sources such
as Pfam (Finn et al, 2009) and these can now be used to help
users to align their sequences.

Results

Alignment accuracy

The standard method for measuring the accuracy of multiple
alignment algorithms is to use benchmark test sets of reference
alignments, generated with reference to three-dimensional
structures. Here, we present results from a range of packages
tested on three benchmarks: BAliBASE (Thompson et al,
2005), Prefab (Edgar, 2004) and an extended version of
HomFam (Blackshields et al, 2010). For these tests, we just
report results using the default settings for all programs but
with two exceptions, which were needed to allow MUSCLE
(Edgar, 2004) and MAFFT to align the biggest test cases in

HomFam. For test cases with 43000 sequences, we run
MUSCLE with the –maxiter parameter set to 2, in order to finish
the alignments in reasonable times. Second, we have run several
different programs from the MAFFT package. MAFFT (Katoh
et al, 2002) consists of a series of programs that can be run
separately or called automatically from a script with the –auto
flag set. This flag chooses to run a slow, consistency-based
program (L-INS-i) when the number and lengths of sequences is
small. When the numbers exceed inbuilt thresholds, a conven-
tional progressive aligner is used (FFT-NS-2). The latter is also the
program that is run by default if MAFFT is called with no flags
set. For very large data sets, the –parttree flag must be set on the
command line and a very fast guide tree calculation is then used.

The results for the BAliBASE benchmark tests are shown in
Table I. BAliBASE is divided into six ‘references.’Average scores
are given for each reference, along with total run times and
average total column (TC) scores, which give the proportion of
the total alignment columns that is recovered. A score of 1.0
indicates perfect agreement with the benchmark. There are two
rows for the MAFFT package: MAFFT (auto) and MAFFT
default. In most (203 out of 218) BAliBASE test cases, the
number of sequences is small and the script runs L-INS-i, which
is the slow accurate program that uses the consistency heuristic
(Notredame et al, 2000) that is also used by MSAprobs
(Liu et al, 2010), Probalign, Probcons (Do et al, 2005) and
T-Coffee. These programs are all restricted to small numbers of
sequences but tend to give accurate alignments. This is clearly
reflected in the times and average scores in Table I. The times
range from 25 min up to 22 h for these packages and the
accuracies range from 55 to 61% of columns correct. Clustal
Omega only takes 9 min for the same runs but has an accuracy
level that is similar to that of Probcons and T-Coffee.

The rest of the table is mainly taken by the programs that use
progressive alignment. Some of these are very fast but this
speed is matched by a considerable drop in accuracy compared
with the consistency-based programs and Clustal Omega. The
weakest program here, is Clustal W (Larkin et al, 2007)
followed by PRANK (Löytynoja and Goldman, 2008). PRANK
is not designed for aligning distantly related sequences but at
giving good alignments for phylogenetic work with special

Table I BAliBASE results

Aligner Av score
(218 families)

BB11
(38 families)

BB12
(44 families)

BB2
(41 families)

BB3
(30 families)

BB4
(49 families)

BB5
(16 families)

Tot time (s) Consistency

MSAprobs 0.607 0.441 0.865 0.464 0.607 0.622 0.608 12 382.00 Yes
Probalign 0.589 0.453 0.862 0.439 0.566 0.603 0.549 10 095.20 Yes
MAFFT (auto) 0.588 0.439 0.831 0.450 0.581 0.605 0.591 1475.40 Mostly

(203/218)
Probcons 0.558 0.417 0.855 0.406 0.544 0.532 0.573 13 086.30 Yes
Clustal O 0.554 0.358 0.789 0.450 0.575 0.579 0.533 539.91 No
T-Coffee 0.551 0.410 0.848 0.402 0.491 0.545 0.587 81041.50 Yes
Kalign 0.501 0.365 0.790 0.360 0.476 0.504 0.435 21.88 No
MUSCLE 0.475 0.318 0.804 0.350 0.409 0.450 0.460 789.57 No
MAFFT (default) 0.458 0.258 0.749 0.316 0.425 0.480 0.496 68.24 No
FSA 0.419 0.270 0.818 0.187 0.259 0.474 0.398 53 648.10 No
Dialign 0.415 0.265 0.696 0.292 0.312 0.441 0.425 3977.44 No
PRANK 0.376 0.223 0.680 0.257 0.321 0.360 0.356 128 355.00 No
ClustalW 0.374 0.227 0.712 0.220 0.272 0.396 0.308 766.47 No

The figures are total column scores produced using bali score on core columns only. The average score over all families is given in the second column. The results for
BAliBASE subgroupings are in columns 3–8. The total run time for all 218 families is given in the second last column. The last column indicates whether the method is
consistency based.

High-quality protein MSAs using Clustal Omega
F Sievers et al

2 Molecular Systems Biology 2011 & 2011 EMBO and Macmillan Publishers LimitedMAFFT (with auto-option) and Clustal Ω – good tradeoff between
accuracy and runtime.
Anyway, whatever method you use, never trust the alignment blindly.
Always take a look at the alignments produced.
Typically one can see easily, if something went totally wrong.
Sequences that do not fit at all (e.g. non-homologous sequences or
proteins translated from the wrong reading frame) should better be
discarded before (re)aligning.
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Reflecting the Multiple Sequence Alignments

(Sequence Consensus and Sequence Logos)
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IUPAC/IUB Codes

IUPAC (Intl. Union of Pure and Applied Chemistry) and IUB (Intl. Union of

Biochemistry) have published guidelines on how to code nucleotide and
protein sequences (in 1 and 3-letter codes).

The DNA 1-letter codes are defined as (Comnish-Bowden/IUB, 1985):

nucleotides:

A Adenine
C Cytosine
G Guanine

T/U Thymine (DNA), Uracil (RNA)

triple-degenerate code:

B not A C, G, T/U
D not C A, G, T/U
H not G A, C, T/U
V not T/U A, C, G

double-degenerate codes:

W Weak A, T/U
S Strong C, G
R puRine A, G
Y pYrimidine C, T/U
M aMino A, C
K Keto G, T/U

other:

N aNy A, C, G, T/U
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IUPAC/IUB code: double-degenerate codes
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W Weak A, T/U
S Strong C, G

R puRine A, G
Y pYrimidine C, T/U

M aMino A, C
K Keto G, T/U
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One way to construct a consensus sequence

D’haeseleer (2006); Cavener (1987)

One way to construct a degenerate
consensus sequence from a multiple DNA
sequence alignment (using IUPAC/IUB code):
For each column choose

the nucleotide occurring in > 50% of
sequences and ≥ twice as often as the
2nd most frequent

a double degenerate symbol
(R,Y,M,K,S,W) if according 2 bases
occur in more than 75% of sequences

a triple degenerate symbol (B,D,H,V)
if one base does not occur at all

an N, otherwise.

. . . but the consensus might be a highly
unusual sequence.
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Sequence Profiles

nucleotide count matrix:

D’haeseleer (2006)

Count matrices containing the number
of occurrences of the nucleotides and

Sequences profiles (or Position
Frequency Matrix) also reflect the
information in multiple sequence
alignments.

Profiles were used in progressive
alignment strategies like ClustalW.

Sequence profile:

pos 1 2 3 4 5 6 7 8 9 10 11 12

A .0 .0 .25 .875 .0 .0 .0 .0 .0 .0 .125 .0
C .5 .75 .5 .125 .0 .0 .0 .0 .0 .625 .0 .625
G .0 .0 .0 .0 .0 .125 1 .0 .0 .125 .125 .25
T .5 .25 .25 .0 1 .875 .0 1 1 .25 .75 .125
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Sequence Logos (frequency-based)

D’haeseleer (2006)

Sequence logos might be a better way of
visualizing sequence motifs reflecting the
number of occurrences of the nucleotides
using a Position Frequency Matrix or
Profile.

a ’sequence logo’ depicts the
conservation pattern of a motif by
stacks of letters which are scaled, e.g.
by the frequency of occurrence:

position 
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Sequence Logos (based on information content)

D’haeseleer (2006)

Originally sequence logos scale each
stack i of letters by the column’s
information content of the bases b in
bits:

Ii = 2 +
∑
b

fb,i log2 fb,i

position 

1 2 3 4 5 6 7 8 9 10 11 12
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T
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T
G
C

3′

In small samples like this, the
information content are over-estimated
and a correction has to be applied.
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Sequence Logos (corrected for the small sample)

D’haeseleer (2006)

The original sequence logos scale each
stack i of letters by the column’s
information content of the bases b in
bits:

Ii = 2 +
∑
b

fb,i log2 fb,i

position 
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This formula assumes that all
nucleotides occur at equal frequency.
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Sequence Logos (corrected for nucleotide content)

D’haeseleer (2006)

To reflect possible base frequency
biases, e.g. in GC content, it has been
suggested to use relative entropy
(=Kullback-Leibler distance):

Iseq(i) = −
∑
b

fb,i log2
fb,i
pb

where pb is the overall frequency of b
here with GC content in yeast (38%):

position 
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%GC of Caenorhabditis elegans (36%),

Plasmodium falciparum (19%),

Streptomyces coelicolor (72%)
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Hidden Markov Models
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Markov model

The Markov chain is the tuple

M = (Q,P, π)
where:
Q is the set of states
P is the probability matrix of state transition
π is the vector of initial probabilities to start states

HMM and MAS
3

Markov Model

The Markov chain is the tuple

M = (Q, P, !)
where:

Q is the set of states

P is the probability matrix of state transition

! is the vector of initial probabilities

q1

q2

q3

P(q2 | q1)

P(q3 | q1)

!(q1)

A Markov chain is traversed from state to state, producing a sequence of
states.
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Markov Chains: a simple Markov model for DNA

4 states A,C,G,T

Transition between states
occur with particular
probabilities

Each arrow has a
probability parameter
associated with it

P(x = T |x = A) = aA,T

A T

GC

as,t = P(xi = t|xi−1 = s)
probability of making a transition from state s to state t

Heiko A. Schmidt Bioinformatics Course 59



Include BEGIN and END state

A T

GC

start end

Two new states can be added to the Markov model.
These are treated as silent states, since they do not add to the sequence.
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Hidden Markov Model (HMM)

Hidden Markov Models (HMMs) resemble Markov Models in having a
finite number of states connected by transitions.

But the major difference between the two is that the states of the Hidden
Markov Models are not associated with one symbol but with more than
one symbol. Each state q can emit a symbol x with a probability given by
the distribution of emission probabilities eq(x).

u

qj

eq j
(u)eq j

(a)

qi

eq i
(a) eq i

(u)

aq iq j

a u a
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Hidden Markov Model (HMM)

The HMM is a tuple
M = (Σ,Q,A,E )

There are a finite number of states Q in the model

At a given time j , each new state qj is entered from a previous state qi ,
based upon a transition probability aqi ,qj = P(qj |qi ) from the probability
distribution A, which only depends on the previous state qi (the
Markovian property)

After each transition a symbol yj from Σ is produced based on the current
state qj , with emission probability eqj (yj) = P(yj |qj)

u

qj

eq j
(u)eq j

(a)

qi

eq i
(a) eq i

(u)

aq iq j

a u a
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Example 1 (HMM)

e
C

P(e|q1P(q )1|s)

P(q
1
|q

1
)

e
G

e
T

e
A

1

C GA T

qstart end

0.99

0.25 0.250.25

0.011.0

0.25

1

C GA T

qstart end

0.7 0.1 0.1

1.0 0.4

0.6

0.1

1

C GA T

qstart end

AAAATGGTGAACCTGTCGTTCCG

GAAA
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Example 2 (HMM)

0.2 1.00.6 0.4 0.0 0.50.50.8

1.0 1.01.0 1.01.0start q1 q q2 3 4q end

1 0 1 0 1 0 1 0

Can this HMM produce the following emitted sequences?

1 1 1 1 1 no
0 0 0 0 yes
1 0 0 1 yes
1 1 1 1 no
1 0 no
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Position-specific Information in HMMs?

Often we want to model classes of proteins or domains more
specifically.

What information do we have to model position-specific emission
probabilities?

Profiles! . . . extracted character frequencies from an alignment of
relevant sequences.

The resulting linear HMMs are called profile HMMs.
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Profile HMM

The profile P of length n based on alphabet Y is the matrix
[ei (y) : i = 1, ..., n and y ∈ Y ]

of probabilities.
ei (y) is the probability that y occurs on position i in the sequence.

1 2 3 4 5 6 ...
S e1(S) e2(S) e3(S) e4(S) e5(S) e6(S) ...
A e1(A) e2(A) e3(A) e4(A) e5(A) ...
K e1(K) e2(K) e3(K) e4(K) ...
F e1(F ) e2(F ) e3(F ) ...
V e1(V ) e2(V ) ...
... e1(.) ...

The approach is to build a HMM with a repetitive structure of states but
different emission probabilities in each position.
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Profile HMM

HMM and MAS
36

Profile HMMs for sequence families

The profil P of  length n based on alphabet A is the matrix

[ei(a) : i = 1,..,n and a!A ] 

of probabilities. 

ei(a) is the probability that a occurs on position i in the sequence.

Begin M1 M2 Mi Mi+1 Ml End

Match states

1 1 1 1 1 1

Emission sMa = ei(a)

a

The approach is to build a hidden Markov model with a repetitive structure of 

states but different probabilities in each position.

We must treat insertions and deletions for gaps.
What about gaps? - Insertion/Deletion
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Profile HMM

Begin M1 M2 Mi Mi+1 Ml End

Match states

1 1 1 1 1

Ii
Insert states

0.1

0.2

0.8

0.9

Match states

Begin M1 Mi-1 Mi Mi+1 Ml End
1 1 1 1

Silent states
Di-1 Di Di+1

0.1

0.8

0.2

0.9 0.9
0.1

0.2

0.8
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Profile HMM

KAPITEL 2. GRUNDLAGEN 21

Abbildung 2.10: Ein pHMM das aus dem MSA aus Abbildung 2.9 gene-
riert wurde. Das Alphabet wurde zur Vereinfachung auf vier Zeichen (A,
G, S, V) reduziert. Die Balken in den Match-Zuständen (M) repräsentieren
die Emissionswahrscheinlichkeit der jeweiligen Zeichen. Die Dicke der Ver-
bindungslinien zwischen den Zuständen repräsentieren die Übergangswahr-
scheinlichkeiten.

net eine Gesamtwahrscheinlichkeit für die Emission der Sequenz durch das
pHMM. Die Gesamtwahrscheinlichkeit einer Sequenz berechnet sich durch
das Aufsummieren der Wahrscheinlichkeiten für alle möglichen Pfade durch
das pHMM. Im nächsten Schritt kann man die Wahrscheinlichkeit, dass eine
bestimmte Sequenz durch ein pHMM erzeugt wurde, mit der vergleichen,
die eine zufällige Sequenz ergeben würde. Liegt sie signifikant über der
Wahrscheinlichkeit der zufälligen Sequenz, ist das ein Hinweis, dass die ent-
sprechende Sequenz Teil der modellierten Proteinfamilie ist [Durbin et al.,
2007].

2.5.4 HaMStR

Bei Vorhandensein zweier vollständiger Proteome ist die reziproke BLAST-
Suche (Kapitel 2.5.1) die Basis vieler Orthologie-Vorhersageprogramme. Sind
Proteome vollständig vorhanden, wird angenommen, dass die beiden ähn-
lichsten Proteine zwischen den Proteomen Orthologe sind. Liegen die Pro-
teome allerdings unvollständig vor, kann das Ergebnis der reziproken BLAST-
Suche nicht sinnvoll interpretiert werden. HaMStR3 (Hidden Markov Model
Based Ortholog Search Tool Using Reciprocity) [Ebersberger et al., 2008] ist
eine Methode die eine BLAST-Suche mit einer HMM-Suche verbindet. Mit

3http://www.deep-phylogeny.org/hamstr/

How would you choose the number of states in the model?

What states should be chosen?

How are the model parameter chosen?
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pHMM from aligned sequences

A C A - - - A T G
T C A A C T A T C
A C A C - - A G C
A G A - - - A T C
A C C G - - A T C

A
C
G
T

A
C
G
T

A
C
G
T

A
C
G
T

A
C
G
T

A
C
G
T

A
C
G
T

insertion region
* * * . . . * * * match states
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pHMM for related proteins

collect
orthologs

MSA

pHMM

A
C
G
T

A
C
G
T

A
C
G
T

A
C
G
T

A
C
G
T

A
C
G
T

D

Is a new protein P also part of the group?

Heiko A. Schmidt Bioinformatics Course 71



(p)HMMs - training

Usually we do not know the best structure/probabilities for an HMM.
We cannot evaluate all different possible paths through the HMM
separately, neither for training nor for evaluation.
Efficient algorithms exist to train pHMMs with sequence alignments
(Baum-Welch algorithm).
The training process changes the transition probabilities and, thus,
leave a trace of the sequence family.
Also the structure of the pHMM can be changed during training
(States not used by at least half of the training set are merged with
the insertion state; insertions present in more than half the training
set are made a new match state.)
Unfortunately, large training sets (> 20− 50) are necessary to train
HMMs
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(p)HMMs - applications

An HMM for globin sequences (Krogh et al. 1994)

The main applications of pHMMs in Bioinformatics are certainly

to search in databases for relatives of protein families with pHMMs
generated from alignments of sequences from the respective
protein-family
to detect and annotate functional domains with pHMMs generated
from alignments of their sequence motifs
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(p)HMMs - application for multi-domain proteins

One can search for proteins containing several domains

by joining pHHMs to one linear HMM if the domains occur in a
certain order

but on can also join several domain allowing for unspecific orders

1-x0 1-x1 1-x2

x1 x2

1.0 1.01.0 1.0 1.0

1-x0 1-x1 1-x2

x0 x2x1

x0

EndStart

Motif 1 Motif 2

29

Motif 4

Motif 1

Motif 3Motif 5

Motif 2Motif 6

EndStart

Figure II.4: Topology of a completely connected Meta-MEME model. Each
edge in the graph contains a model of an inter-motif spacer region.
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(p)HMMs - application sequence alignment

Furthermore one can align sequences using HMMs
by aligning the match states of the Viterbi path.
E.g. aligning sequences A1A2A3A4A5 and B1B2B3B4B5.

EndStart

Delete

Insert

Match

a1
a2

A3 A4 A5

a- a1 a2 A3 - A4 A5

Please note,
characters in insert/delete states have been marked by lower case letters in
this example for distinction.
a- in the deletion state is not really a character, but it is needed to avoid
match state M2.
characters mapped to the same insert states would be put in separate
columns in the alignment.
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(p)HMMs - application sequence alignment

Furthermore one can align sequences using HMMs
by aligning the match states of the Viterbi path.
E.g. aligning sequences A1A2A3A4A5 and B1B2B3B4B5.

EndStart

Delete

Insert

Match

a1
a2

A3
B1 B2

A4
B3

A5
B5

a-

b4

a1
-

a2
-

A3
B1

-
B2

A4
B3

-
b4

A5
B5

Please note,
characters in insert/delete states have been marked by lower case letters in
this example for distinction.
a- in the deletion state is not really a character, but it is needed to avoid
match state M2.
characters mapped to the same insert states would be put in separate
columns in the alignment.
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Pfam

Protein families database of alignments and pHMMs.
http://pfam.sanger.ac.uk
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Pfam Database (Sonnhammer et al. 1997)

The Pfam database contains Protein (Domain) Families based on the
data in the Uniprot protein databases.

There are two sections: Pfam (or Pfam-A) and Pfam-B

Pfam/Pfam-A:

contains a set of hand curated seed alignments containing data from
different sources (Uniprot, Prosite, Prodom, structural alignments,
BLAST results, Repeats found with Dotter, published alignments)
from the seed alignments (profile) HMMs are created
the HMMs are used to collect additional data from Uniprot
create a full alignment (and HMM)

Pfam-B: (abandoned 2013)

utilizes an automated clustering of all sequences from Uniprot in the
ADDA database (without the sequences already used in Pfam-A).
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Pfam-A Generation (Sonnhammer et al. 1997)

If the results during the curated
generation of alignments/HMMs,
one can optimize in different ways:

seed alignment construction

HMM construction

generation of full alignment
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Pfam Database Entries

An Entry in the Pfam database consists of:

Annotation/summary about the protein (domain) family,

the full alignment,

the seed alignment (Pfam-A only),

the (profile) HMM (Pfam-A only),

background information about curation and HMM creation etc.
(Pfam-A only)

Pfam currently (Rel. 31.0, 03/2017) contains

16712 Pfam-A families based on UniProtKB reference proteomes
(since Rel 29.0)

last with both Pfam-A (14831) and Pfam-B (544866) was 27.0
(03/2013) based on SwissProt+SP-TrEMBL

compared to 100 Pfam-A and 11763 Pfam-B families in Release
0.2, 01/1996 (based on SwissProt only).
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Pfam Database Searching (Sonnhammer et al. 1997)

There are several ways to search in/with the Pfam HMM database:

search with a query sequence against all HMMs in Pfam – e.g., to
classify proteins or their domains

one can download an HMM and search in a set of sequences to find
(distant) homologs

search with the whole set of HMMs against a set of (unknown)
sequences, e.g., to annotate and/or find functional domains.
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