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| ecturers

This lectures will be held by the following CIBIV members:
@ Heiko SCHMIDT
@ Sebastian BURGSTALLER-MUEHLBACHER
@ Florian PFLUG
e Martin FAHRENBERGER

The Center for Integrative Bioinformatics Vienna (CIBIV), headed by
Arndt von Haeseler, is a joint working group of the University of Vienna
and the Medical University of Vienna located at the Max Perutz Labs.
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Tentative Schedule

@ 9:00-13:00 - Morning class (mixed lectures and hands-on) - including
coffee break

@ 13:00-14:00 - Lunch

@ 14:00-18:00 - Afternoon class (mixed lectures and hands-on) -
including coffee break
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Tentative Topics

e Day 1: Similarity of sequences, pairwise/multiple sequence
alignment, sequence retrieval, homology searches, determination of
modular architecture, Sequence logos

@ Day 2: Gene ontologies, online resources, functional gene networks
and pathways, molecular interactions, variations between individuals,
variations between species

@ Day 3: Unix basics, installing software, command line tools, file
formats, basic workflow steps, genome viewing/genome browser,
alternatives to the command line

e Day 4: Introduction to basic statistics, R and Bioconductor; NGS
data in R; accessing databases from R

e Day 5: Typical NGS readout after basic data analysis: sequences,
coverage data, count data; ENCODE data; GO analysis; Pathways,
motif detection
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What is Bioinformatics?
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Bioinformatics — a definition

What is Bioinformatics?

In a broad sense Bioinformatics deals with the
application of methods from computer science and computers
to answer biological questions.

(There are a number of differing definitions, depending on where the
researchers come from.)
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Bioinformatics is an inter-disciplinary field

biology
- molecular biology
- genetics

computer science

- algorithms

- data bases
Bioinformatics < .
mathematics

- statistics

- propability theory

- biomathematics
medical sciences/biomedicine
biophysics
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Pairwise Sequence Alighment
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Alignment

What is an alignment?

e Alignment is the procedure of writing two (or more) protein or DNA
sequences in a way that a maximum of identical or similar characters
are placed in the same column by adding gap characters ('-").

unaligned sequences: aligned sequences:

seql: LGPSKQTGASKGSSRIWDN seql: LGPSKQTGASKGS--SRIWDN-

1 T .
seq2: LNTKSAGASKGAILMRLGDAS seq2: LN-TKSAGASKGAILMRLGDAS
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What are alignments used for?

Sequence alignment is one of the most fundamental procedures in
Bioinformatics. It is used for

@ Sequence comparison
Sequencing: to combine sequenced fragments
Search for genes
Estimation of evolutionary distance

Finding genes

Estimating function of genes and proteins

)
)

o

o

@ Finding relatives in databases

)

@ Estimating structure of RNAs and proteins
o

the basis to reconstruct evolutionary relationships and trees
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Homology - related sequences

It usually only makes sense to construct alignments from homologous
sequences, i.e., sequences that share a common ancestor.

Species 1 Species 2 Species 3
Al B1 A2 B2 A3 B3

Genes originating from

© ...speciation are orthologous
(e.g., Al and A3).

@ ... duplication are paralogous
(e.g., A2 and B2).

All genes A1, A2, A3, B1, B2, B3 descend
from a common ancestor and are, hence,
homologous.

Speciation

Speciation

Duplication
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Homology—ldentity mistake

@ Some people have published statements like:
Sequences A and B are 30% homologous.

@ this is wrong!

@ What they mean is:
Sequences A and B are 30% identical.
That means they differ in 70% of they positions.

Note: sequences either are homologous or the are not!!!
There is no third alternative.
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Point mutations

For alignments we consider the following point mutations in comparison of
two sequences:

@ substitutions (change of a character, in the alignment: mismatch)

@ insertion of character(s) in one sequence
e deletion of character(s) from one sequence

@ identical characters in both sequences are called a match
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Direction of evolution

Since we don’t know anything about the ancestral state and, hence, about
the direction of the mutations

@ we consider the substitution rate between two state equal in either
direction.

Furthermore, we cannot distinguish insertions and deletions

@ thus we will call them indels.

GA GTC GAC GTC GAC
unknown ancestral states indels = insertions/deletions
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What is the optimal solution

Given two sequences A and B and a scoring function for two characters a
and b

+5 if a= b (match)
S(a, b) = { —2 if a # b (mismatch)
—6 if a or b indel (gap)
to score each alignment column.
Then we are looking for that alignment, that gives us the highest score
S(A, B) summing up the column scores s(a, b) for all columns of the

alignment.

For example:
TGAACGTA

TACA--TA
+9-2-2+5-6-6+5+5 =4

Heiko A. Schmidt Bioinformatics Course

Why not just scoring all alignments?

15

@ There are by far too many.

22N . .
@ There are about N possible alignments,
e for two sequences of length N = 300 that is 1017° alignments.

Hence, we need a smart way to cut the computation short, like the

dynamic programming approach for pairwise alignment by Needleman
and Wunsch (1970).
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Needleman-Wunsch algorithm

. : . +5  a=b
Given sequences A and B and scoring function s(a, b) = { —2 a#b

—6 a or b indel
0 1 2 3 4 5 6 7 8 PENE L
T A ACGT A @ Initialize an N x M matrix with the
o 10 -6 12-18-24_30_36_42_48 sequences A and B of length M and N.

»- »

P A P QP4

D> 0~ WD
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Needleman-Wunsch algorithm

+5 a=>st

Given sequences A and B and scoring function s(a, b) = { 2 aFb
— a or Inae

0 1 2 3 4 5 6 7 8 L
T A A CG T A @ Initialize an N x M matrix with the

0 0 |-6/-12-181-24/-30-36—-42-48 sequences A and B of |ength M and N.
T 615 1-1][-7]-13-19-25-31-37 @ Starting at the upper left corner set the
A_172 _17 3[4 /-2/-8-14-20-26 intermediate scoring value O'(I,j) =
Crrx1 o(i—1,j — 1)+ s(A;, B;j)  match/mismatch

18 —% =3[ 1123 ,-3,-9-15 max < o(i — 1,j) + s(A;, —) gap in B
L PV IR P S O ol =1 +s(8. ) gap in A
T b s A8 2 26 | o @ o(i,j) always holds the optimal score for
A o A T ot N the alignment from the sequence start to

D> 0~ WD

(Ai, B;).
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Needleman-Wunsch algorithm

+5 a=b>st

Given sequences A and B and scoring function s(a, b) = { —2 a#b

—6 a or b indel

0 1 2 3 4 5 6 7 8 itiali ix Wi
r ela’a‘c’elr’a @ Initialize an N x M matrix with the
0 10 =6 -12-18-24_30-36—42_48 sequences A and B of length M and M.
1 T 615 1-1]-7]-13-19-25-31-37 @ Starting at the upper left corner set the
) A_172 _-f 34 |-2|-8|-14-20-26 intermediate scoring value O'(I,_j) =
Crr—ax1 e r r T o(i—1,j— 1)+ s(A;, Bj)  match/mismatch
3 A-1_8 —7|-8] 1123 [-3/-9,-15 max{ o(i —1,j) + s(Aj, =) " gap in B
4 L1592 e To 1 o514 olij = 1) +s(B;, -) gap in A
R R R A N R @ o(i,j) always holds the optimal score for
s BB o8 10 T 3 %% [0 41 the alignment from the sequence start to
esulting alignment anad score: .
g allg @ The optimal score can be found at
TGAACGTA U(N,M)
T--ACATA : _ _ _
+5-6-6+5+5-2+5+5 =11 @ The optimal alignment is retrieved by
following the best values (i, j).
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Needleman-Wunsch algorithm

+5 a=>st

—6 a or b indel

Given sequences A and B and scoring function s(a, b) = { —2 a#b

0 1. 2 3 4 5 6 _7_28
T GAACGTA

0 |0 [-6-12-18-24-30-36-42-48
1 T 65 L—1,-7 =13-19-25-31-37
o BN I3 T4 [—2) -8 -14-2026
s S 731 T2 Ts Ja 915
2 AL 2 e fo T S5 Ta
5 TL30r10515 410 T4 276 0

6 o625 2110 1 =372 | o'

Resulting alignment and score:

TGAACGTA
T--ACATA
+5-6-6+5+5-2+5+5 =11
TGAACGTA
T-A-CATA
+5-6+5-6+5-2+5+5 =11

Initialize an N x M matrix with the
sequences A and B of length M and N.

Starting at the upper left corner set the
intermediate scoring value o(i,j) =

o(i—1,j — 1)+ s(A;, B;j)  match/mismatch
max

o(i —1,j)+s(A;i, —) gap in B
o(i,j— 1)+ s(B;, —) gap in A

o(i,J) always holds the optimal score for
the alignment from the sequence start to
(Ai, B;).

The optimal score can be found at

a(N, M).

The optimal alignment is retrieved by
following the best values o (i, ).

There can be more than one optimal
alignment!

Heiko A. Schmidt Bioinformatics Course 17



Local alignments

The Needleman-Wunsch algorithm always aligns the whole sequences
producing a global alighment, while end-free alighments always involve
a start and an end of any of the two sequences aligned.

However, if

@ only a core of the sequence is conserved,
@ the one sequence contains several conserved regions (e.g. genes)
separated by regions with little conservation (intergenic regions)

local alignments (aligning subsequences with highest score) are much
more reasonable.

This typically works also for sequences which only share a certain overlap
(e.g. at the ends).
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Smith-Waterman algorithm

Temple Smith and Mike Waterman (1981) found a way to adapt the
Needleman-Wunsch algorithm to produce local alignments:

@ the scoring function must contain negative values for mismatches,

@ whenever o(i,j) < 0 it is set to zero (here a possible backtrace will
stop)

@ the initial row and column with gap costs are set to zero

@ the backtrace will start at the maximal (i, )

b A
o \\
¢ o] .| ! .
— W ‘/x I

Temple F. Smith and Michael S. Waterman (source: Wikipedia)
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Smith-Waterman algorithm

. . . +5 a=»>b
Given sequences A and B and scoring function s(a, b) = { ~2 a#b

—6 a or b indel

0 1 2 3 4 5 6 7 8

T GCTCGTG
0 . 010000 0100 @ Initialize an N x M matrix with the
1 T 0(5/0]0]5 0150 sequences A and B of length M and N.
? o 0/5/3/0/5/83]0/5]3 @ Starting at the upper left corner set the
3410108 ]8.,2/10.4 0]3 intermediate scoring value o(i,j) =
4 01010 2v 6 4v 81210 o(i—1,j — 1)+ s(A;, Bj)  match/mismatch
T e max 4 U =10 +s(A;, ) gap in B
5 0|5|{0|07 4|2|13]7 o(i,j—1)+s(Bi, —) gap in A
AT T o~ o 0
6 o(o0o|3|0|1 (5|27 |11 . . )
@ The optimal local alignment score is the
Resulting alignment and maximal score among all o (i, ).
score: @ The optimal local alignment is retrieved by
1CGT backtracking until the o (i, j) of the current
TCAT cell (i,)) gets zero.
+5+5-2+5=13
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Scoring Matrices

Using a scoring function like

+5 ,if a = b (match)
S(a,b) =4¢ —2  |if a# b (mismatch)
—6 ,if a or b indel (gap)

Is a nice starting point, but has no biological motivation.
Instead more sophisticated scoring matrices and gap costs have been
developed.

Heiko A. Schmidt Bioinformatics Course 21



Gap costs

As you might have recognized, we use linear gap costs, i.e., every gap
position is penalized the same no matter how long ¢ the whole gap might
have grown.

More biologically meaningful are affine gap costs of the kind:

gll) =80+ g

That means, that opening a gap is especially penalized with, e.g., gap
opening cost g, = 11 and gap extension cost g. = 2.
The total gap cost has then to be subtracted from the current score.

Heiko A. Schmidt Bioinformatics Course 22

More biological criteria for aa match/mismatch scoring

e differences in the chemical properties of amino acids (acidic/basic,
polar/nonpolar, hydrophilic/-phobic, positively or negatively
charged /neutral, size, ...)

o differences in the underlying codons (Glu<>Asp: 1, Glu<>Phe: 3)

These points should also influence the observed substitution rates among
amino acids and are captured in PAM and BLOSUM matrices:

@ observed aa exchanges in more closely related proteins (PAM)

@ observed aa exchanges in conserved blocks of distantly related
proteins (BLOSUM)

Heiko A. Schmidt Bioinformatics Course 23



Incorporating more biological scoring schemes - PAM250
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Using more biological scoring schemes - BLOSUMG62
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Database Searching |
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Sequence Databases

How to determine structure, function, homologs ... for a yet
unknown query sequence Q7

@ There are large amounts of sequences and their annotations in the

public databases.
@ There are very diverse databases:
o DNA sequences (INSDC - Intl. Nucl. Seq. Database Collaboration:

ENA at EMBL, GenBank at NCBI, DDBJ at NIG),
o protein sequences (SwissProt/UniProt),
o genomic data (Ensembl), structures (PDB), etc.

@ Sequences showing (high) similarity to @, are likely to share the same
structure, function, and history.

@ Solution: Searching in the public databases for similar sequences can
help to infer the whereabouts of new (unknown) sequences.

@ Since it is unlikely to find completely identical sequences, approximate
searches are necessary, to find similar sequences.

@ Such search methods are usually based on pairwise sequence
alignment comparing the query sequence  to a large database T.
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Optimal Alignment for Searching

Given a database D (length m) and a query sequence Q (length n).

@ The Needleman-Wunsch algorithm produces global alignments and is
thus not suitable for database searching

@ The Smith-Waterman algorithm guarantees to find the result with
optimal score, but is very slow in large databases due to its ©(n?)
runtime complexity (m x n cells).

@ Thus, often faster, but heuristic approaches are used.

Heiko A. Schmidt Bioinformatics Course 28

BLAST procedure: rough overview

build an index of the databaset look-up
Compile list of high-scoring strings (words)
search for exact hits using index look-ups — seeds

extend seeds — local alignments

AN N N N N
S N N N N

assess significance of the score

Heiko A. Schmidt Bioinformatics Course 29



BLAST procedure: w-mer neighborhood of the query

(1) For the query @ construct the list of high-scoring words of length w
(w-mer neighborhood).

Query sequence Q of length L

<t Maximum of L-w+1 words
--- (typically w=3 for proteins)

For each word from the query Q
find the list of words that scores

at least T e.g. using BLOSUMG62.
Typically, this results in about 50
words per residue in Q to be stored.

[
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BLAST procedure: find w-mer hits in database

(2) Compare the word list to the database and identify exact matches.
—— ==

I e —
=

exact matches of words
from the word list
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BLAST procedure: extend w-mer hits

(3) For each word match, extend alignment (of hit and query) in both
directions to find the maximal segment pairs (MSPs) that score
greater than score threshold C

maximal segment pairs (MSPs)

Definitions: Given sequences S; and S,

@ Segment Pair = a pair of substrings from $; and S, of equal length aligned
without gaps

@ Maximal scoring Segment Pair (MSP) = segment pair which could not be
shortened or extended without reducing the corresponding score

@ High-scoring Segment Pair (HSP) = is an MSP scoring above a certain
cutoff C.

Heiko A. Schmidt Bioinformatics Course 32

BLAST procedure: extend w-mer hits (2)

@ Extending the word hit alignment in an optimal way to test whether it
is part of a maximal scoring segment pair with score > C — HSP

@ choice of C is guided by (a) scoring matrix and statistics of (b) Q and (c)
DB, such that a score of C is unlikely to occur by chance in any of the DB
sequences.

@ Stop the extension if the score falls below certain thresholds (derived
from previous hits) to improve speed

@ Thus, (due to w-length words and cutoffs) BLAST does not guarantee to
find all segments with score at least C, there is a very small chance of
missing important pairs (computable with DP).

@ In practice, BLAST is orders of magnitude faster than dynamic
programming and its biological sensitivity/specificity is good for
distant relationships, whereas for analyzing and displaying alignments
Smith-Waterman optimization should be used.
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BLAST output

sp|Q92889 |XPF_HUMAN DNA-REPAIR PROTEIN COMPLEMENTING XP~F CELL (XERODERMA PIGMENTOSUM GROUP F COMPLEMENTING PROTI

(DNA EXCISION REPAIR PROTEIN ERCC-4) Length = 905 Score = 1659 bits (4249), Expect = 0.0 Identities

Positives = 838/905 (92%)

Query: 1 MAPLLEYERQLVLELLDTDGLVVCARGLGADRLLYHFLQLHCHPACLVLVLNTQPAEEEY 60
MAPLLEYERQLVLELLDTDGLVVCARGLGADRLLYHFLOLHCHPACLVLVLNTQPAEEEY
Sbjct: 1 MAPLLEYERQLVLELLDTDGLVVCARGLGADRLLYHFLOLHCHPACLVLVLNTQPAEEEY 60

Query: 301 SLRATEKAFGONSGWLFLDSSTSMFINARARVYHLPDAXXXXXXXXXXXXXXXXXXXXXX 360
SLRATEKAFGQNSGWLFLDSSTSMFINARARVYHLPDA
Sbjct: 301 SLRATEKAFGONSGWLFLDSSTSMFINARARVYHLPDAKMSKKEKISERMEIKEGEETKK 360

sp|P36617 |RAl16_SCHPO DNA REPAIR PROTEIN RAD16 Length = 892 Score = 485 bits (1236), Expect = e-136
303/918 (33%), Positives = 497/918 (54%), Gaps = 76/918 (8%)

Query: 5 LEYERQLVLELLDTDGLVVCARGLGADRLLYHFLQLHCHPACLVLVLNTQPAEEEYFINQ 64
L Y++Q+ EL++ DGL V A GL ++ + L P L+L++ + E ++
Sbjct:s 9 LAYQQQVFNELIEEDGLCVIAPGLSLLQIAANVLSYFAVPGSLLLLVGANVDDIELIQHE 68

Query: 304 —wew- ATEKAFGONSGWLFLDSSTSMFINARARVYHLPDAXXXXXXXXXXXXXXXXXXXX 358
++ + QS WL LD++ M AR RVY +
Sbjct: 309 LSVNVSSYPSNAQPSPWLMLDAANKMIRVARDRVYKESEGPNMDAIP--———--—oue—-— 355

sp|P06777 |RAD1_YEAST DNA REPAIR PROTEIN RAD1 Length = 1100 Score = 231 bits (583), Expect = 4e-60
136/369 (36%), Positives = 208/369 (55%), Gaps = 37/369 (10%)
Query: 559 LHEVEPRYVVLYDAELTFVRQLEIYRASRPGKPLRVYFLIYGGSTEEQRYLTALRKEKEA 618

L E+ P Y+++++ +++F+RQ+E+Y+A +VYF+ YG 8 EEQ +LTA+++EK+A
Sbjct: 704 LQOEMMPSYIIMFEPDISFIRQIEVYKAIVKDLQPKVYFMYYGESIEEQSHLTAIKREKDA 763

.
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BLAST output

= 838/905

Identities =

Identities =

34

BLASTP 2.0.5 [May-5-1998]
Query= human XP-F repair gene (905 letters)

Database: Non-redundant SwissProt sequences 74,596 sequences; 26,848,718 total letters

Color Key for Alignment Scores
40=-50 . 50=80" 80-200

0 125 250 375 500 625 750 875

Distribution of 11 BLAST Hits on the Query Sequence

Score E
Sequences producing significant alignments: (bits) Value
sp|Q92889 | XPF_HUMAN  DNA-REPAIR PROTEIN COMPLEMENTING XP-F CELL ... 1659 0.0
sp|P36617 [RAL6_SCHPO DNA REPAIR PROTEIN RAD16 485 e-136
sp|P06777 |RAD1_YEAST DNA REPAIR PROTEIN RAD1 231 4e-60
sp|P40562 |YIS2_YEAST PUTATIVE ATP-DEPENDENT RNA HELICASE YIR002C 37 0.17

sp|Q10202 | YAXB_SCHPO PUTATIVE ATP-DEPENDENT RNA HELICASE C13F4.11C 36 0.38

Heiko A. Schmidt Bioinformatics Course
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BLAST flavors

The BLAST package contain programs for different purposes:

BLAST query type | database type
program
blastn nucleotide | nucleotide
blastp protein | protein
blastx nucleotide | protein
(translated in 6 frames)
tblastn protein | nucleotide
(translated in 6 frames)
tblastx nucleotide | nucleotide
(both translated | in 6 frames)
Heiko A. Schmidt Bioinformatics Course 36

BLAT - BLAST-Like Alignment Tool (Kent, 2002)

@ To reduce search time BLAT requires only one single, but longer
exact match (instead on several consecutive ones), to be candidate
for the more rigorous search.

@ This speeds up the candidate search, but makes the search less
sensitive. . .

@ that means it might miss (more) relevant hits.

@ Nevertheless, BLAT works well if the database sequences and the
query are closely related.

@ However, this is the scenario BLAT was developed for (mapping reads
against a closely related reference).

Heiko A. Schmidt

Bioinformatics Course 37



Specialized BLAST extension: Phi-BLAST

Pattern-hit initiated BLAST searches for 'regular expressions’ of motifs in
a protein database.

Often we have certain patterns that have to occur in a sequence but
we cannot write them down as one sequence,

then Patterns can help.

If the Patterns we are searching for must contain a Tryptophane and
then after 9-11 residues a Phenylalanine, Valine, or Tyrosine followed
by an Alanine

we can code it as: W-x(9-11)-[FVY]-A
and feed it to Phi-BLAST.

Heiko A. Schmidt Bioinformatics Course
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Multiple Sequence Alighment

Heiko A. Schmidt Bioinformatics Course

39



Multiple Sequence Alignment (MSA)

What is a multiple sequence alighment?

@ MSA is like a pairwise sequence alignment but instead of two
sequences three or more are aligned, trying to maximize the number
of identical or similar characters in a column by adding gaps ('-').

unaligned sequences: aligned sequences:

seql: LGPSKQTGASKGSSRIWDN seql: LGPSKQTGASKGS--SRIWDN-
seq2: LNTKSAGASKGAILMRLGDAS seq2: LN-TKSAGASKGAILMRLWDAS
seq3: LGPTKSTGASKGAILSRLGDA seq3: LGPTKSTGASKGAILSRLGDA-

Heiko A. Schmidt Bioinformatics Course

MSA <« phylogeny relationship

40

segA N - F L S
segB N - F - S
segC N K'Y L S
segD N - Y L S

NYLS NKYLS NFS NFLS
+K -
Y-F
NYLS

@ Having the 'true tree’ that reflects the history of our sequences
facilitates significantly the alignment.

@ Phylogenetic trees are usually based on alignments.

e typical hen-and-egg problem!!!

Heiko A. Schmidt Bioinformatics Course
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Progressive alignment

NYLS NKYLS NFS NFLS

N-Y
NKY
N-F
N-F

HlpPe
171717

@ Given a tree
@ ...the sequences are aligned progressing from the leaves to the root

@ ...aligning the subalignments where the branches meet

Heiko A. Schmidt Bioinformatics Course 42

Progressive Alignment: ClustalW (Higgins et al., 1994)

Hbb_Human 1 =
Hbb_Horse a7 - .
o toman 3| 3 g0 o S— @ ClustalW is one of the most
Mvg_,l’hyca 5 :77 :77 :75 75 ~ Calculate distance matrix
Glb5_Petma 6 8 & 73 74 80 - : f | d MS A
Lng_L:pIu 2 7 b6 % 88 93 | req Uent y use

1 2 3 3 5 3

l programs.

Hbb_Human
L s @ however, not necessarily the
Hba_Human
4‘ —— Rooted Neighbor Joining b est one.

tree (guide tree)

Myg_Phyca
G Pema @ ClustalW Algorithm:

Lgb2_Luplu |

V @ construct all pairwise
77777777 VHLI[PEEKSAVTALWGKUN --Em HITQHFFESFGDLST I’mgressive a | ign m e nts a n d CO m p ute

-------- VQLSGEEKAAVLALWDKVN- EEEVGGEALGRLLVV]Y A TQHFFDSFGDLSN A
s alignment:

————————— VLEPADKTNVKAA\'iGK\E;AHAGEYGF\EALERHFL FHTTKIYF DLS
Align following . . .
the guide tree the pairwise distances

--------- VLGAADKTINVKAAWSKVGGHAGEYGAEALERMFLGFHT TKT[YF

--------- VLYEGEWQLVLHVWAKVEAOVAGHGQDILIRLFKSHHETL!
PIVDTGSVAPLYGAAEKTKIRSAWAPVY STYETSGVDILVKFFTETHAAQEFFPKFKGLTT
******** GALTESQAALVKS SWEEENANI PKHTHRFFILVLETRAAAKOLFSFLKGTSE
. - . .

@ construct Neighbor Joining
tree as guide tree

LKGTFATLSELHCDKLHVOPENFRL
- KGTFAALSELHCIKLE [PENFRL

PDAVMGNPKVKAHGKKVLGAFSDGLAHL

PGAVMGMPKVKAHGKKVLHSFGEGVHHLD
~---HGSPOVKGHGKKVADALTNAV]
-—--HGSAQVKAHGKKVGDALTLAVGHLD---
EAEMKASEDLKKHGVTVLTALGAILKKKG=---
ADQLKKSADVRWHAERI INAVNDA!
VP--QNNPELOAHAGKVFKLVYEAAIQLOQVTGVVVTRATLKNLGS

ek @ Along the guide tree
IR e (cIoser related sequences

E ISYQKVVAGVANAL. Y.

AVHASLDKFLASVSTVLTBKYR------

B —— first) align sequences and

H PGDFGADAQGAMNKALELFRKDIARKYKELGYQG
LAAVIADTVAAQ--==-—~~~ DAGFEKLMSMICILLRSAY-------

VKEAILKTIKEWGAKWSEELNSAWTIAYDELATVIKKEMNDAA- - - b -
e ; sub-alignments.
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Progressive Alignment: ClustalW, cont. (Higgins et al., 1994)

Guide Tree
1

construct a tree by successively joining nearest neighbors

the tree is no phylogeny, but a guide tree

align the next 2 sequences (or profiles) with dynamic programming
produce a new profile from the new alignment

continue with next pair

Problem: once a gap, always a gap, that means early mistakes are
never corrected
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lterative alignment: PRRP (Gotoh, 1996)

( Initial alignment )

” f
1
Phyl i .
f' 2 Iterative scheme:

@ Start with some initial alignment

O :
@ Construct a phylogenetic tree
Wjj Sequence Pairs

@ Use it to (re-)weight the
sequence pair

1<icj=N

‘ WsP=23, Wi Sij
: o lteratively refine the alignment

to achieve higher score

82 DGMNAGLAQDYVKAGDTR-VIA |
84 DGMASGLDKDYLKPDDSR-VIA
44 - DSIPSGVDASKI-

Yes

terative Refinement of
Multiple Alignment

@ If the refinement brought

No benefit, start again.
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MAFFT (Katoh et al. 2002+2005)

MAFFT is a fast and accurate approach for many sequences:
© Progressive alignment FFT-NS-1:

e compute rough distances and from those a guide tree
e perform a progressive alignment using the guide tree

@ Progressive alignment FFT-NS-2:

o use the FFT-NS-1 alignment to compute a better guide tree
e again perform a progressive alignment
© lterative refinement FFT-NS-i:
e start from alignment FFT-NS-2
e iteratively improve the alignment
e by optimizing the weighted sum-of-pairs score

@ MAFFT uses a mathematical trick, the fast Fourier transform (FFT)
to reduce the time complexity to find homologous regions between
sequences.

@ This approximation reduces the pairwise comparisons of two sequence
of length n from O(n?) for dynamic programming to O(nlog n) using
FFT.
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A comparison of MSA programs (Sievers et al., 2011)

Table I BAIiBASE results

Aligner Av score BBI11 BB12 BB2 BB3 BB4 BB5 Tot time (s) Consistency
(218 families) (38 families) (44 families) (41 families) (30 families) (49 families) (16 families)
MSAprobs 0.607 0.441 0.865 0.464 0.607 0.622 0.608 12382.00 Yes
Probalign 0.589 0.453 0.862 0.439 0.566 0.603 0.549 10095.20 Yes
MAFFT (auto) 0.588 0.439 0.831 0.450 0.581 0.605 0.591 1475.40 Mostly
(203/218)

Probcons 0.558 0.417 0.855 0.406 0.544 0.532 0.573 13 086.30 Yes
Clustal Q 0.554 0.358 0.789 0.450 0.575 0.579 0.533 539.91 No
T-Coffee 0.551 0.410 0.848 0.402 0.491 0.545 0.587 81041.50 Yes
Kalign 0.501 0.365 0.790 0.360 0.476 0.504 0.435 21.88 No
MUSCLE 0.475 0.318 0.804 0.350 0.409 0.450 0.460 789.57 No
MAFFT (default) 0.458 0.258 0.749 0.316 0.425 0.480 0.496 68.24 No
FSA 0.419 0.270 0.818 0.187 0.259 0.474 0.398 53648.10 No
Dialign 0.415 0.265 0.696 0.292 0.312 0.441 0.425 3977.44 No
PRANK 0.376 0.223 0.680 0.257 0.321 0.360 0.356 128355.00 No
Clustalw 0.374 0.227 0.712 0.220 0.272 0.396 0.308 766.47 No

The figures are total column scores produced using bali score on core columns only. The average score over all families is given in the second column. The results for
BAIiBASE subgroupings are in columns 3-8. The total run time for all 218 families is given in the second last column. The last column indicates whether the method is
consistency based.

e MAFFT (with auto-option) and Clustal Q — good tradeoff between
accuracy and runtime.

@ Anyway, whatever method you use, never trust the alignment blindly.
Always take a look at the alignments produced.

@ Typically one can see easily, if something went totally wrong.
Sequences that do not fit at all (e.g. non-homologous sequences or
proteins translated from the wrong reading frame) should better be
discarded before (re)aligning.
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Reflecting the Multiple Sequence Alignments

(Sequence Consensus and Sequence Logos)
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IUPAC/IUB Codes

IUPAC (Intl. Union of Pure and Applied Chemistry) and IUB (Intl. Union of
Biochemistry) have published guidelines on how to code nucleotide and
protein sequences (in 1 and 3-letter codes).

The DNA 1-letter codes are defined as (Comnish-Bowden/IUB, 1985):

@ nucleotides: @ double-degenerate codes:
A Adenine W  Weak A, T/U
C  Cytosine S Strong C, G
G Guanine R puRine A, G
M aMino A, C
@ triple-degenerate code: K Keto G, T/U
B notA C,G T/U
D notC A, G, T/U @ other:
H notG A, C, T/U N aNy A C, G, T/U
V. notT/U A CG
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IUPAC/IUB code: double-degenerate codes

Adenine i

d
®) /' MmN
— % ¥ Weak , T/U

Strong

pYrimidine

aMino

A
C
puRine A,
C
A
Keto G

X <3 »nS
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One way to construct a consensus sequence

One way to construct a degenerate
HEM13 CCCATTCTTCOTC consensus sequence from a multiple DNA
sequence alignment (using IUPAC/IUB code):

HEM13 TTTCTGGTTCTC
For each column choose

HEM13 TCAATTCTTTAC

@ the nucleotide occurring in > 50% of
ANB1 CTCATTGTTGTC

sequences and > twice as often as the

ANB1  CCTATTGTTCTC @ a double degenerate symbol
ANB1 TCCATTCTTCGT (RY,M,K,S,W) if according 2 bases
ROX1 CCAATTCTTTTC occur in more than 75% of sequences

@ a triple degenerate symbol (B,D,H,V)

YCHATTGTTCTC if one base does not occur at all

@ an N, otherwise.

D'haeseleer (2006); Cavener (1987) ... but the consensus might be a highly
unusual sequence.
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Sequence Profiles

HEM13
HEM13
HEM13
ANB1
ANB1
ANB1
ANB1
ROX1

CCCATTGTTCTC
TTTCTGGTTCTC
TCAATTGTTTAG
CTCATTGTTGTC
TCCATTGTTCTC
CCTATTGTTCTC
TCCATTGTTCGT
CCAATTGTTTTG

nucleotide count matrix:

A
C
G
T

002700000010
464100000505
000001800112
422087088261

D’haeseleer (2006)

Sequence Logos (frequency-based)

Heiko A. Schmidt

@ Count matrices containing the number

of occurrences of the nucleotides and

@ Sequences profiles (or Position
Frequency Matrix) also reflect the

information in multiple sequence

alignments.

@ Profiles were used in progressive

alignment strategies like ClustalW.

Sequence profile:

lpos[[1]2 |3 |4 [5]6 [7]8]9]10 [11 [12 |
A ]l.0].0 [.25].875][.0[.0 [.0].0].0].0 [.125].0
C|l.5/.75|.5 |.125(.0/.0 |.0|.0|.0/.625|.0 |.625
G ||.0/.0 |0 [0 |.0].125/1|.0|.0|.125|.125|.25
T |.5/.25/.25|.0 |1|.875|/.0{1|1|.25 |.75 |.125
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HEM13
HEM13
HEM13
ANB1
ANB1
ANB1
ANB1
ROX1

H o QP

CCCATTGTTCTC
TTTCTGGTTCTC
TCAATTGTTTAG
CTCATTCGTTGTC
TCCATTGTTCTC
CCTATTGTTCTC
TCCATTGTTCGT
CCAATTGTTTTG

YCHATTGTTCTC

002700000010
464100000505
000001800112
422087088261

D’haeseleer (2006)

Heiko A. Schmidt

Sequence logos might be a better way of
visualizing sequence motifs reflecting the
number of occurrences of the nucleotides
using a Position Frequency Matrix or

Profile.

@ a 'sequence logo’ depicts the
conservation pattern of a motif by
stacks of letters which are scaled, e.g.
by the frequency of occurrence:

*-'05 |

TR TS

N M < .
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Sequence Logos (based on

information content)

HEM13
HEM13
HEM13
ANB1
ANB1
ANB1
ANB1
ROX1

H QP

CCCATTGTTCTC
TTTCTGGTTCTC
TCAATTGTTTAG
CTCATTGTTGTC
TCCATTGTTCTC
CCTATTGTTCTC
TCCATTGTTCGT
CCAATTGTTTTG

YCHATTGTTCTC

002700000010
464100000505
000001800112
422087088261

D’haeseleer (2006)

Heiko A. Schmidt

Originally sequence logos scale each
stack i of letters by the column’s
information content of the bases b in
bits:

i =2+ Z fp,ilogy fp i
b

In small samples like this, the
information content are over-estimated
and a correction has to be applied.
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Sequence Logos (corrected for the small sample)

HEM13
HEM13
HEM13
ANB1
ANB1
ANB1
ANB1
ROX1

H o QP

CCCATTGTTCTC
TTTCTGGTTCTC
TCAATTGTTTAG
CTCATTCGTTGTC
TCCATTGTTCTC
CCTATTGTTCTC
TCCATTGTTCGT
CCAATTGTTTTG

YCHATTGTTCTC

002700000010
464100000505
000001800112
422087088261

D’haeseleer (2006)

Heiko A. Schmidt

@ The original sequence logos scale each

stack i of letters by the column’s
information content of the bases b in
bits:

[, =2+ Z fb,,' |Og2 fb’,'
b

This formula assumes that all
nucleotides occur at equal frequency.
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Sequence Logos (corrected for nucleotide content)

HEM13
HEM13
HEM13
ANB1
ANB1
ANB1
ANB1
ROX1

Hoaop

CCCATTGTTCTC
TTTCTGGTTCTC
TCAATTGTTTAG
CTCATTGTTGTC
TCCATTGTTCTC
CCTATTGTTCTC
TCCATTGTTCGT
CCAATTGTTTTG

YCHATTGTTCTC

002700000010
464100000505
000001800112
422087088261

D’haeseleer (2006)

Heiko A. Schmidt

@ To reflect possible base frequency

biases, e.g. in GC content, it has been

suggested to use relative entropy
(=Kullback-Leibler distance):

fb i
seq Z fb I |0g2

where py, is the overall frequency of b

here with GC content in yeast (38%):
2.0

1.0
AT Terd]

—

bits

%GC of Caenorhabditis elegans (36%),
Plasmodium falciparum (19%),
Streptomyces coelicolor (72%)
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Hidden Markov Models )

Heiko A. Schmidt

Bioinformatics Course 57



Markov model

The Markov chain is the tuple
— (Q7 Paﬂ-)

where:

Q is the set of states

P is the probability matrix of state transition

7 is the vector of initial probabilities to start states

P(qslq,)

A Markov chain is traversed from state to state, producing a sequence of
states.
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Markov Chains: a simple Markov model for DNA

P(x=T|x=A)=aar

@ 4 states A,C,G, T ° e
@ Transition between states
occur with particular

probabilities ‘

@ Each arrow has a

probability parameter
associated with it

ds.t = P(X,' = t‘X,'_l = S)
probability of making a transition from state s to state t
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Include BEGIN and END state

Two new states can be added to the Markov model.
These are treated as silent states, since they do not add to the sequence.
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Hidden Markov Model (HMM)

Hidden Markov Models (HMMs) resemble Markov Models in having a
finite number of states connected by transitions.

But the major difference between the two is that the states of the Hidden
Markov Models are not associated with one symbol but with more than
one symbol. Each state g can emit a symbol x with a probability given by
the distribution of emission probabilities e4(x).

3 o

eqi(a)""-.“ :,.-":eqi(U) eqi(a)""'-..‘ :.-":eqi(U)

(@), — @)
q,9;
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Hidden Markov Model (HMM)

The HMM is a tuple
M= (X, Q,AE)

There are a finite number of states Q in the model

At a given time j, each new state g; is entered from a previous state g;,
based upon a transition probability ag, ¢, = P(q;|q;) from the probability
distribution A, which only depends on the previous state g; (the
Markovian property)

After each transition a symbol y; from X is produced based on the current
state g;, with emission probability eq.(y;) = P(y;|q))

3 3

eqi(a) “‘".‘ ::.-eqi(u) eqj(a) '.“‘ ::: eqj(U)
(@) e, (@)
a4,
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Example 1 (HMM)

start end

end start end

start

@ AAAATGGTGAACCTGTCGTTCCG
o GAAA
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Example 2 (HMM)

start end

Can this HMM produce the following emitted sequences?

11111 no
0000
1001
1111 no
10 no
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Position-specific Information in HMMs?

@ Often we want to model classes of proteins or domains more
specifically.

@ What information do we have to model position-specific emission
probabilities?

@ Profiles! ...extracted character frequencies from an alignment of
relevant sequences.

@ The resulting linear HMMs are called profile HMMs.
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Profile HMM

The profile P of length n based on alphabet Y is the matrix
[ei(y):i=1,...,nand y € Y]

of probabilities.

ei(y) is the probability that y occurs on position / in the sequence.

.

1 2 3 4 5 6

S eal(S) e(S) e(S) ea(S) e(S) e(S)
A a(d) e(A) a(A) a(d)  e(A)

K e(K) e(K) ea(K) ea(K)

F e(F) e(F) e(F)

\J el((\/)) e (V)

el.

The approach is to build a HMM with a repetitive structure of states but
different emission probabilities in each position.
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Profile HMM

Q-Q0---YSS
GPPSGDSA

F-o-—-————— EAKVK

DTIRFP---FSPA

a
Emission s,,, = e,(a)

1 1 1 1 1 1

Begin— M, — M, — M. — M., — M, — End

i+1

Match states

What about gaps? - Insertion/Deletion
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Profile HMM

0.2C I. -~ Insert states

X 1 1
Begin > M, —> M, — M, [~ M,, — M, — End |

Silent states

0.9 ) 1 1
Begin|~> M, |~ M,, —~ M, ~> M,, —~ M, — End |

Match states
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Profile HMM

@ How would you choose the number of states in the model?
@ What states should be chosen?

@ How are the model parameter chosen?
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pHMM from aligned sequences

00>

insertion region
* % % _ . . * % % match states
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pHMM for related proteins

collect

orthologs

SESAKKS-
TSG--KSE-
KQLEKNDD

Am Am
DSKPA-KEEK Am An

TKTDQKEP cm cm
VVD--NKQ- ™ i

—
—

A w— A A w— A e—
[0} C wmm Cum Cc
_____ E pt _’G. — —>
& - T. T T T
YKVKSTI
-oDs v
- -EVQ
----- N

Is a new protein P also part of the group?
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@ Usually we do not know the best structure/probabilities for an HMM.

@ We cannot evaluate all different possible paths through the HMM
separately, neither for training nor for evaluation.

e Efficient algorithms exist to train pHMMs with sequence alignments
(Baum-Welch algorithm).

@ The training process changes the transition probabilities and, thus,
leave a trace of the sequence family.

@ Also the structure of the pHMM can be changed during training
(States not used by at least half of the training set are merged with
the insertion state; insertions present in more than half the training
set are made a new match state.)

@ Unfortunately, large training sets (> 20 — 50) are necessary to train
HMMs
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(p)HMMs - applications

An HMM for globin sequences (Krogh et al. 1994)

The main applications of pHMMSs in Bioinformatics are certainly
@ to search in databases for relatives of protein families with pHMMs
generated from alignments of sequences from the respective
protein-family
@ to detect and annotate functional domains with pHMMSs generated
from alignments of their sequence motifs
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(p)HMMs - application for multi-domain proteins

@ One can search for proteins containing several domains

@ by joining pHHMSs to one linear HMM if the domains occur in a
certain order

@ but on can also join several domain allowing for unspecific orders

A\""’\‘y;’; ?m
41’(‘V Y’V‘X>
;é.ﬁ»mv

A X
A ‘1‘, Motif 3

NV =,
\\ ,/

L Il J
Motif 1 Motif 2
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(p)HMMs - application sequence alignment

@ Furthermore one can align sequences using HMMs
@ by aligning the match states of the Viterbi path.
@ E.g. aligning sequences A1A>A3A4As and B1 By B3 B, Bs.

Delete

> al a2 A3 - A4 A5

Insert

a2

Match

A3 A4 A5
Start > > > >

A 4

End

Please note,
@ characters in insert/delete states have been marked by lower case letters in
this example for distinction.
@ a- in the deletion state is not really a character, but it is needed to avoid
match state M2.
@ characters mapped to the same insert states would be put in separate

columns in the alignment.
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(p)HMMs - application sequence alignment

@ Furthermore one can align sequences using HMMs
@ by aligning the match states of the Viterbi path.
@ E.g. aligning sequences A1A>A3A4As and B1 By B3 B, Bs.

Delete
& al a2 A3 - A4 - A5
- - Bl B2 B3 b4 B5
Insert
22 b4
Match
A3 Ad A5
Start > B1 > B2 > B3 > B5 » End

Please note,
@ characters in insert/delete states have been marked by lower case letters in
this example for distinction.
@ a- in the deletion state is not really a character, but it is needed to avoid
match state M2.
@ characters mapped to the same insert states would be put in separate

columns in the alignment.
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Pfam

Protein families database of alignments and pHMMs.
http://pfam.sanger.ac.uk

wellcome trust
3 Sanger HOME | SEARCH | BROWSE | FTP | HELP | ABOUT Qm

institute keyword search (S

Family: Pkinase (PF00069) - : A = -

H o«
1412 architectures 51174 sequences 21 interactions 3376 species 1323 structures

Domain organisation

Ve Protein kinase domain @D

HMM logo

jses Literature references

Curation & models

. Hanks SK, Quinn AM; , Methods Enzymol 1991;200:38-62.: Protein kinase catalytic domain sequence database: identification of conserved features of
Species primary structure and classification of family members. PUBMED:1956325¢7

~

. Hanks SK, Hunter T; , FASEB ] 1995;9:576-596.: Protein kinases 6. The eukaryotic protein kinase superfamily: kinase (catalytic) domain structure and

LD classification. PUBMED:7768349 %

Structures

w

. Hunter T, Plowman GD; , Trends Biochem Sci 1997;22:18-22.: The protein kinases of budding yeast: six score and more. PUBMED:9020587 i?

CLK1_MOUSE/1 60476

3

GA

Jump to... u CSKZ1_CHICK/39-324 LGIG.Y .
InterPro entry IPR017442% MKDA_HUMAN/20-312 FVDIFQPLGFGYNGLY |

enter ID/acc _ERKI_CANAL/68-371

- . . — = GSK3IA_RAT/119-403
Domain organisation MAK_RAT/4-284
COKLI_HUMAN/4-287
CTK1_VEAST/183-469
BURI_YEAST/60-366
COCZ1_MEDSA/1-284
There are 33933 sequences with the following architecture: Pkinase #fwmgz’gfm
PFTK2 HUMAN [Homo sapiens (Human)] Serine/threonine-protein kinase PFTAIRE-2 EC=2.7.11.22 (384 residues) PIMI_HUMAN/129-381
KAB7_YEAST/1096-1354

Below is a listing of the unique domain organisations or architectures in which this domain is found. More...

F’KNZ:M YXXA/59-320
HRR25_YEAST/9-273

I
S Pkinasel

Show all sequences with this architecture. PHY1_CERPU/1004-1282 1
~ AVRZA_HUMAN /192479 L]
There are 1484 sequences with the following architecture: Pkinase x 2 ACVRI_HUMAN/203-4951 T L
CDC7 YEAST [Saccharomyces cerevisiae (Baker's yeast)] Cell division control protein 7 EC=2.7.11.1 (507 residues) M3KI_HUMAN/144-403 LT L
L
. Pkinase, Pkinase

Conservation

Show all sequences with this architecture.

There are 537 with the g ar e: P , Pkinase_C
DBF2 YEAST [Saccharomyces cerevisiae (Baker's yeast)] Cell cycle protein kinase DBF2 EC=2.7.11.1 (572 residues) Quality | |

= L — .
S Pkinasen s
Consensus
- o o SO B 3y
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http://pfam.sanger.ac.uk

Pfam Database (Sonnhammer et al. 1997)

@ The Pfam database contains Protein (Domain) Families based on the
data in the Uniprot protein databases.

@ There are two sections: Pfam (or Pfam-A) and Pfam-B

e Pfam/Pfam-A:

e contains a set of hand curated seed alignments containing data from
different sources (Uniprot, Prosite, Prodom, structural alignments,
BLAST results, Repeats found with Dotter, published alignments)

o from the seed alignments (profile) HMMs are created

e the HMMs are used to collect additional data from Uniprot

o create a full alignment (and HMM)

e Pfam-B: (abandoned 2

013)

e utilizes an automated clustering of all sequences from Uniprot in the
ADDA database (without the sequences already used in Pfam-A).

Heiko A. Schmidt
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Pfam-A Generation (Sonnhammer et al. 1997)

Start with representative set of kimown members

|

Make seed alignment'

Seed alignment ok™?

Build HMM from seed alignment

Save seed
alignment

Search Swissprot

Add missed
members to

seed
No
Found all members?

I ;
Make full alignment by aligning all
members to HMM

Modify
alignment
method

L Mo
Full alignment ok™7?

Imprave

Save full
alignment

Finish: Quality confrol, annotate,
link to other databases

Heiko A. Schmidt

seed

If the results during the curated
generation of alignments/HMMs,
one can optimize in different ways:

@ seed alignment construction
@ HMM construction

@ generation of full alignment
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Pfam Database Entries

An Entry in the Pfam database consists of:
@ Annotation/summary about the protein (domain) family,
@ the full alignment,
@ the seed alignment (Pfam-A only),
e the (profile) HMM (Pfam-A only),

@ background information about curation and HMM creation etc.
(Pfam-A only)

Pfam currently (Rel. 31.0, 03/2017) contains

@ 16712 Pfam-A families based on UniProtKB reference proteomes
(since Rel 29.0)

@ last with both Pfam-A (14831) and Pfam-B (544866) was 27.0
(03/2013) based on SwissProt+SP-TrEMBL

@ compared to 100 Pfam-A and 11763 Pfam-B families in Release
0.2, 01/1996 (based on SwissProt only).
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Pfam Database Searching (Sonnhammer et al. 1997)

79

There are several ways to search in/with the Pfam HMM database:

@ search with a query sequence against all HMMs in Pfam —e.g., to
classify proteins or their domains

@ one can download an HMM and search in a set of sequences to find
(distant) homologs

@ search with the whole set of HMMs against a set of (unknown)
sequences, e.g., to annotate and/or find functional domains.
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