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Phylogenetic inference using maximum
likelihood methods
Heiko A. Schmidt and Arndt von Haeseler

THEORY

6.1 Introduction

The concept of likelihood refers to situations that typically arise in natu-
ral sciences in which given some data D, a decision must be made about
an adequate explanation of the data. Thus, a specific model and a hy-
pothesis are formulated in which the model as such is generally not in
question. In the phylogenetic framework, one part of the model is that
sequences actually evolve according to a tree. The possible hypotheses
include the different tree structures, the branch lengths, the parameters
of the model of sequence evolution, and so on. By assigning values to
these elements, it is possible to compute the probability of the data un-
der these parameters and to make statements about their plausibility.
If the hypothesis varies, the result is that some hypotheses produce the
data with higher probability than others. Coin-tossing is a standard
example. After flipping a coin n = 100 times, h = 21 heads and t = 79
tails were observed. Thus, D = (21, 79) constitutes a sufficient summary
of the data. The model then states that with some probability, θ ∈ [0, 1]
heads appear when the coin is flipped. Moreover, it is assumed that the
outcome of each coin toss is independent of the others, that θ does not
change during the experiment, and that the experiment has only two
outcomes (head or tail). The model is now fully specified. Because both
heads and tails were obtained, θ must be larger than zero and smaller
than 1. Moreover, any probability textbook explains that the probability
to observe exactly H = h heads in n tosses can be calculated according
to the binomial distribution:

Pr[H = h] =
(

n

h

)
θh(1− θ)n−h (6.1)
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Fig. 6.1. Left: Likelihood function of a coin-tossing experiment showing 21
heads and 79 tails. Right: Likelihood function of the Jukes-Cantor model of
sequence evolution for a sequence with length 100 and 21 observed differences.

Equation 6.1 can be read in two ways. First, if θ is known, then the
probability of h = 0, . . . , n heads’ in n tosses can be computed. Second,
Equation 6.1 can be seen as a function of θ, where n and h are given;
this defines the so-called likelihood function

L(θ) = Pr[H = h] =
(

n

h

)
θh(1− θ)n−h (6.2)

From Figure 6.1, which illustrates the likelihood function for the coin-
tossing example, it can be seen that some hypotheses (i.e., choices of
θ) generate the observed data with a higher probability than others. In
particular, Equation 6.2 becomes maximal if θ = 21

100 . This value also
can be computed analytically. For ease of computation, first compute
the logarithm of the likelihood function, which results in sums rather
than products:

log[L(θ)] = log
(

n

h

)
+ h log θ + (n− h) log(1− θ) (6.3)

The problem is now to find the value of θ (0 < θ < 1) maximizing the
function. From elementary calculus, it is known that relative extrema
of a function, f(x), occur at critical points of f , i.e., values x0 for which
either f ′(x0) = 0 or f ′(x0) is undefined. Differentiation of Equation 6.3
with respect to θ yields:

L′(θ) =
∂ log[L(θ)]

∂θ
=

h

θ
− n− h

1− θ
(6.4)

This derivative is equal to zero if θ0 = h
n , positive, i.e. L′(θ) > 0, for

0 < θ < θ0, and negative for θ0 < θ < 1, so that log[L(θ)] attains its
maximum at θ0 = h

n . We say θ̂ = h
n is the maximum-likelihood esti-

mate (MLE) of the probability of observing a head in a single coin toss
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(the hatˆnotation indicates an estimate rather than the unknown value
of θ). In other words, when the value of θ is selected that maximizes
Equation 6.3, the observed data are produced with the highest likeli-
hood, which is precisely the maximum-likelihood principle. However,
the resulting likelihoods are usually small (e.g., L(21/100) ≈ 0.0975);
conversely, the likelihoods of competing hypotheses can be compared by
computing the odds ratio. Note that the hypothesis that the coin is fair
(θ = 1

2 ) results in a likelihood of L( 1
2 ) ≈ 1.61 · 10−9; thus, the MLE of

θ̂ = 0.21 is 6 · 107 times more likely to produce the data than θ = 0.5!
This comparison of odds ratios leads to the statistical test procedure
discussed more or less detailed in Chapters 8, 10-12, and 14. PAUP chpt

Test
section

selection
chpt

In evolution, point mutations are considered chance events, just like
tossing a coin. Therefore, at least in principle, the probability of finding
a mutation along one branch in a phylogenetic tree can be calculated
by using the same maximum-likelihood framework discussed previously.
The main idea behind phylogeny inference with maximum-likelihood is
to determine the tree topology, branch lengths, and parameters of the
evolutionary model (e.g., transition/transversion ratio, base frequencies,
rate variation among sites) (see Chapter 4) that maximize the probabil- model chpt

ity of observing the sequences at hand. In other words, the likelihood
function is the conditional probability of the data (i.e., sequences) given
a hypothesis (i.e., a model of substitution with a set of parameters θ and
the tree τ , including branch lengths):

L(τ, θ) = Pr(Data|τ, θ) = Pr(aligned sequences|tree, model of evolution)(6.5)

The MLEs of τ and θ (named τ̂ and θ̂) are those making the likelihood
function as large as possible:

τ̂ , θ̂ = argmax
τ,θ

L(τ, θ) (6.6)

Before proceeding to the next section, some cautionary notes are nec-
essary. First, the likelihood function must not be confused with a prob-
ability. It is defined in terms of a probability, but it is the probability
of the observed event, not of the unknown parameters. The parameters
have no probability because they do not depend on chance. Second, the
probability of getting the observed data has nothing to do with the prob-
ability that the underlying model is correct. For example, if the model
states that the sequences evolve according to a tree, although they have
recombined, then the final result will still be a single tree that gives rise
to the maximum-likelihood value (see also Chapter 15). The probability recomb

chpt
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of the data given the MLE of the parameters does not provide any hints
that the model assumptions are in fact true. One can only compare the
maximum-likelihood values with other likelihoods for model parameters
that are elements of the model. To determine whether the hypothesis of
tree-like evolution is reasonable, the types of relationship allowed among
sequences must be enlarged; this is discussed in Chapter 21.SplitsTree

chpt

6.2 The formal framework

Before entering the general discussion about maximum-likelihood tree
reconstruction, the simplest example (i.e., reconstructing a maximum-
likelihood tree for two sequences) is considered. A tree with two taxa
has only one branch connecting the two sequences; the sole purpose of
the exercise is reconstructing the branch length that produces the data
with maximal probability.

6.2.1 The simple case: Maximum-likelihood tree for two

sequences

In what follows, it is assumed that the sequences are evolving according
to the Jukes and Cantor model (see Chapter 4). Each position evolvesmodel chpt

independently from the remaining sites and with the same evolutionary
rate. The alignment has length l for the two sequences Si =

(
s1

i , . . . , s
l
i

)
,

(i = 1, 2), where sj
i is the nucleotide, the amino acid, or any other

letter from a finite alphabet at sequence position j in sequence i. The
likelihood function is, then, according to Equation 4.31:model chpt

L(d) =
l∏

j=1

πsj
1
Psj

1sj
2

(
−4d

3

)
(6.7)

where d, the number of substitutions per site, is the parameter of in-
terest and Pxy(t) is the probability of observing nucleotide y if nucleotide
x was originally present, and πsj

1
is the probability of character sj

1 in the
equilibrium distribution. From Equations 4.12a and 4.12b, the followingmodel chpt

is obtained:

Pxy

(
−4

3
d

)
=

{
1
4

(
1 + 3 exp

[
− 4

3d
])
≡P̃xx(d), if x = y

1
4

(
1− exp

[
− 4

3d
])

≡P̃xy(d), if x 6= y
(6.8)

To infer d, the relevant statistic is the number of identical pairs of
nucleotides (l0) and the number of different pairs (l1), where l0 + l1 = l.
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U27426
U09127

U27445
U067158
U09126
U27399
U43386
L02317
AF025763
U08443
AF042106

L20571
AF10138

...AAAGTAATGAAGAAGAACAACAGGAAGTCATGGAGCTTATACATA...

...ATGGAGAAGAAGAAG−−−−−−−−−AGAGACTGGAACAGCTTATCC...

...ATGGGGATAGAGAGGAATTATCCTTGCTGGTGGACATGGGGGATT...

...AGGGGGATACAGATGAATTGGCAACACTTGTGGAAATGGGGAACT...

...AAGGGGATACGGACGAATTGGCAACACTTCTGGAGATGGGGAACT...

...AGGGGGACACTGAGGAATTATCAACAATGGTGGATATGGGGCGTC...

...GAGGGGATACAGAGGAATTGGAAACAATGGTGGATATGGGGCATC...

...AGGGAGATGAGGAGGAATTGTCAGCATTTGTGGGGATGGGGCACC...

...AGGGAGATGCAGAGGAATTATCAGCATTTATGGAAATGGGGCATC...

...AAGGAGATCAGGAAGAATTATCAGCACTTGTGGAGATGGGGCACC...

...AAGGGGATCAGGAAGAATTGTCAGCACTTGTGGAGATGGGGCATG...

...AAGGAGATGAGGAAGCATTGTCAGCACTTATGGAGAGGGGGCACC...

...AAGGGGATCAGGAAGAATTATCGGCACTTGTGGACATGGGGCACC...

...ATGGAGAAGAAGAAG−−−−−−−−−AGACTCTGGCTAAGTTATTGT...
X52154

Fig. 6.2. Part of the mtDNA sequence alignment used as a relevant example
throughout the book.

Therefore, the alignment is summarized as D = (l0, l1) and the score is
computed as:

log[L(d)] = C + l0 log
[
P̃xx(d)

]
+ l1 log

[
P̃xy(d)

]
(6.9)

which is maximal if

d = −3
4

log
[
1− 4

3
· l1
l1 + l0

]
. (6.10)

This result is not influenced by the constant C, which only changes the
height of the maximum but not its ’location’.

Please note that, the MLE of the number of substitutions per site
equals the method-of-moments estimate (see Equation 4.15a). There- model chpt

fore, the maximum-likelihood tree relating the sequences S1 and S2 is a
straight line of length d, with the sequences as endpoints.

This example was analytically solvable because it is the simplest model
of sequence evolution and, more importantly, because only two sequences
– which can only be related by one tree – were considered. The following
sections set up the formal framework to study more sequences.

6.2.2 The complex case

When the data set consists of n > 2 aligned sequences, rather than
computing the probability Pxy(t) of observing two nucleotides x and y at
a given site in two sequences, the probability of finding a certain column
or pattern of nucleotides in the data set is computed. Let Dj denote the
nucleotide pattern at site j ∈ {1, . . . , l} in the alignment (Figure 6.2).
The unknown probability obviously depends on the model of sequence
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evolution, M , and the tree, τ relating the n sequences with the number of
substitutions along each branch of the tree (i.e., the branch lengths). In
theory, each site could be assigned its own model of sequence evolution
according to the general time reversible model (see Chapter 4) and itsmodel chpt

own set of branch lengths. Then, however, the goal to reconstruct a
tree from an alignment becomes almost computationally intractable and,
hence, several simplifications are needed. First, it is assumed that each
site s in the alignment evolves according to the same model M ; for
example, the Tamura-Nei (TN) model (see Equations 4.32a, b, c) (i.e.,model chpt

γ, κ, and π are assumed the same for each site in the alignment). The
assumption also implies that all sites evolve at the same rate µ (see
Equation 4.24). To overcome this simplification, the rate at a site ismodel chpt

modified by a rate-specific factor, ρj > 0. Thus, the ingredients for the
probability of a certain site pattern are available, and

Pr [Dj |τ,M, ρj ] , j = 1, . . . , l (6.11)

specifies the probability to observe pattern Dj . If it is also assumed
that each sequence site evolves independently (i.e., according to τ and
M , with a site specific rate ρj), then the probability of observing the
alignment (data) D = (D1, . . . , Dl) equals the product of the probabili-
ties at each site, as follows:

L (τ,M, ρ|D) ≡ Pr [D|τ,M, ρ] =
l∏

j=1

Pr [Dj |τ,M, ρj ] (6.12)

When the data are fixed, Equation 6.12 is again a likelihood function
(like Equations 6.2 and 6.5), which allows for the two ways of looking
at it (see the previous section). First, for a fixed choice of τ , M , and
the site rate vector ρ, the probability to observe the alignment D can
be computed with Equation 6.11. Second, for a given alignment D,
Equation 6.12 can be used to find the MLEs.

In what follows, the two issues are treated separately. However, to
simplify the matter, it is assumed that the site-specific rate factor ρj is
drawn from a Γ-distribution with expectation 1 and variance 1

α (Uzzel
and Corbin, 1971; Wakeley, 1993), where α defines the shape of the
distribution (see also Section 4.6.1).model chpt,

rate het.
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1d

2d 4d

5d

3d

1S

0S

2S 4S

5S

3S

Fig. 6.3. Four-sequence tree, with branch lengths d1, d2, d3, and d4 leading to
sequences S1, S2, S3, and S4 and branch length d5 connecting the ’ancestral’
sequences S0 and S5.

6.3 Computing the probability of an alignment for a fixed
tree

Consider the tree τ with its branch lengths (i.e., number of substitutions
per site), the model of sequence evolution M with its parameters (e.g.,
transition/transversion ratio, stationary base composition), and the site-
specific rate factor ρj = 1 for each site j. The goal is to compute the
probability of observing one of the 4n possible patterns in an alignment
of n sequences. The tree displayed in Figure 6.3 illustrates the principle
for four sequences (n = 4). Because the model M is a submodel of
the GTR class – that is, a time-reversible model (see Chapter 4) – we model chpt

can assign any point as a root to the tree for the computation of its
likelihood(Pulley Principle, cf. Felsenstein, 1981). Here, we will assume
that evolution started from sequence S0 and then proceeded along the
branches of tree τ with branch lengths d1, d2, d3, d4, and d5. To compute
Pr [Dj , τ, M, 1] for a specific site j, where Dj = (sj

1, s
j
2, s

j
3, s

j
4) are the

nucleotides observed, it is necessary to know the ancestral states sj
0 and

sj
5. The conditional probability of the data given the ancestral states

then will be as follows:

Pr [Dj , τ, M,1| sj
0, s

j
5] = Psj

0sj
1
(d1)·Psj

0sj
2
(d2)·Psj

0sj
5
(d5)·Psj

5sj
3
(d3)·Psj

5sj
4
(d4)(6.13)

The computation follows immediately from the considerations in Chap-
ter 4. However, in almost any realistic situation, the ancestral sequences model chpt

are not available. Therefore, one sums over all possible combinations of
ancestral states of nucleotides gaining a so-called maximum average like-
lihood (Steel and Penny, 2000). As discussed in Section 4.4, nucleotide model chpt

substitution models assume stationarity; that is, the relative frequen-
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cies of A, C, G, and T (πA, πC , πG, πT ) are at equilibrium. Thus, the
probability for nucleotide sj

0 will equal its stationary frequency π(sj
0),

from which it follows that

Pr [Dj , τ, M,1] =
∑
sj
0

∑
sj
5

π(sj
0)Psj

0sj
5
(d1)·Psj

0sj
2
(d2)·Psj

0sj
5
(d5)·Psj

5sj
3
(d3)·Psj

5sj
4
(d4)(6.14)

Although this equation looks like one needs to compute exponentially
many summands, the sum can be efficiently assessed by evaluating the
likelihoods moving from the end nodes of the tree to the root (Felsen-
stein, 1981). In each step, starting from the leaves of the tree, the
computations for two nodes are joined and replaced by the joint value
at the ancestral node (see Section 6.3.1 for details). This process bears
some similarity to the computation of the minimal number of substitu-
tions on a given tree in the maximum parsimony framework (Fitch,
1971) (see Chapter 8). However, contrary to maximum parsimony, thePAUP chpt

distance (i.e., number of substitutions) between the two nodes is consid-
ered. Under the maximum parsimony framework, if two sequences share
the same nucleotide, then the most recent common ancestor also carries
this nucleotide (see Chapter 8). In the maximum-likelihood framework,PAUP chpt

this nucleotide is shared by the ancestor only with a certain probability,
which gets smaller if the sequences are only very remotely related.

6.3.1 Felsenstein’s pruning algorithm

Equation 6.14 shows how to compute the likelihood of a tree for a given
position in a sequence alignment. To generalize this equation for more
than four sequences, it is necessary to sum all the possible assignments
of nucleotides at the n − 2 inner nodes of the tree. Unfortunately, this
straightforward computation is not feasible, but the amount of compu-
tation can be reduced considerably by noticing the following recursive
relationship in a tree. Let Dj = (sj

1, s
j
2, s

j
3, . . . , s

j
n) be a pattern at a site

j, with tree τ and a model M fixed. Nucleotides at inner nodes of the
tree are abbreviated as xi with i = n+1, . . . , 2n−2. For an inner node i

with offspring o1 and o2, the vector Li
j =

(
Li

j(A), Li
j(C), Li

j(G), Li
j(T )

)
is defined recursively as

Li
j(s) =

 ∑
x∈{A,C,G,T}

Psx(do1)L
o1
j (x)

·
 ∑

x∈{A,C,G,T}

Psx(do2)L
o2
j (x)

 s ∈ {A,C, G, T}(6.15)

and for the leaves
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0.02844
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0.00098
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C
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T

1
0

0
0
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T
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0
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0
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T

0.0219225
0.0000027

0.0000027
0.0000263

A
C
G
T

1
0

0
0

A
C
G
T

0

0
1
0

5

d 2d

5d

3

6

4

d3d 4

1 2

1

Fig. 6.4. Likelihood computation on a three-taxa tree for a alignment site pat-
tern Dj = (C, G, C, C) with all branch lengths d1, . . . d5 set to 0.1. According
to Eq. 6.8 the probability to observe no mutation after d = 0.1 is 0.9058 and for
a specific nucleotide pair 0.0314. The values Li

j(s) at the leaves are computed
with Eq. 6.16, those at the internal nodes with Eq. 6.15. For example, to obtain
L5

j (C) at node five, Eq. 6.15 reduces to PCC(d1) · PCG(d2) = 0.9058 · 0.0314.
The position likelihood according to Eq. 6.17 is 0.0054886, the according log-
likelihood is −5.2051.

Li
j(s) =

{
1, if s = sj

i

0, otherwise
(6.16)

where do1 and do2 are the number of substitutions connecting node i

and its descendants in the tree (cf. Fig. 6.4). Without loss of generality,
it is assumed that the node 2n − 2 has three offspring: o1, o2, and
o3, respectively. For this node, Equation 6.15 is modified accordingly.
This equation allows an efficient computation of the likelihood for each
alignment position (cf. Fig. 6.4) by realizing that

Pr [Dj , τ, M, 1] =
∑

s∈{A,C,G,T}

πsL
2n−2
j (s) (6.17)

Equation 6.17 then can be used to compute the likelihood of the full
alignment with the aid of Equation 6.12. In practice, the calculation
of products is avoided, moving instead to log-likelihoods; that is, Equa-
tion 6.12 becomes
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log [L (τ,M, 1)] = log

 l∏
j=1

Pr [Dj , τ, M, 1]

 =
l∑

j=1

log [Pr [Dj , τ, M, 1]](6.18)

6.4 Finding a maximum-likelihood tree

Equations 6.15 through 6.18 show how to compute the probability of
an alignment, if everything were known. In practice, however, branch
lengths of the tree are unknown. Branch lengths are computed nu-
merically by maximizing Equation 6.18; that is, by finding those branch
lengths for tree r maximizing the log-likelihood function, which is accom-
plished by applying numerical routines like Newton-Raphson or Brent’s
method (Press et al., 1992). Such a computation is usually time-consuming
and typically the result depends on the numerical method.

Nevertheless, maximizing the likelihood for a single tree is not the
biggest challenge in phylogenetic reconstruction; the daunting task is to
actually find the tree among all possible tree structures that maximizes
the global likelihood. Unfortunately, for any method that has an ex-
plicit optimality criterion (e.g., maximum parsimony, distance methods,
and maximum-likelihood), no efficient algorithms are known that guar-
antee the localization of the best tree(s) in the huge space of all possible
tree topologies. The näıve approach to simply compute the maximum-
likelihood value for each tree topology is prohibited by the huge number
of tree structures, even for moderately sized data sets. The number of
(unrooted) tree topologies increases tremendously with the number taxa
(n) can be computed for n sequences according to

tn =
(2n5)!

2n−3(n− 3)!
=

n∏
i=1

(2i− 5). (6.19)

When computing the maximum-likelihood tree, the model parameters
and branch lengths have to be computed for each tree, and then the tree
that yields the highest likelihood is selected. Because of the numerous
tree topologies, testing all possible trees is impossible, and it is also
computationally not feasible to estimate the model parameters for each
tree. Thus, various heuristics are used to suggest reasonable trees, in-
cluding stepwise addition (e.g., used in Felsenstein’s PHYLIP package:
program DNAML, Felsenstein, 1993) and star decomposition (MOL-
PHY, Adachi and Hasegawa, 1996) as well as the neighbor-joining
(NJ) algorithm (Saitou and Nei, 1987). These methods are discussed in
Chapters 8, 10, and 5, respectively. However, to make this chapter self-PAUP chpt

for start
decomb

for NJ
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consistent we briefly summarize the various heuristics. In our parlance,
we are looking for the tree with the highest likelihood. However the tree
rearrangement operations themselves are independent of the objective
function.

6.4.1 Early heuristics

Stepwise addition was probably among the first heuristics to search
for a maximum-likelihood of a tree. The algorithm proceeds as follows:
The procedure starts from the unrooted tree topology for three taxa
randomly selected from the list of n taxa. Then one reconstructs the
corresponding maximum likelihood tree. To extend this tree we ran-
domly pick one of the remaining n− 3 taxa. This taxon is then inserted
into each branch of the best tree. The branch, where the insertion leads
to the highest likelihood, will be called insertion branch. Thus, we have
a local decision criterion that selects the tree with the highest likelihood
from a list of 2k − 3 trees, if k taxa are already in the sub-tree. The
resulting tree will then be used to repeat the procedure. After n−3 steps
a maximum-likelihood tree is obtained, that is at least locally optimal.
That means given the insertion order of the taxa and given the local
decision criterion no better tree is possible.

However, we have only computed the maximum-likelihood for
∑n

i=3(2i−
5) = (n − 2)2 trees. Thus, it is possible that another insertion order of
the taxa will provide trees with a higher likelihood. To reduce the risk of
getting stuck in such local optima tree-rearrangement operations acting
on the full tree were suggested.

6.4.2 Full-tree rearrangement

Full-tree rearrangement operations change the structure of a given tree
with n leaves. They employ the following principle. From a starting tree
a number of trees (the neighborhood of the starting tree) are generated
according to specified rules. For each resulting tree, the maximum-
likelihood value is computed. The tree with the highest likelihood is
then used to repeat the procedure. The rearrangement typically stops
if no better tree is found. This tree is then said to be a locally optimal
tree. The chance of actually having determined the globally optimal
tree, however, depends on the data and the size of neighborhood.

Three full-tree rearrangement operations are currently popular: Near-
est neighbor interchange (NNI), sub-tree pruning and regrafting
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B

A

C D

E

F

GH

D

C

B

A

Nearest Neighbor Interchange

linearly many NNI trees

full tree

quadratically many SPR trees

Subtree Pruning + Regrafting Tree−Bisection + Reconnection

cubic number of TBR trees

Fig. 6.5. The three basic tree rearrangement operations (NNI, SPR, and TBR)
on the thick branch in the full tree. In SPR and TBR all pairs of ’circled’
branches among the two subtrees will be connected (dashed lines), except the
two filled circles to each other, since this yields the full tree again.

(SPR) and tree-bisection and reconnection (TBR), confer Figure 6.5
and for details Chapter 8. Depending on the operation the size of thePAUP chpt

neighborhood grows linearly (NNI), quadratically (SPR), or cubically
(TBR) with the number of taxa in the full tree.

Different approaches are applied to reduce the increase of compu-
tation time of the SPR or TBR, while still take advantage of their
extended neighborhood. We will briefly describe some programs and
search schemes. Some of these packages have implemented different
variants and extension of the insertion or rearrangement operations. We
will not explain them in full detail, but rather refer to the corresponding
publications.

6.4.3 DNAML and fastDNAml

The DNAML program (PHYLIP package, Felsenstein, 1993) and its
descendant, fastDNAml (Olsen et al., 1994; Stewart et al., 2001), search
by stepwise addition. Although not turned on by default, the programs
allow to apply SPR rearrangements after all sequences have been added
to the tree.

Moreover, fastDNAml provides tools to do full tree rearrangements
after each insertion step. The user may choose either NNI or SPR, and
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can also restrict the SPR neighborhood by setting a maximal number
of branches to be crossed between pruning and inserting point of the
subtree.

6.4.4 PHYML and PHYML-SPR

PHYML (Guindon and Gascuel, 2003) reduces the running time by a
mixed strategy. They use a fast distance based method, BioNJ (Gas-
cuel, 1997), to quickly compute a full initial tree. Then they apply
fastNNI operations to optimize that tree. During fastNNI all possi-
ble NNI trees are evaluated (optimizing only the branch crossed by the
NNI) and ranked according to their ML value. Those NNIs which in-
crease the ML value most, but do not interfere with each other, are
simultaneously applied to the current tree. Simultaneously applying dif-
ferent NNIs saves time and makes it possible to walk quickly though
tree space. On the new current tree fastNNI is repeated until no ML
improvement is possible.

Due to their limited range of topological changes NNIs are prone to get
stuck in local optima. Hence, a new SPR-based version, PHYML-SPR
(Hordijk and Gascuel, 2006), has been devised taking advantage of the
larger neighborhood induced by SPR. To compensate for the increased
computing time, PHYML-SPR evaluates the SPR neighborhood of the
current tree by fast measures like distance-based approaches to deter-
mine a ranked list of most promising SPR tree candidates (cf. Hordijk
and Gascuel, 2006, for more details). Their likelihood is then assessed
by only optimizing the branch lengths on the path from the pruning to
the insertion point. If a better tree is found it is used as new current
tree.

A fixed number of best candidate trees according to their likelihood
are then optimized by adjusting all branch lengths. If now a tree has a
higher likelihood than the current one, this tree is replaces the old one.

PHYML-SPR allows to alternate SPR and fastNNI-based iterations.
Iteration continues until no better tree is found.

6.4.5 IQPNNI

IQPNNI (Vinh and von Haeseler, 2004) uses BioNJ (Gascuel, 1997)
to compute the starting tree and fastNNI for likelihood optimization.
IQPNNI, however, applies a different strategy to reduce the risk of of
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getting stuck in local optima. When the current tree cannot be im-
proved, IQPNNI randomly removes taxa from the current tree and re-
inserts them using a fast quartet-based approach. The new tree is again
optimized with fastNNI. If the new tree is better, then it becomes the
new starting tree, otherwise the original current tree is kept.

This procedure is either repeated for a user-specified number of itera-
tions or IQPNNI applies a built-in stopping rule, that uses a statistical
criterion, to abandon further search (Vinh and von Haeseler, 2004).

Furthermore, IQPNNI provides ML tree reconstruction for various
codon models like Goldman and Yang (1994) or (Yang and Nielsen,
1998). Refer to Chapter 14 for details on such complex models.codon model

chpt

6.4.6 RAxML

The RAxML program (Stamatakis, 2006) builds the starting tree based
on Maximum Parsimony (Chapter 8) and optimizes with a variant ofPAUP chpt

SPR called lazy subtree rearrangement (LSR, Stamatakis et al.,
2005). LSR combines two tricks to reduce the computational demand
of SPR operations. First, it assigns a maximal distance between prun-
ing and insertion point for the SPR operations to restrict the size of
the neighborhood. The maximal SPR distance (< 25 branches) is de-
termined at the start of the program. Second, LSR optimizes only the
branch that originates at the pruning point and the three newly created
at the insertion point. The LSRs are repeated many times always using
the currently best tree. For the 20 best trees, found during the LSR,
the final ML-value is re-optimized by adjusting all branch lengths. The
LSR and re-optimization is repeated until no better tree is found.

6.4.7 Simulated Annealing

Simulated annealing (Kirkpatrick et al., 1983) is an attempt to find
the maximum of complex functions (possibly with multiple peaks), where
standard (hill climbing) approaches may get trapped in local optima.
One starts with an initial tree, then samples the tree-space by accepting
with a reasonable probability a tree with a lower likelihood (down-hill
move). Trees with higher likelihood (up-hill moves) are always accepted.
This is conceptually related to Markov Chain Monte Carlo (see Chap-
ters 7 and 8). However, as the process continues the down-hill prob-
ability is decreased. This decrease is modeled by a so-called cooling



Phylogenetic inference using maximum likelihood methods 15

schedule. The term ’annealing’ is borrowed from crystal formation. Ini-
tially (high temperature) there is a lot of movement (almost every tree is
accepted), then as the temperature is lowered the movements get smaller
and smaller. If the decrease in temperature is modeled adequately then
the process will eventually find the ML tree. However, to model the
decrease in temperature is not trivial.

First introduced in a parsimony context (Lundy, 1985; Dress and
Krüger, 1987), simulated annealing to reconstruct ML trees is applied by
SSA (Salter and Pearl, 2001) and RAxML-SA (Stamatakis, 2005). Fur-
thermore, Fleissner et al. (2005) use simulated annealing to construct
alignments and trees simultaneously.

6.4.8 Genetic algorithms

Genetic algorithms (GA) are an alternative search technique to solve
complex optimization problems. They borrow the nomenclature and
the optimization decision from evolutionary biology. In fact, GA are a
special category of evolutionary algorithms (Bäck and Schwefel, 1993).

The basic ingredients of GA are a population of individuals (in our
case a collection of trees) a fitness function (maximum likelihood func-
tion according to Equation 6.17) that determines the offspring number.
According to the principles of evolution a tree can mutate (change in
branch lengths, NNI, SPR, TBR operations), even trees can exchange
sub-trees (recombination). For the mutated tree the fitness function is
computed. The individuals of the next generation are then randomly
selected from the mutant trees and the current non-mutated trees ac-
cording to their fitness (selection step). Typically one also keeps track
of the fittest individual (the tree with the best likelihood). After several
generation evolution stops and the best tree is output.

After having been introduced to phylogenetics in the mid-nineties
(e.g., Matsuda, 1995), GARLI (Zwickl, 2006), METAPIGA (Lemmon
and Milinkovitch, 2002), and GAML (Lewis, 1998) are examples for ap-
plications of GA in phylogenetic inference.

6.5 Branch support

As should be clear by now, none of the above methods guarantee to
detect the optimal tree. Hence, biologists usually apply a plethora of
methods, and if those reconstruct similar trees one tends to have mre
confidence in the result.
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Typically tree reconstruction methods are searching for the best tree,
leaving the user with a single tree and ML value but without any esti-
mate of the reliability of its subtrees.

Several measures are used to assess the certainty of a tree or its
branches. The ML values from competing hypotheses can be used in
a likelihood ratio test (LRT, see Chapter 10, 11, and 14) or other testsLRT chpts,

what about
5 (Chapter 12).
testing
chpt The support of branches are often assessed by employing statisti-

cal principals. The most widely used approach to assess branch sup-
port seems to be bootstrapping (Efron, 1979; Felsenstein, 1985), where
pseudo-samples are created by randomly drawing with replacement l

columns from the original l-column alignment, i.e., a column from the
data alignment can occur more than once or not at all in a pseudo-
sample. From each pseudo-samples a tree is reconstructed and a con-
sensus tree is constructed, incorporating those branches that occur in
the majority of the reconstructed trees. These percentages are used as
indicator for the reliability of branches. See Chapter 5 for details ondistance chpt -

NEW
branch support analysis using the bootstrap.

Very similar to the bootstrap is jackknifing, where only a certain
percentage of the columns are drawn without replacement (Quenouille,
1956).

Finally, the trees sampled in a Bayesian MCMC analysis are usually
summarized in a consensus tree (Ronquist and Huelsenbeck, 2003, see
also next chapter).MrBayes

chpt
Another method to measure branch support is the quartet puzzling

method implemented in the TREE-PUZZLE software, that will be ex-
plained in the following section. Although TREE-PUZZLE is nowadays
not faster than most of the above mentioned ML methods, it is usually
faster than running at least 100 bootstraps with an ML method and
certainly faster than a Bayesian MCMC analysis.

6.6 The quartet puzzling algorithm

Quartet puzzling (Strimmer and von Haeseler, 1996) utilizes quartets,
i.e., groups of four sequences. Quartets are the smallest set of taxa for
which more than one tree topology exists. The three different quar-
tet tree topologies are shown in Figure 6.6. Quartet-based methods
use the advantage that the quartet trees can be quickly evaluated with
maximum-likelihood. However, there exist

(
n
4

)
= n!

4!(n−4)! possible quar-
tets in a set of n taxa.
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Fig. 6.6. The three different informative tree topologies for the quartet q =
(A, B, C, D)
.

Quartet puzzling is performed in 4 steps:

Parameter estimation: First TREE-PUZZLE estimates the parame-
ters for the evolutionary model. To this end

(i) The pairwise distance matrix D is estimated for all pairs
of sequences in the input alignment and a Neighbor Join-
ing tree is constructed from D.

(ii) Then, maximum-likelihood branch lengths are computed
for the NJ topology and parameters of the sequence evo-
lution are estimated.

(iii) Based on these estimates, a new D and NJ tree are com-
puted and Step (ii) is repeated.

Steps (ii) and (iii) are repeated until the estimates of the model
parameters are stable.

ML step: To produce the set of tree topologies, the likelihoods of all 3×(
n
4

)
quartet tree topologies are evaluated. Then, for each quartet

and each topology the corresponding highest likelihood is stored.
The algorithm takes into account that two topologies may have
similar likelihoods (partly resolved quartet) or even no topology
(unresolved quartet) gains sufficient support (Strimmer et al.,
1997).

Puzzling step: Based on the set of supported quartet topologies, trees
are constructed by adding taxa in random order. Each taxon is
inserted into that branch least contradicted by the set of relevant
quartet trees.

This step is repeated many times with different input orders,
producing a large set of intermediate trees.

Consensus step: The set of intermediate trees is subsequently sum-
marized by a majority rule consensus tree, the so-called quartet
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puzzling tree, where the percent occurrences for each branch are
considered puzzle support values.

6.7 Likelihood-mapping analysis

The chapter so far has discussed the problem of reconstructing a phylo-
genetic tree and assessing the reliability of its branches. A maximum-
likelihood approach may also be used to study the amount of evolution-
ary information contained in a data set. The analysis is based on the
maximum-likelihood values for the three possible four taxa trees. If L1,
L2, and L3 are the likelihoods of trees TI , T2, and T3, then one computes
the posterior probabilities of each tree Ti as pi = Li

Ll+L2+L3
. Since the pi

terms sum to 1, the probabilities p1, p2, and p3 can be reported simulta-
neously as a point P lying inside an equilateral triangle, each corner of
the triangle representing one of the three possible tree topologies (Fig-
ure 6.7A). If P is close to one corner – for example, the corner T1 – the
tree T1 receives the highest support. In a maximum-likelihood analysis,
the tree Ti, which satisfies pi = max{pl, p2, p3}, is selected as the MLE.
However, this decision is questionable if P is close to the center of the
triangle. In that case, the three likelihoods are of similar magnitude; in
such situations, a more realistic representation of the data is a star-like
tree rather than an artificially strictly bifurcating tree (see Section
1.6).treelike sect,

is this still
correct??? Therefore, the likelihood-mapping method (Strimmer and von

Haeseler, 1997) partitions the area of the equilateral triangle into seven
regions (Figure 6.7B). The three trapezoids at the corners represent the
areas supporting strictly bifurcating trees (i.e., Areas 1, 2, and 3 in Fig-
ure 6.7B). The three rectangles on the sides represent regions where the
decision between two trees is not obvious (i.e., Areas 4, 5, and 6 in Fig-
ure 6.7B for trees 1 and 2, 2 and 3, and 3 and 1). The center of the
triangle represents sets of P points where all three trees are equally sup-
ported (i.e., Area 7 in Figure 6.7B). Given a set of n aligned sequences,
the likelihood-mapping analysis works as follows. The three likelihoods
for the three tree topologies of each possible quartet (or of a random
sample of the quartets) are reported as a dot in an equilateral triangle
like the one in Figure 6.7A. The distribution of points in the seven areas
of the triangle (see Figure 6.7B) gives an impression of the tree-likeness
of the data. Note that because the method evaluates quartets computed
from n sequences, which one of the three topologies is supported by any
corner of the triangle is not relevant. Only the percentage of points be-
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Fig. 6.7. Likelihood mapping. (A) The three posterior probabilities p1, p2, and
p3 for the three possible unrooted trees of four taxa are reported as a point
(P ) inside an equilateral triangle, where each corner represents a specific tree
topology with likelihood L1, L2, and L3, respectively. (B) Seven main areas
in the triangle supporting different evolutionary information.

longing to the areas 1, 2, and 3 is relevant to get an impression about the
amount of tree-likeness in the data. To summarize the three corners (Ar-
eas 1 + 2 + 3; see Figure 6.7B) represent fully resolved tree topologies;
Area 7 represents star-like phylogenies (Figure 6.7B); the three Areas
4 + 5 + 6 (see Figure 6.7B) represent network-like phylogeny, where the
data support conflicting tree topologies (see also Chapter 21). SplitsTree

chpt
From a biological standpoint, a likelihood mapping analysis showing

more than 20−30% of points in the star-like or network-like area suggests
that the data are not reliable for phylogenetic inference. The reasons
why an alignment may not be suitable for tree reconstruction is multiple,
e.g., noisy data, alignment errors, recombination, etc. In the latter case,
methods that explore and display conflicting trees, such as bootscan-
ning (see Chapter 16), split decomposition or NeighborNet (see Bootscanning

chpt
Chapters 21 for network analysis) may give additional information. A SplitsTree

chptmore detailed study on quartet mapping is given in Nieselt-Struwe and
von Haeseler (2001).

PRACTICE

6.8 Software packages

A number software packages are available to compute maximum-likelihood
trees from DNA or amino-acid sequences. A detailed list can be found at
Joe Felsenstein’s web site, http://evolution.genetics.washington.edu/PHYLIP/software.html.
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Because program packages are emerging at a rapid pace, the reader is
advised to visit this web site for updates.

6.9 An illustrative example of a ML tree reconstruction

In what follows, the hivALN.phy file (available at http://www.thephylogenetichandbook.org)
will be analyzed with the latest version 3.1 of IQPNNI to infer a max-
imum likelihood tree and TREE-PUZZLE 5.3 (Schmidt et al., 2002) to
compute support values for the branches of the ML tree.

6.9.1 Reconstructing an ML tree with IQPNNI

Place the hivALN.phy file in the same folder as the IQPNNI executable
and start iqpnni. The following text appears:

WELCOME TO IQPNNI 3.1 (sequential version)

Please enter a file name for the sequence data:

Type the filename hivALN.phy and press enter.

GENERAL OPTIONS

o Display as outgroup? L20571

n Number of iterations? 28

s Stopping rule? No

IQP OPTIONS

p Probability of deleting a sequence? 0.3

k Number representatives? 4

SUBSTITUTION PROCESS

d Type of sequence input data? Nucleotides

m Model of substitution? HKY85 (Hasegawa et al. 1985)

t Ts/Tv ratio (0.5 for JC69)? Estimate from data

f Base frequencies? Estimate from data

RATE HETEROGENEITY

r Model of rate heterogeneity? Uniform rate

quit [q], confirm [y], or change [menu] settings:
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Each option can be selected to change the setting by typing the cor-
responding letter. For example, if the user types m then each keystroke
will change the model of sequence evolution. After a number of strokes
the default HKY85 reappears. The letter n allows to change the number
of iterations. By default the number of iterations is set to twice the
number of sequences. The user is advised to set the limit as high as
possible or to use the stopping rule.

For example, a typical run to infer a tree based on DNA sequences
would start with the following setting:

GENERAL OPTIONS

o Display as outgroup? L20571

n Number of iterations? 200

s Stopping rule? No

IQP OPTIONS

p Probability of deleting a sequence? 0.3

k Number representatives? 4

SUBSTITUTION PROCESS

d Type of sequence input data? Nucleotides

m Model of substitution? HKY85 (Hasegawa et al. 1985)

t Ts/Tv ratio (0.5 for JC69)? Estimate from data

f Base frequencies? Estimate from data

RATE HETEROGENEITY

r Model of rate heterogeneity? Gamma distributed rates

i Proportion of invariable sites? No

a Gamma distribution parameter alpha? Estimate from data

c Number of Gamma rate categories? 4

quit [q], confirm [y], or change [menu] settings:

Entering y starts the program. As model of sequence evolution HKY
is selected (see Sections 4.6 and 4.9). Rate heterogeneity is modeled model chpt

with a Γ-distribution. The shape parameter α of the Γ-distribution is
estimated with the aid of four discrete categories (see Section 4.6.1). An model chpt

appropriate model can also be selcted based on one of the approaches
discussed in Chapter 10.
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IQPNNI also infers trees from amino acid sequence alignments and it
is possible to compute trees from coding DNA sequences using different
codon models.

During the optimization messages like

(1) Optimizing gamma shape parameter ...

Gamma distribution shape = 0.57224

Optimizing transition/transversion ratio ...

Transition/transversion ratio: 1.7074

LogL = -17408.85673

(2) Optimizing gamma shape parameter ...

Gamma distribution shape = 0.54188

Optimizing transition/transversion ratio ...

Transition/transversion ratio: 1.7951

LogL = -17396.4208

will appear.
After optimizing the model parameters the IQPNNI continues with

the tree search as described. Whenever a better tree is found IQPNNI
outputs

We have constructed the initial tree !!!

The currently best log likelihood = -17395.94491

31 Iterations / time elapsed = 0h:0m:7s (will finish in 0h:0m:38s)

GOOD NEWS: BETTER TREE FOUND: THE CURRENTLY BEST LOG LIKELIHOOD = -17392.7264

79 Iterations / time elapsed = 0h:0m:18s (will finish in 0h:0m:27s)

124 Iterations / time elapsed = 0h:0m:29s (will finish in 0h:0m:17s)

174 Iterations / time elapsed = 0h:0m:40s (will finish in 0h:0m:5s)

200 Iterations / time elapsed = 0h:0m:45s

Looking at the output above highlights, why more iterations are prefer-
able. If the analysis would have stopped after the default of 28 iterations,
the tree in iteration 31 with the highest likelihood would not have been
computed.

Then IQPNNI optimizes the model parameters as described above
and re-estimates the likelihood of the tree:

Optimizing the final tree topology as well as branch lengths...

Final best log likelihood: -17392.72496

Constructing the majority rule consensus tree...
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Estimating site rates by empirical Bayesian...

The results were written to following files:

1. hivALN.phy.iqpnni

2. hivALN.phy.iqpnni.treefile

3. hivALN.phy.iqpnni.treels

4. hivALN.phy.iqpnni.rate

Total Runtime: 0h:0m:46s

Finished!!!

The outfile of IQPNNI, a text file here called hivALN.phy.iqpnni,
summarizes the results of the phylogenetic analyses. hivALN.phy.iqpnni.treefile
contains the ML tree in NEWICK format. The tree can be displayed
with the TreeView program. The reconstructed tree is shown in Fig-
ure 6.8a.

Valuable information can be obtained from the stopping rule even if
the analysis is not finished by the stopping rule: If more than three times
a better tree has been found during the iterations IQPNNI estimates how
many additional iterations are necessary to be sure according to a 5%
confidence level that the current search will not produce a tree with a
better likelihood. If the rule suggests more iterations then executed,
one is advised to re-run the analysis. IQPNNI also offers the option to
continue the current analysis (see the IQPNNI manual for details).

Repeating the example will produce slightly different output, that
means, the best tree might be found in different iterations. This is
due the stochastic component in the the IQPNNI procedure (cf. Sec-
tion 6.4.5) when randomly removing and then re-inserting taxa into the
tree.

6.9.2 Getting a tree with branch support values using quartet

puzzling

Most tree reconstruction methods output only a tree topology but do
not provide information about the significance of the branching pattern.

Here, we will analyze the above data with TREE-PUZZLE to get
support values for the IQPNNI tree.

To do this, place the hivALN.phy file (available at http://www.thephylogenetichandbook.org)
in the same folder as the TREE-PUZZLE binary and run the executable.
The following text appears:

WELCOME TO TREE-PUZZLE 5.3.
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Please enter a file name for the sequence data:

Type the filename hivALN.phy and press enter.

Input data set (hivALN.phy) contains 14 sequences of length 2352

1. L20571

2. AF103818

3. X52154

4. U09127

5. U27426

6. U27445

7. AF067158

8. U09126

9. U27399

10. U43386

11. L02317

12. AF025763

13. U08443

14. AF042106

(consists very likely of nucleotides)

GENERAL OPTIONS

b Type of analysis? Tree reconstruction

k Tree search procedure? Quartet puzzling

v Quartet evaluation criterion? Approximate maximum likelihood (ML)

u List unresolved quartets? No

n Number of puzzling steps? 1000

j List puzzling step trees? No

9 List puzzling trees/splits (NEXUS)? No

o Display as outgroup? L20571 (1)

z Compute clocklike branch lengths? No

e Parameter estimates? Approximate (faster)

x Parameter estimation uses? Neighbor-joining tree

SUBSTITUTION PROCESS

d Type of sequence input data? Auto: Nucleotides

h Codon positions selected? Use all positions

m Model of substitution? HKY (Hasegawa et al. 1985)

t Transition/transversion parameter? Estimate from data set

f Nucleotide frequencies? Estimate from data set

RATE HETEROGENEITY

w Model of rate heterogeneity? Uniform rate
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Quit [q], confirm [y], or change [menu] settings:

Each option can be selected and changed by typing the corresponding
letter. For example, if the user types b repeatedly, then the option will
change from Tree reconstruction to Likelihood mapping to Tree

reconstruction again. The letter k cycles from Quartet puzzling to
Evaluate user defined trees to Consensus of user defined trees

to Pairwise distances only (no tree). A typical run to infer a tree
based on DNA sequences starts with the following setting:

GENERAL OPTIONS

b Type of analysis? Tree reconstruction

k Tree search procedure? Quartet puzzling

v Quartet evaluation criterion? Approximate maximum likelihood (ML)

u List unresolved quartets? No

n Number of puzzling steps? 10000

j List puzzling step trees? No

9 List puzzling trees/splits (NEXUS)? No

o Display as outgroup? L20571 (1)

z Compute clocklike branch lengths? No

e Parameter estimates? Approximate (faster)

x Parameter estimation uses? Neighbor-joining tree

SUBSTITUTION PROCESS

d Type of sequence input data? Auto: Nucleotides

h Codon positions selected? Use all positions

m Model of substitution? HKY (Hasegawa et al. 1985)

t Transition/transversion parameter? Estimate from data set

f Nucleotide frequencies? Estimate from data set

RATE HETEROGENEITY

w Model of rate heterogeneity? Gamma distributed rates

a Gamma distribution parameter alpha? Estimate from data set

c Number of Gamma rate categories? 8

Quit [q], confirm [y], or change [menu] settings:

By entering y, TREE-PUZZLE computes a quartet puzzling tree based
on 10, 000 intermediate trees, using approximate likelihoods to estimate
the quartet trees. The model parameter estimates are also approximated
and are based on an NJ tree computed at the beginning of the optimiza-
tion routine. In the example, the HKY model is selected (see Sections
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4.6 and 4.9). Again Γ-distributed rate heterogeneity over sites is mod-model chpt

eled, where the shape parameter α is estimated with the aid of eight
discrete categories (see Section 4.6.1). If these settings are confirmedmodel chpt

(type ’y’), the following output will appear on the screen:

Optimizing missing substitution process parameters

Optimizing missing rate heterogeneity parameters

Optimizing missing substitution process parameters

Optimizing missing rate heterogeneity parameters

Optimizing missing substitution process parameters

Optimizing missing rate heterogeneity parameters

Writing parameters to file hivALN.phy.puzzle

Writing pairwise distances to file hivALN.phy.dist

Computing quartet maximum likelihood trees

Computing quartet puzzling trees

Computing maximum likelihood branch lengths (without clock)

All results written to disk:

Puzzle report file: hivALN.phy.puzzle

Likelihood distances: hivALN.phy.dist

Phylip tree file: hivALN.phy.tree

The parameter estimation took 11.00 seconds (= 0.18 minutes = 0.00 hours)

The ML step took 8.00 seconds (= 0.13 minutes = 0.00 hours)

The puzzling step took 2.00 seconds (= 0.03 minutes = 0.00 hours)

The computation took 23.00 seconds (= 0.38 minutes = 0.01 hours)

including input 272.00 seconds (= 4.53 minutes = 0.08 hours)

The puzzle report file hivALN.phy.puzzle, the most important file,
summarizes all results of the phylogenetic analyses. Because the content
of the report file is self-explanatory, it is not discussed here. hivALN.phy.dist
contains the matrix of pairwise distances based on the model parame-
ters. hivALN.phy.tree contains the quartet puzzling tree (Figure 6.8b)
in NEWICK notation that can be displayed with the TreeView program
(see Chapter 5 and Figure 5.5).dist chpt, still

correct???
TREE-PUZZLE allows to output of all different tree topologies com-

puted during puzzling steps (option j). In the HIV example, 685 dif-
ferent intermediate trees were found, in which the most frequent tree
occurred at about 6.6%. Therefore, the quartet puzzling algorithm can
be used to generate a collection of plausible candidate trees, and this col-
lection can subsequently be employed to search for the most likely tree.
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It is known that the consensus tree does not necessarily coincide with
the maximum-likelihood tree, especially when the consensus is not fully
resolved (Cao et al., 1998). Thus, to get the maximum-likelihood tree
option j should be changed to unique topologies, which will be output
in the .ptorder file. A typical line of this file looks like the following:

[1. 657 6.57 14 68510000](L20571,((AF10138,X52154),

(U09127,(((U27426,U27445), (U067158,U09126)),

((U27399,U43386),(((L02317,AF042106),AF025763),

U08443))))));

The first column is a simple numbering scheme, in which each tree
is numbered according to its frequency (i.e., second column and third
column). Column four (14) gives the first time among 10, 000 (column
6) puzzling steps, when the tree was found. Column five shows how
many different trees were found (685).

Similar to bootstrap analysis (cf. Chapter 5), the resulting interme- distance
chpt

addeddiate trees and, hence, the resulting support values might differ slightly
due to the randomization of the insertion order in the puzzling step
(cf. Section 6.6). Consequently, also the number of unique intermediate
tree topologies and their percentages will also vary slightly. Please note,
the intermediate tree found most often does not necessarily coincides
with the maximum likelihood tree, but often the ML tree is among the
intermediate trees.

To compute the maximum-likelihood tree among all intermediate trees,
run TREE-PUZZLE again with the following settings:

GENERAL OPTIONS

b Type of analysis? Tree reconstruction

k Tree search procedure? Evaluate user defined trees

z Compute clocklike branch lengths? No

e Parameter estimates? Approximate (faster)

x Parameter estimation uses? Neighbor-joining tree

SUBSTITUTION PROCESS

d Type of sequence input data? Auto: Nucleotides

h Codon positions selected? Use all positions

m Model of substitution? HKY (Hasegawa et al., 1985)

t Transition/transversion parameter? Estimate from data set

f Nucleotide frequencies? Estimate from data set
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Fig. 6.8. ML-tree reconstructed with IQPNNI (above) and the quartet puz-
zling consensus tree for the HIV/SIV dataset. The major groups of HIV-1
and the Group M subtypes are indicated in bold, the puzzle support values
are given at the branches.

RATE HETEROGENEITY

w Model of rate heterogeneity? Gamma distributed rates

a Gamma distribution parameter alpha? Estimate from data set

c Number of Gamma rate categories? 8

Quit [q], confirm [y], or change [menu] settings: y

Now TREE-PUZZLE will compute the maximum-likelihood values for
all intermediate trees using the model parameter estimates from the it-
erative procedure. The computation takes time, but it provides more
insight about the data and likelihood surface of the trees. The result-
ing .puzzle file shows the results of the ML analysis for the different
topologies at the end of the file. In addition, the likelihoods of the trees
are compared by various test (cf. Chapter 8 for details).testing

chpt

If one enables option 9, TREE-PUZZLE outputs all splits and trees
in NEXUS format to the file hivALN.phy.nex which can be analyzed
with the SplitsTree software (see Chapter 21).SplitsTree

chpt
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6.9.3 Likelihood-mapping analysis of the HIV data set

Option b in the GENERAL OPTIONS menu of TREE-PUZZLE switches
from Tree reconstruction to Likelihood mapping. When the num-
ber of quartets for the data is below 10,000, the program computes
the posterior probabilities of the quartet trees (see Section 6.7) for all
quartets; otherwise, only the posterior probabilities for 10, 000 random
quartets are computed. In the latter case, the user can decide how many
quartets to evaluate by selecting from the GENERAL OPTIONS menu op-
tion n, number of quartets, and typing the number. Typing 0 forces
TREE-PUZZLE to analyze all the possible quartets; however, this is
time-consuming for large data sets. A random selection serves the same
purpose.

Table 6.1 shows part of the outfile from the likelihood-mapping anal- used table
instead of
Boxysis of the 1, 001 possible quartets for the HIV data set. 92.72% of all

quartets are tree-like, i.e., they are located close to the corners of the
triangle. Only 4.4% of all quartets lie in the rectangles and 2.9% in the
central triangle: they represent the unresolved part of the data. Be-
cause most of the quartets are tree-like and only a fraction of about 7%
do not support a unique phylogeny, an overall phylogenetic tree with
a good resolution is expected. Nevertheless, the percentages of up to
4.9% unresolved quartets still implies a conciderable amount of noisy or
conficting signal in the dataset.

Please note that, if the likelihood mapping is repeated on a ramdom
subset, the resulting percentages may naturally differ slightly.

6.10 Conclusions

The HIV quartet puzzling consensus tree calculated in the previous sec-
tion is by and large resolved and all resolved branches coincide with
branches in the IQPNNI ML tree (Figure 6.8a). In contrast, quartet
puzzling tree contains a polytomy (see Section 1.6) joining Subtypes treelike

sect, still
correct???A, C, G, and the B/D clade (Figure 6.8). This is not surprising in light

of the noise in the data revealed by likelihood mapping. Such a lack
of resolution may suggest a star-like radiation at the origin of the
HIV-1 Group M subtypes, but it could also imply the presence of inter-
subtype recombination in HIV-1. The latter speculation from the
first edition of this book (Strimmer and von Haeseler, 2003) was recently
substanciated by the findings of Abecasis et al. (2005) that subtype G
might be a recombinant instead of a pure subtype as previously thought.
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Table 6.1. Likelihood-mapping analysis with TREE-PUZZLE
TREE-PUZZLE writes results of the likelihood mapping analysis at the end
of the report file hivALN.phy.puzzle in the LIKELIHOOD MAPPING
STATISTICS section. The results are given for the whole dataset but also for
each sequence to help identifying outliers. For example, for the HIV dataset
(alignment: hivALN.phy; substitution model: HKY with Γ-distributed rate
heterogeneity, parameters estimated via maximum likelihood):

LIKELIHOOD MAPPING STATISTICS

(a,b)-(c,d) (a,b)-(c,d)
/\ /\
/ \ / \
/ \ / 1 \
/ a1 \ / \ / \
/\ /\ / \/ \
/ \ / \ / /\ \
/ \ / \ / 6 / \ 4 \
/ \/ \ /\ / 7 \ /\
/ | \ / \ /______\ / \
/ a3 | a2 \ / 3 | 5 | 2 \
/__________|_________\ /_____|________|_____\

(a,d)-(b,c) (a,c)-(b,d) (a,b)-(c,d) (a,c)-(b,d)

[...]

Quartet resolution per sequence:

name #quartets resolved partly unresolved
-----------------------------------------------------------------------------
1 L20571 286 261 ( 91.26) 12 ( 4.20) 13 ( 4.55)
2 AF103818 286 271 ( 94.76) 14 ( 4.90) 1 ( 0.35)
3 X52154 286 260 ( 90.91) 13 ( 4.55) 13 ( 4.55)
4 U09127 286 255 ( 89.16) 17 ( 5.94) 14 ( 4.90)
5 U27426 286 260 ( 90.91) 15 ( 5.24) 11 ( 3.85)
6 U27445 286 273 ( 95.45) 11 ( 3.85) 2 ( 0.70)
7 AF067158 286 261 ( 91.26) 18 ( 6.29) 7 ( 2.45)
8 U09126 286 263 ( 91.96) 13 ( 4.55) 10 ( 3.50)
9 U27399 286 270 ( 94.41) 9 ( 3.15) 7 ( 2.45)
10 U43386 286 264 ( 92.31) 8 ( 2.80) 14 ( 4.90)
11 L02317 286 268 ( 93.71) 12 ( 4.20) 6 ( 2.10)
12 AF025763 286 268 ( 93.71) 13 ( 4.55) 5 ( 1.75)
13 U08443 286 267 ( 93.36) 12 ( 4.20) 7 ( 2.45)
14 AF042106 286 271 ( 94.76) 9 ( 3.15) 6 ( 2.10)
-----------------------------------------------------------------------------

1001 928 ( 92.71) 44 ( 4.40) 29 ( 2.90)

Overall quartet resolution:

Number of resolved quartets (regions 1+2+3): 928 (= 92.71%)
Number of partly resolved quartets (regions 4+5+6): 44 (= 4.40%)
Number of unresolved quartets (region 7): 29 (= 2.90%)

TREE-PUZZLE also outputs a drawing of the likelihood-mapping triangles
in encapsulated Postscript format (hivALN.phy.eps) that can be printed or
imported in a graphics application to be edited.
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Such issues are analyzed further in Chapters 15, 16, and 21, which recom chpt

SplitsTree
chptdiscuss general methods for detecting and investigating recombination

and conflicting phylogenetic signals in molecular data.
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