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Testing Tree Topologies
Heiko A. Schmidt

THEORY

12.1 Introduction

Throughout the book a number of approaches have been exemplified to
assess and compare various aspects of evolutionary trees and models.

To check the reliability of branches in a certain tree, one can use
(non-parametric) bootstrapping or jackknifing, combining align-
ment subsampling and consensus to get support values on branches
(Chapter 5). Furthermore, other methods that generate or sample sets distance

chpt
of plausible trees are used to get support values like in Bayesian MCMC
sampling (Chapter 7) or quartet puzzling (Chapter 6). Bayes chpt

ML chptVarious approaches have been devised to determine a best-suited evo-

lutionary model (Chapter 10). Such approaches are often based on modeltest
chpt, do they
explain LTR,
Akaike...

the maximum likelihood values gained for the models in question.
Different measures are applied like Akaike Information Criterion

(AIC), Bayesian Infomation Criterion (BIC), Akaike Weights,
and other model selection techniques (refer to Johnson and Omland,
2004, for review) to correct for the additional parameters in the more
complex models. Such techniques are also implemented in programs like
ModelTest to select the most useful model of evolution (see Posada and
Buckley, 2004, and Chapter 10 for details).

In this chapter we will briefly review different techniques and tests to
compare contradicting and, hence, non-nested tree topologies using their
likelihood values. Since a large variation of testing approaches can be
applied (see, e.g., Goldman et al., 2000), we will restrict ourselves to
review a number of common tests for which implementations exist. We
will briefly describe the different approaches, the hypotheses they test,
and discuss possible problems and pitfalls.

1
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12.2 Some definitions for distributions and testing

In the current context we are usually interested, whether the difference
between two values, e.g., the likelihoods of two models or trees, are
significantly different or could be explained by random effects.

To perform a test we first have to state a null hypothesis H0. The
null hypothesis is the hypothesis of no difference and is usually the
negation of the question we are interested in (Siegel and Castellan, 1988,
p. 7). This null hypothesis has to be precise, since the test of significance
is based on its rejection (cf. Fisher, 1971). If the tested null hypothesis is
rejected, the alternative hypothesis HA is supported which typically
reflects our question, like are two likelihoods significantly different.

There are two types of errors possible when testing the null hypoth-
esis H0. First, the null hypothesis is rejected when it is true (type I
error). This result is also called a false positive. Second, an erroneous
null hypothesis is failed to be rejected (type II error), also called false
negative. The probability of a type I error is denoted by α. We set α

to the largest probability of a type I error we are willing to accept; the
significance level, typically α = 0.05 (i.e., 5% error). This corresponds
to a confidence limit of (1− α) = 0.95 or 95% (e.g., Zharkikh and Li,
1995; Siegel and Castellan, 1988).

Given a sample distribution that reflects the probability of every
possible sample value if drawn randomly, the null hypothesis (of no dif-
ference from expectation) can be tested. If the observed value µ0 is in
the region of rejection, i.e., outside the 95% confidence interval or ac-
ceptance region the null hypothesis H0 is rejected and the alternative
hypothesis is supported. If that value falls inside the acceptance region,
H0 cannot be rejected at the chosen level of confidence (see Fig. 12.1a).

If we have prior knowledge about the direction of the effect of the
alternative hypothesis, then a one-sided test is used. Note, that one-
sided and two-sided tests do not differ in the size but in the location of
the rejection region, i.e., in the one-sided test the region is entirely at
one tail of the sample distribution (see 12.1b).

The significance level α has to be set in advance and determines the
critical value below or above which the null hypothesis is rejected. The
p-value on the other hand denotes the probability of obtaining a result
equally or more extreme (with respect to the null hypothesis) than the
observed value µ0 and can only be determined after the test (Goodman,
1999). If the null hypothesis is rejected the p-value is also necessarily
less than α.



Testing Tree Topologies 3

a

−4 −2 0 2 4

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

−2(lnL1 − lnL0)

de
ns

ity

97.5%2.5%

b

−4 −2 0 2 4

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

−2(lnL1 − lnL0)

de
ns

ity

95%

Fig. 12.1. Normal distributions for (a) a two-sided and (b) a one-sided test.
An observed value µ0 is (a) significantly different from the expectation µ if it is
in one of the two shaded tails covering each 2.5% of the surface below the curve
on either side or (b) significantly larger if it is above the upper 95% quantile.
The null hypothesis cannot be rejected if µ0 falls into the (unshaded) 95%
confidence interval. These decisions depend on the significance level α = 0.05.

When testing tree topologies, there is a big difference whether the
trees are selected a priori or a posteriori.

A priori means that the trees have been selected without knowledge
about their support by the data or any optimizing analysis involved.
Such trees might just be derived as logical alternative scenarios or, for
example, from a Markov chain without prior knowledge about there
likelihood values or probabilities. Hence, each of the trees of interest
might be the one with the highest likelihood.

If the trees of interest are selected from an analysis to test whether, for
example, the second, third, etc. tree is significantly worse than the best
tree, that is the tree gaining the best maximum liklihood value called
the ML tree (cf. Chapter 6), the trees are chosen a posteriori.

12.3 Likelihood ratio tests for nested models

If the two evolutionary models of interest are nested, that means, the
more parameter-rich model can be restricted to the simpler one by re-
stricting its parameters, then likelihood ratio tests are straightfor-
ward to compare the likelihoods L0 and L1 of the two models based on
a (single) tree. For convenience la denotes the log-likelihood ln La in the
following. The likelihood ratio test (LRT) statistic
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Fig. 12.2. χ2 distribution for 2 and 4 degrees of freedom. An LRT is assumed
significant, i.e., the more parameter-rich has a significantly higher likelihood
L1, if the ∆ value is in the shaded 95% quantile.

∆ = −2 ln
L0

L1
= 2(l1 − l0) (12.1)

follows approximately a χ2 distribution for the respective degrees of
freedom, that is, the number of additional parameters in the more
parameter-rich model. L1 is the likelihood of the alternative (more
parameter-rich) model and L0 that of the less parameter-rich null model.
If their ∆ value computed from Eq. 12.1 is located in the rejection area
of the χ2 distribution (the shaded area in Fig. 12.2) beyond the 95%-
quantile (if a significance level of 5% is assumed), the null hypothesis is
rejected and the alternative model is said to give a significantly higher
likelihood L1 compared to the null model. (Likelihood ratio tests of
nested models are discussed in detail in Chapter 10.)Selection chpt,

does it still do
LRT? Although this methodology is straightforward for nested models, it is

not generally applicable to compare different tree topologies. The prob-
lem with trees is that tree topologies cannot be interpreted as a single
statistical parameter and, furthermore, it remains unclear how many pa-
rameters a tree represents with its possible groupings and branch lengths
(Yang et al., 1995; Huelsenbeck and Crandall, 1997).

If the tested models are not nested, their distribution of δ is Gaussian,
that means, according to a normal distribution (Cox, 1961, 1962).
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The shape of a normal distribution N (µ, σ2) is determined by its mean
value µ and standard deviation σ.

Thus, the χ2 distribution does not apply, and different steps must be
taken to find the distribution that can be used to test the difference
between two likelihoods.

12.4 How to get the distribution of likelihood ratios?

Most of the methods we will be concerned with, will use a likelihood
ratio statistic

δ = ln
La

Lb
= ln La − lnLb = la − lb (12.2)

to compare the difference of the log-likelihoods la and lb for two trees
Ta and Tb. These likelihoods are obtained by maximum likelihood op-
timization of model parameters branch lengths etc. on a given sequence
dataset D as described in Section 6.3.

To judge whether the obtained likelihoods are significantly different
we need information about what the ’real’ distribution of likelihood dif-
ferences looks like.

In the ideal case one woule like to draw further samples from the
process that generated our data. Unfortunately, we cannot re-run the
process of evolution, as we would be able by tossing a coin or roll dice
a couple of additional times. Usually, we only have a limited dataset,
the alignment where each column is usually regarded an independent
sample from the ’true’ process of evolution, to determine the desired
distribution.

A common way to determine such distributions from limited datasets
if further samples from the original process cannot be obtained are boot-
strap re-sampling methods (Efron, 1979; Efron and Tibshirani, 1994;
Goldman, 1993).

12.4.1 Non-parametric Bootstrap

The non-parametric bootstrap has been mentioned in various chap-
ters of this book. This bootstrap randomly re-samples columns from the
alignment D with replacement to produce a number of pseudo-samples
D(i) from the processes of evolution. In each of these pseudo-samples
some columns might be included several times while others have not
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been chosen at all (Felsenstein, 1985; Efron et al., 1996). Each gener-
ated pseudo-sample D(i) is then used to compute the values of interest
and to determine their distribution.

Here, based on each pseudo-sample alignment D(i) the maximum log-
likelihood values l

(i)
x of each tree Tx in the set of M trees T of interest

are computed by complete optimization of branch lengths and model
parameters.

For the use of bootstrap in a hypothesis testing scenario it is required
that the values computed via the bootstrap have to reflect the assumed
null-distribution, although the pseudo-sample data might not. Several
steps available to ensure this null-hypothesis conformity have been de-
scribed (cf. ?). The method of choice to adjust the log-likelihood values is
the so-called centering, where each log-likelihood value l

(i)
x of each tree

Tx on pseudo-sample D(i) is shifted by the mean value lx = 1
B

∑B
i=1 l

(i)
x

leading to a centered log-likelihood l̃
(i)
x = l

(i)
x − lx. From the centered

log-likelihoods l̃
(i)
x the likelihood ratios δ(i) are computed between pairs

of trees according to Eq. 12.2 for each sample D(i). The obtained values
δ(i) are then used to infer the mean µ and the standard deviation σ of
the respective normal (sample) distribution to test the observed ratio δ.

The re-optimization of the likelihood values for all the bootstrap sam-
ples is computationally very intense. Hence, Kishino et al. (1990) sug-
gested resampling estimated log-likelihoods (RELL), a variant of
the non-parametric bootstrap, that is computationally less demanding
but not necessarily as accurate. We have seen in Chapter 6 that the
likelihood values are computed by multiplying the site-likelihoods of
each column Dj (Eq. 6.12) or the log-likelihood as the sum of all site-log-
likelihoods (Eq. 6.18). Kishino et al. (1990) keep the site-log-likelihoods
fixed and only ’bootstrap’ the pre-estimated site-log-likelihoods. This
RELL method saves the time-consuming likelihood re-estimation, but it
assumes some asymptotic conditions such as sufficiently large data and
correctly specified models of evolution to produce valid results.

12.4.2 Parametric Bootstrap

A different way to infer the distribution of δ is the parametric boot-

strap (also called Monte Carlo simulation). Here the bootstrap sam-
ples are not drawn from the alignment but simulated along a tree with
branch lengths and model parameters. That means, a tree with branch
lengths and model parameters has to be inferred first from the origi-
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nal alignment D which then serve as input for Monte Carlo simulation
performed by sequence generation programs such as seq-gen (Rambaut
and Grassly, 1997). From the simulated bootstrap samples, one again
estimates trees and their likelihoods which are in turn used to determine
the distribution of δ.

Differently to non-parametric bootstrapping no adjustment step like
centering (cf. Section 12.4.1) is necessary, since the given tree, model,
and parameters act as null-model according to which the bootstrap sam-
ples are generated by Monte Carlo simulation.

For detailed descriptions of parametric bootstrap approaches refer to
Goldman (1993) and Huelsenbeck and Crandall (1997).

12.5 Testing tree topologies

A large number of test variants exists by combining different approaches
in the various steps of a test, like different bootstrap methods to generate
the samples, the amount of optimization to compute the likelihoods, the
choice of the trees of interest, or the assumptions made on the kind of
normal distribution. To get an extensive overview on such variants, dis-
cussions about the possible ways, problems, and pitfalls of tree topology
testing, we recommend to refer to Goldman et al. (2000) and Huelsen-
beck and Crandall (1997) and references therein.

We only review a limited number of tests which are commonly used.
To that end, we will mostly use the same notation as Goldman et al.
(2000).

12.5.1 Tree tests – a general structure

First, the null hypothesis H0 and the alternative hypothesis HA have to
be stated, since they determine the results of the test and also determine
whether a test is applicable at all for the available data and the question
a researcher is asking.

Second, testing trees with likelihoods follows a global structure:

(i) Compute the log-likelihood values lx for all trees Tx ∈ T by fully
optimizing all parameters. Also, all site-likelihoods are kept for
bootstrapping.

(ii) Generate many (B ≥ 1000) bootstrap samples D(i) (i = 1 . . . B).
Re-estimate the log-likelihood values l

(i)
x (with optimization) for

each tree Tx and each bootstrap sample D(i).



8

(iii) Adjust for each tree topology Tx all log-likelihoods l
(i)
x to conform

to the null hypothesis, if the bootstrap samples have been gen-
erated by non-parametric bootstrap or RELL. This is typically
done by centering the log-likelihoods with the mean log-likelihood
l
(i)

x = 1
B

∑B
i=1 l

(i)
x across all bootstrap samples i:

l̃(i)x = l(i)x − l
(i)

x (12.3)

Refer to Hall and Wilson (1991) for more details on the necessity
of centering.

(iv) Compute the log-likelihood differences δ(i) = l̃
(i)
a − l̃

(i)
b between

the relevant pair(s) of trees Ta and Tb. Use the δ(i) values to
determine their distribution.

Note, that the number and specification of the relevant relevant
pairs of trees depend on the respective null hypothesis H0 (rf.
following sections).

(v) Use the distribution of δ(i) to test whether the null hypothesis is
to be rejected. Obtain the p-value for the observed δ.

12.5.2 The original Kishino-Hasegawa (KH) test

Kishino and Hasegawa (1989) devised a test based on the RELL method
to compare two a priori selected trees Ta and Tb, e.g., produced by a
Markov Chain.

The null and alternative hypotheses to be compared are (two-sided
test):

H0: The two trees are equally supported, i.e., the expected value E[δ] =
µ = 0

HA: The two trees are not supported equally, i.e., the expected value
E[δ] = µ 6= 0

The KH test itself follows the following procedure:

(i) Infer the log-likelihood values la and lb for trees Ta and Tb. Com-
pute δ = l

(i)
a − l

(i)
b .

(ii) Generate many (B ≥ 1000) bootstrap samples i and the respec-
tive log-likelihood values l

(i)
a and l

(i)
b with the RELL method.

(iii) Center the obtained likelihood values of each tree with the mean
log-likelihood l

(i)

x across all samples i, as l̃
(i)
x = l

(i)
x − l

(i)

x .
(iv) Determine the distribution of differences δ(i) = l̃

(i)
a − l̃

(i)
b .
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Fig. 12.3. Sketch of the Kishino-Hasegawa test. For both trees T1 and T2 the
log-likelihoods lia are computed for each bootstrap sample D(i). The log-
likelihoods are subsequently ’centered’ by the trees mean log-likelihood la
across the bootstrap samples. The log-likelihood difference δ

(i)
a between l̃

(i)
1

and l̃
(i)
2 is computed. Finally, the distribution of δ-values is determined and

used to determine the p-value of the observed δ-value.

(v) Use the distribution inferred from δ(i) to test whether your trees
are equally supported in a two-sided test. Obtain the p-value for
the observed δ.

Since the two trees Ta and Tb are selected a priori both have an equal
chance to gain the higher log-likelihood and, hence, δ might be positive
or negative. Thus a two-sided test is applied like in Fig. 12.1a.

12.5.3 One-sided Kishino-Hasegawa test

Although the KH test was devised for a priori selected trees, in the
majority of its applications it is (mis-)used to test whether sets of sub-
optimal trees are equally supported or significantly worse than the best
tree, or compare all trees against the one having the highest likelihood
among all a priori selected trees.

The problem arises that if Ta is the maximum likelihood tree or the
tree with highest likelihood in the set and all trees in T are tested
against this one tree TML, then δ = lML − lb can hardly be negative.
The above hypotheses are, thus, not tested properly by the original
KH test. However, a the KH test has often been applied this way (see
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Goldman et al., 2000; Shimodaira and Hasegawa, 1999, for extensive
discussion).

The only way to adjust the KH test to this scenario to some extent
would be to use a one-sided test as indicated in Fig. 12.1b (cf. Goldman
et al., 2000). However, the null hypothesis E[δ] = 0 might still be
violated.

Many published conclusions based on wrongly applied KH tests might
not be valid. Goldman et al. (2000) stated that the only possible adjust-
ment to correct for this mistake might be to adjust the p-value to p/2.
This has a similar effect as having performed a one-sided test instead.

12.5.4 Shimodaira-Hasegawa (SH) test

Shimodaira and Hasegawa (1999) devised a valid test to assess a set of
a posteriori selected trees when the maximum likelihood tree is among
the tested trees.

The null and alternative hypotheses tested by the Shimodaira-Hasegawa
(SH) test look different in this case:

H0: All trees Tx ∈ T (including the ML tree TML) are equally good
explanations of the data,

HA: Some or all trees Tx ∈ T are not equally good explanations of the
data.

The test itself follows the following procedure:

(i) Estimate the log-likelihood values lML and lx for all trees Tx ∈ T .
Compute δx = lML − lx.

(ii) Generate many (B ≥ 1000) bootstrap samples i and the respec-
tive log-likelihood values l

(i)
ML and l

(i)
x (using the RELL method).

(iii) For each tree Tx, center the log-likelihood values with the mean
log-likelihood l

(i)

x across all samples i, as l̃
(i)
x = l

(i)
x − l

(i)

x .
(iv) For each bootstrap sample i, find the maximal log-likelihood l̃

(i)
ML

over all trees Tx ∈ T and compute the differences δ
(i)
x = l̃

(i)
ML− l̃

(i)
x .

(v) For each tree Tx separately test whether the obtained δx value is
in the rejection area beyond 95%. If so, reject the null hypothesis
for Tx. If not, H0 cannot be rejected. Obtain the p-value for the
observed δx.

The one-sided test is appropriate here, since the log-likelihood
˜

l
(i)
x of

any tree Tx can only be smaller or equal to
˜

l
(i)
ML.
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Fig. 12.4. Sketch of the Shimodaira-Hasegawa test. Log-likelihoods lia are
computed for each tree Ta and each bootstrap sample D(i) and subsequently
’centered’ by the trees mean log-likelihood la across the bootstrap samples. For

each bootstrap sample D(i) the tree with maximal log-likelihood l̃
(i)
ML is deter-

mined. Then log-likelihood difference δ
(i)
a between l̃

(i)
ML and the corresponding

l̃
(i)
a is computed. Finally, the distribution of δ-values is determined and used
to determine the p-value of the corresponding trees’ observed δ-values.

When applying the SH test, one has to keep in mind that the maxi-
mum likelihood tree is required to be among the tested trees, otherwise
the estimated significance levels will be inaccurate (Goldman et al., 2000;
Westfall and Young, 1993, p. 48).

Furthermore, it has been pointed out by Strimmer and Rambaut
(2002) that the number of trees selected in the SH test is strongly cor-
related with the number of tested input trees, meaning, the more tree
topologies are included in the test, the more trees are accepted. This
conservative behavior makes the use of the SH test problematic for large
sets of trees.
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12.5.5 Weighted test variants

Shimodaira and Hasegawa (1999, comment 4) have suggested weighted
variants of the SH and also the KH test, namely WSH and WKH, for
cases where one wants to be less conservative. In these variants the
likelihood ratio la − lb is weighted by the square root of its of variance
σ2(la − lb).

This is straightforward for the KH test in step (i) and (iv). In the
SH test, however, all instances of δx = lML − lx (step (i)) have to be
substituted by

δx = max
a6=x

 l̃a − l̃x

σ
(
l̃a − l̃x

)
 (12.4)

while δ
(i)
x = l̃

(i)
ML − l̃

(i)
x (step (iv)) is replaced by

δ(i)
x = max

a6=x

 l̃
(i)
a − l̃

(i)
x

σ
(
l̃
(i)
a − l̃

(i)
x

)
 . (12.5)

Note, due to the weighting the maximal δ-value is not necessarily
gained between the current tree and the ML tree, which is the case in
the unweighted test.

By the weighting the likelihood ratio depending on its variance, the
tests are less conservative. Although this compensates for some of the
above-mentioned conservative behaviour of the SH test, it does not com-
pletely correct for it (Shimodaira, 2002). Furthermore, both the WSH
and WKH tests rely on the same assumptions like the presence or ab-
sence of the ML trees in the set of compared trees as their un-weighted
couterparts.

12.5.6 The approximately unbiased test

Shimodaira (2002) explains the correlation of the number of input trees
and the size of the confidence set returned by the SH test by the fact
that the SH test is heavily biased. On the one hand, SH is very good in
controlling its type I error, but it overestimates the selection bias and,
thus, acts more conservative as the number of input trees grows.

Zharkikh and Li (1995) have suggested a method that is based on
a complete as well as a partial bootstrap to enable the inference of
the selection bias. Shimodaira (2002) later devised an approximately
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unbiased (AU) test based on a multiscale bootstrap to be able to better
correct for the selection bias. The multiscale bootstrap works as follows.

From our input alignment D of length N the multiscale bootstrap
draws bootstrap replicates for a number of different lengths Nr. Some
are smaller but also some are larger than than the original sequence
length N . For each length Nr, many bootstrap samples are drawn (B ≥
10, 000). The log-likelihood l

(i)∗
x obtained by the RELL method for the

sequence length Nk are scaled with the factor N/Nk to the same virtual
length N :

l(i,r)x =
N

Nk
l(i,r)∗x (12.6)

Using the results from the different sequence lengths Nr, the method is
able to infer the unknown curvature of the selection bias needed for a
proper correction. Thus, the AU test is approximately unbiased if an
appropriate set of sequence lengths is used (see Shimodaira, 2002, for
details).

According to Shimodaira (2002) the AU test tests for each tree Ta ∈ T
the following null hypothesis

H0(Ta): the expected value E[la] of Ta is larger or equal to the expected
values E[lx], for all Tx ∈ T .

Although the AU test is not susceptible to the increase of trees, one has
to be careful if many of the best trees are almost equally well supported
– one might miss the true tree, since there is over-confidence in the
wrong trees (Shimodaira, 2002). Furthermore, the method might be
computationally infeasible if the tree set T contains several thousand
trees. Shimodaira (2002) suggests a prefiltering with the KH test using
a very conservative significance value (e.g., α = 0.001) to reduce the tree
set before applying the AU test.

12.5.7 Swofford-Olsen-Waddell-Hillis (SOWH) test

Swofford, Olsen, Waddell and Hillis (1996) suggested an approach (SOWH
test) which – different from the above tests – applies parametric boot-
strapping to compare the trees. The SOWH test tests the following
hypotheses (cf. Goldman et al., 2000):

H0: The tree Ta is the true topology,
HA: Some other topology is the true one.
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To test each tree Ta from a set T the SOWH test proceeds as follows:

(i) Estimate the log-likelihood values lML and la and compute the
test statistic δ = lML − la.

(ii) Generate parametric bootstrap samples with Monte Carlo sim-
ulation along tree Ta with the ML parameters θ̂a estimated for
tree Ta.

(iii) For each bootstrap sample, re-estimate the model parameters θ
(i)
a

and the log-likelihood value l
(i)
a for tree Ta (under the null hypoth-

esis).
(iv) For each bootstrap sample, also re-estimate the model parameters

θ
(i)
x and the log-likelihood value l

(i)
x for all other trees Tx ∈ T to

find the ML log-likelihood l
(i)
ML for this bootstrap sample.

(v) Compute the difference values δ(i) = l
(i)
ML − l

(i)
a which interpreted

as a samples according to the distribution of δ under the null
hypothesis H0. Due to this assumption, no estimation of distri-
bution parameters is performed.

(vi) Obtain the border of the rejection area directly from generated
distribution of δ(i) values. To this end, empirically count the δ(i)

values in ascending order until you have passed 95% of all δ(i)

values. Use this δ(i) value as the critical value beyond which the
null hypothesis is rejected.

(vii) Repeat this procedure for all different trees Ta ∈ T .

The SOWH test utilizes the same test statistic δ as the KH and the SH
test. Due to using the ML tree in the computation of δ, the assumption
of E[δ] = 0 would be inappropriate, however. Therefore, a one-sided
test is used.

The repeated parametric bootstrap based on the respective Ta pro-
duces data conforming to the null hypothesis. Hence, no centering is
necessary.

The main problem with tests based on parametric bootstrap is that
they are computationally very demanding, often making extensive tests
unfeasible. Furthermore, no straightforward implementation of the SOWH
test seems available. Yet Goldman et al. (2000) give some advice at
http://www.ebi.ac.uk/goldman/tests/ how to implement SOWH tests
using PAUP* (see Chapter 8) and seq-gen (Rambaut and Grassly, 1997).PAUP chpt

12.6 Confidence sets based on likelihood weights

Strimmer and Rambaut (2002) approach the problem of comparing trees
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from a different perspective. Instead of significance testing, they devised
a method that generates a confidence set of trees based on expected mention con-

fidence sets of
trees earlierlikelihood weights (ELW). They define a confidence set as the smallest

subset of models – here trees – which together obtain a pre-defined
probability C to be selected based on some random dataset D (with
length N) drawn from the true distribution of the evolutionary process.

Given the likelihoods Lx of each tree Tx ∈ T , the likelihood weight
wa of a single tree Ta is computed as the fraction of the total likelihood
summed over all trees Tx ∈ T :

wa =
La∑
x Lx

(12.7)

with all likelihood weights wa adding up to 1.0. One way of constructing
a confidence set would be to collect all trees Ta in descending order of
their weights until the sum of collected weights meets the predefined
threshold value C, typically 0.95. This view is related to significance
testing (cf. above) where the 1−α confidence region corresponds to the
coverage of our confidence set by the cumulative level of confidence C.

To compute the precise selection probability, the expected likelihood
weight E[wa], the true model has to be known which is hardly ever the
case in reality. Hence, estimating the expected weights is based on a
non-parametric bootstrap as in the previous sections:

(i) Generate B bootstrap samples D(i). Estimate the corresponding
likelihood values L

(i)
x for each tree Tx ∈ T (e.g., with the RELL

method).
(ii) Compute the likelihood weights wa(i) for all Ta ∈ T according to

Eq. 12.7, within each bootstrap sample separately.
(iii) For each tree Tx derive its expected likelihood weight E[wa] by

averaging over all bootstrap samples, assuming E[wa] ≈ wa:

wa =
1
B

B∑
i=1

w(i)
a (12.8)

(iv) Construct the confidence set by selecting trees Tx in descending
orders of their (inferred) expected weights wx until their accumu-
lated sum meets the pre-set level of confidence C = 0.95.

This method for selecting a confidence set seems not to be affected
by the problem of SH, i.e., extending the constructed confidence set
as more and more trees are added as input (Strimmer and Rambaut,
2002). It is also independent from whether the true best tree is among
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Fig. 12.5. Sketch of the confidence set generation from expected likelihood

weights. From the bootstrap samples D(1) . . . D(B) likelihoods L
(1)
1 . . . L

(B)
M

are computed for each tree T1 . . . TM . Based on each bootstrap sample each

likelihood L
(i)
a is converted to a likelihood weight w

(i)
a . From these weights

the expected likelihood weight wa for each tree Ta across the corresponding
bootstrap samples. The Trees are sorted by their expected likelihood weights
wa. The confidence set collects trees in descending order such that the cum-
mulative expected weights

∑e

a=1
wza just contains the fraction 1− α.

the input trees. Nevertheless, the simplifications made need long se-
quence datasets D to correct for possible model mis-specification, and
large enough numbers of bootstrap samples to get valid estimates from
the parametric bootstrap (especially if the RELL method is used). The
impact of model mis-specification with datasets, however, remains un-
clear.

12.7 Conclusions

All methods we have examined above provide us with a kind of confi-
dence set of trees, a subset from our input set T . The trees within this
confidence set cannot statistically be classified as significantly better,
worse, or different (depending on the hypotheses tested) by the means
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of their likelihood values. That means, when two trees are selected for
the confidence set, we cannot discuss their differences as significant even
though their likelihoods might differ and their topologies might substan-
tially contradict each other.

The trees in the confidence set are usually assumed to be close to the
true tree. This conclusion is difficult to be confirmed, however, since
the true tree might not be among those tested. Furthermore, model
mis-specifications and violations of basic assumptions might render the
test results invalid.

We have seen that it is of utmost importance to take into account
the hypotheses and assumptions a test is based on. Knowing these
limitations allows us to draw valid conclusions from tests we apply and,
vice versa, to determine what tests are appropriate to answer certain
questions we want to ask about our data.
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PRACTICE

12.8 Software packages

While LRTs (cf. Chapters 10 and 11) for nested models are very abun-ModelTest
chpt

clock chpt dant, only a few packages allow the execution of various tests like TREE-
PUZZLE, PAUP*, or the CONSEL software package. More programs
are available which only implement the KH and SH test. A detailed list
of phylogenetic software which also might contain other test software or
different tests can be found at Joe Felsenstein’s web site, http://evolution.genetics.washington.edu/PHYLIP/software.html.

Because such program packages are emerging at a rapid pace, the
reader is advised to visit this web site and the software pages for updates.

12.9 Testing a set of trees with TREE-PUZZLE and CONSEL

In this example we will compare a set of 15 trees contained in hivALN.15trees

based on the alignment in the hivALN.phy file. Both files are available
from http://www.thephylogenetichandbook.org. We will use TREE-
PUZZLE 5.3 (Schmidt et al., 2002) to perform a number of tests (KH,
SH, ELW) and to compute the site-log-likelihoods for the 15 trees. Sub-
sequently, we will use the CONSEL (Shimodaira and Hasegawa, 2001)
software to perform the AU test and a number of other tests. Both pro-
grams can be run under Linux/Unix, MacOS X, and Windows. CON-
SEL does need an input file with the site-log-likelihood values for the
assessed trees, which we will also construct with TREE-PUZZLE. The
tests implemented in both programs are based on the bootstrapping with
the RELL method. Hence, no re-estimation of parameters or branch
lengths will be performed. For the following we will assume a signifi-
cance limit α = 0.05.

The maximum likelihood analysis of the hivALN.phy dataset in Chap-
ter 6 has shown that the relationships between five subtrees could notML chpt

be resolved reliably (cf. Fig. 6.8b). Those subtrees were the outgroupML chpt

(comprising HIV-1 group O and SIV sequences), from the HIV-1 group
M a joined subtree of subtypes B and D, and the the three separate
group M subtypes A, C, and G. Five disjoint subtrees can be related
in a fully resolved tree in exactly 15 possible ways. These 15 possible
trees are contained in hivALN.15trees and also sketched in Fig. 12.6.
The branching orders within the subtrees were kept, since there was no
contradiction between the two trees reconstructed with the two different
methods (see Fig. 6.8).ML chpt
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Fig. 12.6. The 15 possible tree topologies relating the four HIV-1 group M
subtype-clades A, B/D, C, and G with the outgroup. The numbers give the
order in the tree file. Tree 6 was the reconstructed ML tree from Fig. 6.8a.
The stars ∗ indicate the acceptance by the AU test. Those stars in brackets
(∗) had been excluded by the ELW method although excepted by the AU test.

12.9.1 Testing and obtaining site-likelihood with

TREE-PUZZLE

The usage of TREE-PUZZLE has been explained in more detail in Chap-
ter 6. Therefore, we will only highlight the relevant details and refer to ML chpt

the practical part of Chapter 6 for more information. ML chpt

For analysis in the subsequent section we require TREE-PUZZLE to
write the estimated side-log-likelihood values to a file for later use with
CONSEL. To that end, we start TREE-PUZZLE with the command-
line option -wsl (write site-likelihoods). It is recommended to execute
TREE-PUZZLE with the following command from a terminal for this
example:

puzzle -wsl hivALN.phy hivALN.15trees

where the first filename is the alignment and the second the tree file.
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Then we will run TREE-PUZZLE with the following settings (changing
options k, x, w, and c:

GENERAL OPTIONS

b Type of analysis? Tree reconstruction

k Tree search procedure? Evaluate user defined trees

z Compute clocklike branch lengths? No

e Parameter estimates? Approximate (faster)

x Parameter estimation uses? Neighbor-joining tree

SUBSTITUTION PROCESS

d Type of sequence input data? Auto: Nucleotides

h Codon positions selected? Use all positions

m Model of substitution? HKY (Hasegawa et al., 1985)

t Transition/transversion parameter? Estimate from data set

f Nucleotide frequencies? Estimate from data set

RATE HETEROGENEITY

w Model of rate heterogeneity? Gamma distributed rates

a Gamma distribution parameter alpha? Estimate from data set

c Number of Gamma rate categories? 4

Quit [q], confirm [y], or change [menu] settings: y

After typing ’y’, TREE-PUZZLE will compute the maximum-likelihood
values for all trees in hivALN.15trees, output the site-likelihood values
to a file called hivALN.15trees.sitelh, and then proceeds with the
implemented KH and SH tests and the ELW method, indicated by

[...]

Computing maximum likelihood branch lengths (without clock) for tree # 1

Computing maximum likelihood branch lengths (without clock) for tree # 2

Computing maximum likelihood branch lengths (without clock) for tree # 3

Computing maximum likelihood branch lengths (without clock) for tree # 4

Computing maximum likelihood branch lengths (without clock) for tree # 5

Computing maximum likelihood branch lengths (without clock) for tree # 6

Computing maximum likelihood branch lengths (without clock) for tree # 7

Computing maximum likelihood branch lengths (without clock) for tree # 8

Computing maximum likelihood branch lengths (without clock) for tree # 9

Computing maximum likelihood branch lengths (without clock) for tree # 10

Computing maximum likelihood branch lengths (without clock) for tree # 11
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Computing maximum likelihood branch lengths (without clock) for tree # 12

Computing maximum likelihood branch lengths (without clock) for tree # 13

Computing maximum likelihood branch lengths (without clock) for tree # 14

Computing maximum likelihood branch lengths (without clock) for tree # 15

Performing single sided KH test.

Performing ELW test.

Performing SH test.

All results written to disk:

Puzzle report file: hivALN.15trees.puzzle

Likelihood distances: hivALN.15trees.dist

Phylip tree file: hivALN.15trees.tree

Site likelihoods (PHYLIP): hivALN.15trees.sitelh

The parameter estimation took 9.00 seconds (= 0.15 minutes = 0.00 hours)

The computation took 28.00 seconds (= 0.47 minutes = 0.01 hours)

including input 28.00 seconds (= 0.47 minutes = 0.01 hours)

Note, that when analyzing tree files, the tree file’s name hivALN.15trees
is used as prefix for the output files. Besides other information, the re-
sulting output file hivALN.15trees.puzzle shows the results of the ML
analysis and the test results for the different topologies at the end of the
file:

COMPARISON OF USER TREES (NO CLOCK)

Tree log L difference S.E. p-1sKH p-SH c-ELW 2sKH

--------------------------------------------------------------------------

1 -17405.05 12.13 9.0392 0.0960 + 0.1870 + 0.0051 - +

2 -17405.90 12.99 8.9989 0.0780 + 0.1760 + 0.0027 - +

3 -17395.02 2.11 3.4895 0.2600 + 0.7860 + 0.1147 + +

4 -17401.24 8.33 8.2551 0.1580 + 0.3830 + 0.0704 + +

5 -17404.03 11.12 7.4308 0.0720 + 0.2290 + 0.0097 - +

6 -17392.91 0.00 <---- best 1.0000 + 1.0000 + 0.4437 + best

7 -17401.49 8.58 9.7675 0.1780 + 0.3760 + 0.0587 + +

8 -17396.14 3.22 6.8145 0.3160 + 0.7170 + 0.1770 + +

9 -17401.98 9.07 9.7895 0.1700 + 0.3400 + 0.0460 + +

10 -17408.52 15.61 8.3014 0.0380 - 0.0780 + 0.0003 - +

11 -17399.72 6.81 5.7552 0.1170 + 0.4840 + 0.0085 - +

12 -17408.66 15.75 8.3151 0.0250 - 0.0740 + 0.0003 - +

13 -17396.12 3.21 2.9334 0.1280 + 0.6930 + 0.0580 + +
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14 -17405.43 12.52 8.9404 0.0670 + 0.1910 + 0.0042 - +

15 -17408.24 15.33 8.2263 0.0370 - 0.0860 + 0.0009 - +

This table contains the trees in the same order as in the tree file.
The columns show from the second column the log-likelihoods, the log-
likelihood differences δx to the best tree, their standard error, the p-
values of the one-sided Kishino-Hasegawa test (p-1sKH), the Shimodaira-
Hasegawa test (p-SH) and the expected likelihood weights (c-ELW). The
results of the two-sided KH test (2sKH) are only included for historical
reason and should not be used. Due to the random generation of the
bootstrap samples the p-values might differ slightly between repeated
analyses. The ’+’ signs after the values indicate whether a method has
chosen the corresponding tree for the confidence set or (equivalently)
where the null hypothesis could not be rejected.

We already see that the three relevant columns show different sizes
of their confidence sets (SH > KH > ELW), which reflects the differ-
ent levels of conservativeness. The Shimodaira-Hasegawa test has even
included all 15 trees, that means it could not reject a single null hypoth-
esis.

12.9.2 Testing with CONSEL

The CONSEL program does not estimate the likelihoods for the trees
itself. Hence we generated a site-likelihood file hivALN.15trees.sitelh
with the -wsl option in TREE-PUZZLE in the previous section.

Note, that CONSEL version 0.1i does have problems with filenames
that contain more than one dot (’.’). In such cases CONSEL discards
the last file extension, but fails to attach its own ones, which in this
example would lead to the loss of the contents of hivALN.15trees, being
overwritten by the CONSEL output.

Therefore, rename the site-likelihood file accordingly, say to hivALN.sitelh.
CONSEL generates the multiscaled bootstrap samples from TREE-PUZZLE
.sitelh in CONSEL’s own native .rmt format by running

makermt --puzzle hivALN.sitelh

While makermt performs the conversion and the bootstrapping it in-
dicates its progress:

# $Id: makermt.c,v 1.14 2005/09/20 07:58:03 shimo Exp $

# seed:0 (MT19937 generator)

# K:10
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# R:0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4

# B:10000 10000 10000 10000 10000 10000 10000 10000 10000 10000

# reading hivALN.sitelh

# M:15 N:2352

# writing hivALN.vt

# writing hivALN.rmt

# start generating total 100000 replicates for 15 items..........

# time elapsed for bootstrap t=15.89 sec

# exit normally

K indicates the number of differently scaled bootstrap samples, R lists
the different alignment length scale factors N

Nr
, and B the numbers of

bootstrap samples for each Nr (cf. 12.5.6).
The command

consel hivALN

then performes the actual tests on the multiscaled bootstrap samples
and writes the p-values to file, indicating as it proceeds

# $Id: consel.c,v 1.19 2004/11/11 08:14:09 shimo Exp $

# reading hivALN.rmt..........

# K:10

# R:0.5 0.599915 0.69983 0.799745 0.89966 1 1.09991 1.19983 1.29974 1.39966

# B:10000 10000 10000 10000 10000 10000 10000 10000 10000 10000

# M:15

# generate the identity association

# CM:15

# MC-TEST STARTS

# centering the replicates

# calculating kh-pvalue...............

# calculating mc-pvalue...............

# calculating the variances...............

# calculating weighted kh-pvalue...............

# calculating weighted mc-pvalue...............

# MC-TEST DONE

# calculate replicates of the statistics..........

# BP-TEST STARTS - DONE

# AU-TEST STARTS

# sorting the replicates..........

# calculating approximately unbiased p-values by MLE (fast) fitting...............

# time elapsed for AU test is t=0.05 sec
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# ALPHA:0.05 0.1 0.5 0.9 0.95

# calculating confidence intervals...............

# AU-TEST DONE

# writing hivALN.pv

# writing hivALN.ci

# exit normally

To extract the resulting p-values from CONSEL’s data files we run
the command

catpv -s 1 hivALN

This generates a table of p-values in the following format:

# rank item obs au np | bp pp kh sh wkh wsh |

# 1 1 12.1 0.045 0.001 | 0.001 4e-06 0.086 0.187 0.086 0.407 |

# 2 2 13.0 0.029 0.001 | 0.001 2e-06 0.074 0.157 0.074 0.383 |

# 3 3 2.1 0.450 0.095 | 0.092 0.101 0.264 0.798 0.264 0.769 |

# 4 4 8.3 0.234 0.061 | 0.061 2e-04 0.148 0.381 0.148 0.509 |

# 5 5 11.1 0.068 0.009 | 0.009 1e-05 0.068 0.219 0.068 0.305 |

# 6 6 -2.1 0.810 0.483 | 0.475 0.831 0.736 0.962 0.682 0.965 |

# 7 7 8.6 0.274 0.066 | 0.070 2e-04 0.185 0.362 0.185 0.571 |

# 8 8 3.2 0.498 0.188 | 0.190 0.033 0.318 0.721 0.318 0.746 |

# 9 9 9.1 0.266 0.068 | 0.065 1e-04 0.170 0.340 0.170 0.545 |

# 10 10 15.6 2e-04 2e-05 | 0 1e-07 0.032 0.068 0.032 0.206 |

# 11 11 6.8 0.043 0.003 | 0.003 0.001 0.116 0.478 0.089 0.364 |

# 12 12 15.7 0.015 1e-04 | 8e-05 1e-07 0.029 0.059 0.029 0.214 |

# 13 13 3.2 0.149 0.027 | 0.027 0.034 0.134 0.702 0.134 0.485 |

# 14 14 12.5 0.086 0.006 | 0.006 3e-06 0.081 0.178 0.081 0.375 |

# 15 15 15.3 0.007 3e-04 | 2e-04 2e-07 0.033 0.070 0.033 0.214 |

The -s 1 option causes the trees to be output in the order of the tree
file instead of their likelihood (the default). The output contains the
index (rank, which would differ when ordered by likelihood), the tree
number in the input (item), the log-likelihood difference δx to the best
tree (obs), except for the best itself which shows the negative distance
of the second best. Among other statistics and information values it
prints the p-values of the AU test (au), KH test (kh), the SH test (sh),
and weighted variants of the two (wkh and wsh). Due to the random
generation of the bootstrap samples the p-values might differ slightly
between repeated analyses. We assume the confidence sets based on a
significance level α = 0.05 are the largest for the SH test(s) and their
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Table 12.1. p-values estimated with TREE-PUZZLE and CONSEL.
The ’+’ signs mean that a tree belongs to a confidence set or the null
hypothesis could not be rejected.

TREE-PUZZLE CONSEL

ln L δ KH SH ELW AU KH SH

1 -17405.05 12.13 0.096 + 0.187 + 0.0051 0.030 0.094 + 0.193 +
2 -17405.90 12.99 0.078 + 0.176 + 0.0027 0.044 0.076 + 0.159 +
3 -17395.02 2.11 0.260 + 0.786 + 0.1147 + 0.433 + 0.272 + 0.793 +
4 -17401.24 8.33 0.158 + 0.383 + 0.0704 + 0.235 + 0.164 + 0.384 +
5 -17404.03 11.12 0.072 + 0.229 + 0.0097 0.072 + 0.072 + 0.227 +
6 -17392.91 0.00 1.000 + 1.000 + 0.4437 + 0.826 + 0.728 + 0.960 +
7 -17401.49 8.58 0.178 + 0.376 + 0.0587 + 0.281 + 0.190 + 0.370 +
8 -17396.14 3.22 0.316 + 0.717 + 0.1770 + 0.475 + 0.319 + 0.721 +
9 -17401.98 9.07 0.170 + 0.340 + 0.0460 + 0.272 + 0.175 + 0.339 +

10 -17408.52 15.61 0.038 0.078 + 0.0003 0.005 0.034 0.072 +
11 -17399.72 6.81 0.117 + 0.484 + 0.0085 0.042 0.121 + 0.487 +
12 -17408.66 15.75 0.025 0.074 + 0.0003 0.040 0.034 0.064 +
13 -17396.12 3.21 0.128 + 0.693 + 0.0580 + 0.141 + 0.135 + 0.695 +
14 -17405.43 12.52 0.067 + 0.191 + 0.0042 0.074 + 0.082 + 0.177 +
15 -17408.24 15.33 0.037 0.086 + 0.0009 0.033 0.037 0.075 +

size is decreasing via the KH test(s) down to the AU test. While the
p-values sometimes differ substantially between the weighted and un-
weighted versions of the SH and KH tests, the confidence sets remain
the same.

12.10 Conclusions

Comparing the results of TREE-PUZZLE and the CONSEL program
which are collected in Table 12.1 one can easily see that although the
p-values of the tests computed by both programs differ slightly, the re-
sulting confidence sets are the same. The differences of the p-values
can be attributed to two reasons. First, the stochastic nature of the
bootstrap samples causes fluctuations in the estimated values. Further-
more, rounding errors are introduced during the export of the site-log-
likelihoods. Only TREE-PUZZLE itself has the advantage of the full
precision, since the export to a text file for CONSEL does automatically
decrease the precision of exported values.

Note, that although the 15 trees were constructed manually their se-
lection was still a priori, since we know that tree 6 was the reconstructed
ML tree (cf. Chapter 6). That tree remained the one with highest like- ML chpt
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lihood even among the constructed trees in the analysis.
The KH test has been performed as a one-sided test, but still the

assumptions implied lets one only use this test with caution. The SH
tests nicely demonstrated its biasedness being the only test (together
with its weighted variant WSH) not rejecting any of the trees.

The ELW and the AU test show very similar confidence sets, but the
AU test is a bit more conservative. Still one has to keep in mind that
the impact of model misspecification on ELW remains unclear.

The interpretation of these results are, that there is no tree to be
clearly chosen over the others. But also the topological features of the
accepted or rejected trees do not show an obvious trend. It seems clear,
however, that the subtype C is not located close to the root, since all
such trees (trees 10-12 in Fig. 12.6) have been rejected by ELW and the
approximately unbiased AU test.

Furthermore, all those topologies are in the confidence sets of AU and
ELW, where subtype A and G are located closely in the tree (Fig. 12.6,
trees 3, 6, 8, 9, and 13) except if subtype C is close to the root (trees
11 and 12). This might reflect the possibly recombinant history of sub-
type G with subtype A being one of its parents as reported by Abecasis
et al. (2005).

The tests showed that a number of rather different tree topologies
could not be rejected. Other subsequent analyses have to be performed
to clarify the possible influence of inter-subtype recombination (Chap-
ter 12) or of other phenomena like noise, lateral gene transer, or directedbootscan

chpt
selection which can also obscure the true phylogenetic history.
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