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■ Abstract The number, size, and scope of phylogenetic analyses using molecular
data has increased steadily in recent years. This has simultaneously led to a dramatic
improvement in our understanding of phylogenetic relationships and a better appre-
ciation for an array of methodological problems that continue to hinder progress in
phylogenetic studies of certain data sets and/or particular parts of the tree of life. This
review focuses on several persistent problems, including rooting, conflict among data
sets, weak support in trees, strong but evidently incorrect support, and the computa-
tional issues arising when methods are applied to the large data sets that are becoming
increasingly commonplace. We frame each of these issues as a specific problem to be
overcome, review the relevant theoretical and empirical literature, and suggest solu-
tions, or at least strategies, for further investigation of the issues involved.

INTRODUCTION

The explosive growth in the number of molecular phylogenetic studies can be
attributed to two advances: the development of rigorous tree-building methods,
and the advent of rapid and relatively inexpensive technology for obtaining com-
parative molecular data. However, the former predates the latter by some time.
Parsimony, likelihood, and distance methods for building trees were all introduced
and applied to real data in the 1960s (Edwards & Cavalli-Sforza 1967), whereas the
explosive growth of GenBank did not begin until the late 1980s. Consequently, the
literature on phylogenetic methods is now extensive, with important work appear-
ing not just in journals devoted to systematics and molecular evolution, but also
genetics, mathematics, and computer science. In the past decade the mathematical
complexity of phylogenetic methodology has taken a quantum leap forward ow-
ing to a determined effort to place much of phylogenetic inference in a statistical
framework (e.g., Huelsenbeck & Crandall 1997 for review; Felsenstein 2001). A
less well advertised but equally significant infusion of ideas from computer science
(e.g., Nakleh et al. 2001) has also impacted theoretical phylogenetics. Together
these methodological advances have presented investigators who are now finding
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it easy to obtain molecular sequence data with an unprecedented and often bewil-
dering set of choices on methodological issues.

Acquiring comparative sequence data is now as simple as accessing GenBank
or other databases via the internet, and the number of scientists interested in recon-
structing phylogenies as a secondary research interest is growing rapidly. Whereas
the inclusion of molecular, developmental, and evolutionary biologists into the
world of practical phylogenetics is clearly beneficial for all, a growing knowledge
gap between the leading edge of phylogenetic theory and this growing pool of
relative novices has developed. Within our own university, and in our interactions
with a wide range of colleagues not formally trained in phylogenetic methods,
we find ourselves constantly asked how to analyze data sets, what strategies are
sufficient, and how to deal with different sorts of comparative information. This
review focuses on several issues that repeatedly confront molecular phylogenetic
studies, and our view of the recent literature on solutions to these problems. We
aim at the relative newcomer to the field who desires advice on troubleshoot-
ing rather than an in-depth understanding of all the technical details. The risk of
this strategy is that it may give a false impression: Hard problems do not always
have simple solutions. Still, the resolution of many problems seems to be taking
shape, and solutions to others can be narrowed in scope to a handful of analytical
strategies.

Below we list a series of commonly cited problems, and discuss potential strate-
gies for overcoming them. Among the most important of these have been questions
about the performance and accuracy of tree-building methods, whether and when
to combine disparate sources of data, how to assess levels of support for trees, and
how to analyze large data sets with algorithms that often require embarrassingly
long running times.

PARTS OF THE TREE SEEM TO BE “WRONG”

Sometimes a phylogenetic analysis will imply relationships that appear dead wrong
in the context of previously published results or long-held views. A celebrated ex-
ample in vertebrates is the placement of bony fish within tetrapods in an analysis
of complete mitochondrial genomes (Naylor & Brown 1998). An equally patho-
logical case in plants is the placement of various aquatic or parasitic angiosperms
as the solitary sister group to all other angiosperms (Ceratophyllum: Chase et al.
1993,Rafflesia: Lipscomb et al. 1998). Of course, the possibility always exists
that the widely held view is in fact wrong, and that a new phylogenetic paradigm
has been uncovered, as appears to be the case for turtles within the amniotes
(Rieppel & Reisz 1999), but weight of evidence suggests such cases are probably
the exception. Because weak data and sampling error can always lead to appar-
ently incorrect results, the onus is on the investigator to document that a result
is both strongly supported and apparently incorrect. Troubleshooting such cases
then involves demonstrating that a relationship is questionable and attempting to
overcome the cause of the mistaken inferences. This has been an area of active
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interchange between theoreticians and empirical phylogeneticists and some rec-
ommendations have emerged.

Check for Pre-Processing Errors: Alignment,
Orthology/Paralogy

The assumption of all phylogenetic inference methods is that the input data consist
of a set of homologous characters. For sequence data this means that the sequences
are homologs and that their sites have been correctly aligned. As an analytical prob-
lem, multiple sequence alignment is of the same order of complexity as phyloge-
netic inference (Gusfield 1997), yet it rarely receives the same level of attention
from phylogeneticists (Lee 2001). Problems can range from fairly trivial to quite
serious. Manual sequence alignments, which are commonplace in studies of non-
coding DNA data, for example, sometimes can have a misplaced or mistakenly in-
ferred gap that “frameshifts” a large part of a sequence or set of sequences. This can
introduce a large number of substitutions into inferred trees, producing false clades
that appear strongly supported. Routinely checking alignments with alignment pro-
grams (e.g., CLUSTALW; Thompson et al. 1994) can help identify such cases.

Other problems are stickier. Certain genes are notoriously difficult to align
either manually or with the assistance of algorithms (e.g., small subunit rDNA),
and alignment choices clearly impact phylogenetic inference strongly (Morrison
& Ellis 1997). Little consensus is available regarding strategies for alignment in
problematic cases (see review in Lee 2001). Three possibilities are (a) removing
problematic sites, (b) concatenating sequences derived from multiple alignment
replicates with different parameters (Elision method: Wheeler et al. 1995), and
(c) extracting common phylogenetic information from trees constructed under
different alignments (multiple analysis method: Lee 2001). Of these, removing
problematic regions of the alignment is the most conservative but may lead to a
loss of resolution.

Phylogenetic error can also arise if paralogs (genes derived via gene duplica-
tion) are mistakenly interpreted to be orthologs (genes derived via speciation) in
the construction of species trees from sequence data. Paralogs and orthologs are all
homologous, but species relationships can only be directly inferred from orthol-
ogous sequences (though indirect inferences are possible; see Page & Charleston
1997). Orthology is difficult to discern from sequence data alone, but introns and
flanking regions can leave telltale clues. For example, the number and position
of introns is a useful diagnostic for distinguishing paralogs from orthologs in the
Adhgene family of cotton (Small & Wendel 2000). Formal algorithms for infer-
ring species trees from gene family trees (Page & Cotton 2002), are available but
are very sensitive to the completeness of sampling of the gene family, a problem
with many data sets. The complexities of working with gene families partly ex-
plain the popularity of organellar single copy genes in phylogenetics. However, as
the data from relatively small organellar genomes is exploited fully, and additional
complete nuclear genomes become available, the impetus to identify and use single-
copy nuclear genes free of paralogy problems will undoubtedly increase.
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Sample Additional Genes with Different Substitution Rates

Yang (1998) and Bininda-Emonds et al. (2001) showed via simulation studies
that accuracy—the probability of inferring the correct or nearly correct tree—is
maximized at an intermediate nucleotide substitution rate; it drops quickly at lower
rates, and more slowly at higher rates. Optimal rates are dependent on the details
of the substitution process of the gene sampled and therefore must themselves be
estimated for any given data set. However, a useful strategy might be to compare a
data set’s bootstrap support to that obtained with a faster gene and a slower gene.
Given that “too fast” is better than “too slow,” a rule of thumb might be to always
add a gene with higher rate first. Because rates vary between lineages in most data
sets, however, it is necessary to estimate an average rate to permit comparisons
between genes. Conventionally, such comparisons are made by reference to a single
comparison between two terminal taxa. A more comprehensive estimate of mean
rate can be obtained (in PAUP∗, for example, Swofford 1999) by rooting a tree,
enforcing a molecular clock, obtaining branch lengths, and summing these along
one path from root to tip. This value can then be compared to those obtained for
the same taxa for other genes. If the age of the root is known it can be put in units
of substitutions per site per unit time, but this is not necessary for comparisons
between genes. An important caveat is that rates that are too high can lead to
long-branch attraction (see next).

Check if Rate Heterogeneity is Sufficient to Cause
Long-Branch Attraction

The most widely cited reason for mistaken phylogenetic inferences is long-branch
attraction (LBA). Strictly speaking, LBA is an “asymptotic” property: a failure of a
method to reconstruct the right tree as the number of characters goes to infinity. This
is also known as statistical inconsistency. First noticed for maximum parsimony
(MP; Felsenstein 1978), it is now understood to be a problem for parametric
methods as well, including maximum likelihood (ML) and neighbor-joining (NJ)
using parametric corrections, when model assumptions are violated (Lockhart et al.
1994, Chang 1996). Just as a model of evolution can be constructed in which ML
is consistent and MP is not, models containing mixtures of simple substitution
models can be constructed in which MP is consistent and ML is not (J. Kim,
personal communication). The term long-branch attraction refers to a set of model
conditions known to make MP fail. High rates along two branches separated by a
branch with low rate will fool MP into joining the long branches together. The LBA
problem shows up in many guises, including tree rooting and base compositional
bias (see below); it is one of the more pervasive problems in phylogenetics.

However, it is also difficult to document. Huelsenbeck (1997) argued that it is
not enough to point to “long” branches in the vicinity of a suspect relationship and
suggested two strategies for implicating LBA rigorously. One is to test whether
branches are long enough and heterogeneous enough to cause mistaken inferences
in a data set given the number of characters observed. The procedure is to choose



30 Sep 2002 18:29 AR AR173-ES33-03.tex AR173-ES33-03.SGM LaTeX2e(2002/01/18)P1: ILV

TROUBLESHOOTING PHYLOGENIES 53

a model tree, infer reasonable model parameters (including branch lengths) us-
ing ML, and then conduct replicate simulations with those parameter values to
determine whether or not the tree would be reconstructed with high probability
(Huelsenbeck 1997, Maddison et al. 1999, Sanderson et al. 2000, Omilian & Taylor
2001). The Seq-Gen program (Rambaut & Grassly 1997) is an excellent tool for
conducting these and other tree-based simulations.

A second strategy is to try different inference methods. In theory, if the model is
close to being correct, ML and NJ should be less sensitive to long-branch attraction
than MP. However, care should be taken in cases in which MP provides different
answers than ML/NJ to make sure the differences are strongly supported—i.e.,
that the explanation is not just sampling error. The issue of model selection is also
critical (Posada & Crandall 2001). The number of substitution models for DNA
sequence data is quite large, and minimally one should explore automated model
selection methods such as those available in MODELTEST (Posada & Crandall
1998), which balance model complexity with improved likelihood. A nonparamet-
ric alternative is provided by Willson’s Higher Order Parsimony method (Willson
1999: software available on author’s website), which uses characters convention-
ally viewed as uninformative in standard MP analysis (autapomorphies and con-
stant characters), just as ML does. It is limited to four-taxon trees but may be
useful as part of more general quartet methods in larger trees. Simulations suggest
it outperforms MP under classical LBA conditions and ML when the model used
in ML is incorrect.

Assess the Extent of Base Composition Bias and Heterogeneity

Some genes and genomes are biased in favor of AT or GC base compositions.
For example, many animal mitochondrial genomes are AT rich, and this has been
proposed as a partial explanation for the occasional reconstruction of incorrect
relationships (Steel et al. 1993). Although Conant & Lewis (2001) conducted sim-
ulations suggesting that bias must be quite strong before standard methods would
be misled, compositional bias has been blamed for many aberrant results, such as
the pairing of honeybee and nematode complete mitochondrial protein sequences
to the exclusion of other insects (Foster & Hickey 1999), and the removal of
Drosophila willistonifrom its “true” subgenus because its low GC content is sim-
ilar to more distant outgroups (Tarrio et al. 2001). Inspection of simple base com-
position statistics provided by many programs (e.g., TREE-PUZZLE, Strimmer &
Von Haeseler 1996; PAUP∗, Swofford 1999), includingχ2 tests of homogeneity
across taxa, should indicate whether compositional bias is a potential issue. More
sensitive likelihood ratio tests can then be undertaken to confirm that differences
in substitution pattern among extant taxa indicate changes in base composition
deeper in the tree (Tarrio et al. 2001). This compares a standard stationary ho-
mogeneous model [e.g., the general time-reversible model (GTR); Swofford et al.
1996], to a nonstationary, nonhomogeneous model (Galtier & Gouy 1998).

Possible solutions to the problems induced by composition bias include trans-
forming the data to transversions only (Woese et al. 1991) or translating to amino
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acid sequences (Hasegawa & Hashimoto 1993). However, Foster & Hickey (1999)
showed that compositional bias can propagate to the protein level, producing sim-
ilar artifacts. Some reconstruction methods are explicitly designed to be robust to
composition bias, including distance methods using LogDet distances (Lockhart
et al. 1994), modifications of the Tamura (1992) distance that take composition
variation into account (Galtier & Gouy 1995), and ML inference with a nonstation-
ary model (Galtier & Gouy 1998). Results from these methods have been mixed,
however, with some workers reporting that they helped (Tarrio et al. 2001) and
others reporting no improvement (e.g., Foster & Hickey 1999). One problem is
that multiple biases may be present and interact, and these problems may be con-
founded with LBA issues (Whitfield & Cameron 1998, Foster & Hickey 1999).
A particularly vexing factor is site-to-site rate variation. Tree reconstruction is
exceptionally problematic in the face of both changing base composition through
time and different rates between sites (Baake 1998). Until further progress is made
with reconstruction methods, simple composition variation can be identified and
dealt with, but complex bias remains a difficult obstacle to overcome.

Test for a Covariotide/Covarion Effect

Evidence is mounting that rates of molecular evolution vary not only between sites
and between lineages but between both simultaneously, an idea first put forth by
Fitch & Markowitz (1970) as the covarion hypothesis (for proteins, covariotides
for DNA). An extreme manifestation occurs when some sites are apparently unable
to vary in certain taxa but are free to vary in others and vice versa. Several recent
studies of deep phylogenies have uncovered such patterns in rDNA (Philippe &
Germot 2000) and protein coding genes (Lockhart et al. 1998, 2000; Lopez et al.
1999). Even maximum likelihood inference with complex models can be misled
by sequences evolving according to this model (Lockhart et al. 1996). Lockhart
and colleagues (Lockhart et al. 1998) provide a relatively simple inequality test
for covariotide patterns based on the expected distribution of invariant sites in two
sets of sequences. Omilian & Taylor (2001) used this test on large subunit rDNA in
the relatively shallow phylogeny ofDaphniaand found evidence of a covariotide
pattern, but they were unable to overcome its effects by removing misleading
character classes.

BOOTSTRAP VALUES ARE LOW

Molecular phylogenies sometimes contain clades with low statistical support, even
with large amounts of sequence data. Support can be assessed in a variety of ways,
but bootstrap resampling (Felsenstein 1985, Efron et al. 1996) is the most com-
monly used method for molecular data, and its assumptions and interpretation
have been scrutinized more intensely than any other (Hillis & Bull 1993,
Felsenstein & Kishino 1993, Sanderson 1995, Efron et al. 1996). The general
strategy is to resample, with replacement, a data matrix of aligned sequences,
where each site (character, column) is a sampling unit. Pseudoreplicate data sets
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of the same size as the original are constructed and analyzed, and the resulting
trees are summarized as a consensus of generally>100 replicates. The bootstrap
proportion (BP) has been interpreted in at least two ways: (a) as a measure of
accuracy, which is the probability that repeated sampling with the same sample
size of real data from the universe of characters would recover the true clade; and
(b) as an estimate of 1−α, whereα is the conventional type I error (the probability
of mistakenly concluding the group is a clade when it is not). Other interpretations
of BPs are also possible, including Bayesian ones (see Efron et al. 1996).

Simulation and theory indicate that BP tends to underestimate accuracy when
the clade is correct (Zharkikh & Li 1992a,b; Hillis & Bull 1993; Felsenstein &
Kishino 1993; Newton 1996; Efron et al. 1996), but that to a first order approxi-
mation it does estimate the 1−α significance level (Efron et al. 1996). However,
a number of factors can make the latter approximation poor, necessitating second-
order corrections. Low BPs may also arise for reasons other than statistical biases.
Felsenstein (1985) showed that in the absence of homoplasy BPs are positively
correlated with the number of characters changing along the branch subtending
a clade, and meta-analyses of real data sets indicate this is true in the presence
of homoplasy as well (Sanderson & Donoghue 1996, Bremer et al. 1999). Thus,
gathering additional sequence data for the same taxa is one potential cure for low
BPs. Slightly less obvious strategies are highlighted below.

Use Bootstrap Correction Factors

Several modified bootstrap procedures have been suggested to obtain BPs closer to
true accuracy, including iterated bootstrapping (Rodrigo et al. 1993), the complete-
and-partial bootstrap (Zharkikh & Li 1992a) and the approximately unbiased (AU)
method (Shimodaira & Hasegawa 2001). Efron et al. (1996) also describe a kind
of iterated bootstrap method that explicitly estimates type I error by resampling
from data sets constructed to lie on the boundary between regions of tree space
that have and do not have the clade of interest. Felsenstein’s simple bootstrap
method requires some number,K, of iterations, whereK is usually>100. These
more complex methods often require on the order ofK2 iterations, and thus are
computationally very expensive. This is unfortunate given that the bias in BP
appears to be exacerbated in intensively sampled clades of large trees that require
heavy computation in every replicate (Sanderson & Wojciechowski 2000). Some
software is available (e.g., Shimodaira & Hasegawa 2001), but none of these
methods are currently implemented in widely used phylogenetics packages.

Check for Rogue Taxa

Because a bootstrap proportion refers to a precise hypothesis about a potentially
long list of clade members, it is very sensitive to one or a few “rogue” taxa whose
position is unstable. They may be unstable because of missing data, an elevated
substitution rate causing homoplasy, or extremely low rates inside and outside the
clade, all of which can cause low BPs. Part of the problem is that exact monophyly
of a group is a very specific hypothesis, which is all too easily rejected in cases of
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even a single unstable taxon. Sanderson (1989) suggested relaxing the notion
of strict monophyly by putting confidence bounds onr, the minimum number
of species needed to make a paraphyletic group monophyletic. Wilkinson (1994,
1996) suggested putting (bootstrap) confidence levels onn-taxon statements rather
than clades. Ann-taxon statement is a statement of relationship about a subset of
taxa on a tree. For example, on the tree (a, b, c, d, (e, f, g, h)), an example of a
4-taxon statement is (a, b, (e, f )). The support for this 4-taxon statement might
well be much higher than it is for the monophyly of (e, f, g, h), especially if
taxong, for example, is problematic. Thorley & Wilkinson (1999) describe a test
based on triplets (3-taxon statements) specifically designed to assess the stability
of individual taxa (implemented in RadCon: Thorley & Page 2000).

A more general solution is to find maximum agreement subtrees (Finden &
Gordon 1985, Steel & Penny 2000) in the collection of bootstrap trees. These are
sets of smaller trees constructed by pruning a minimum number of rogue taxa such
that the relationships among the remaining taxa agree among all trees. Any clades
on the output trees are then supported at the 100% level, although the original tree
might not have had any clades supported at this level. Better still would be a fuzzier
version of the maximum agreement subtree that returned a majority rule consensus
with values higher than that on the original large tree. These approaches extract
signal about some relationships at the expense of remaining agnostic about others.

Experiments with taxon sampling from the data available to the investigator can
also provide hints about the robustness of BPs. Many studies have found BPs are
inversely correlated with the number of taxa (Bremer et al. 1999) or that adding
taxa to a study decreases BPs (Sanderson & Wojciechowski 2000, Mitchell et al.
2000), although Omland et al. (1999) found that including more sequences from
within each species improved BPs.

Avoid Using “Fast” Bootstrap Methods in
Large Trees (if Possible)

In larger data sets, it is common to use heuristic shortcuts in search strategies, such
as in PAUP’s “fast bootstrap” option, which perform less rigorous searches in the
interest of saving computer time. Debry & Olmstead (2000) performed an exhaus-
tive series of simulations, and showed that these strategies lower BPs except in
extremely well-supported clades (BP> 90%), and that the deterioration worsened
as the number of taxa increased. Mort et al. (2000) found similar results in two real
data sets, although those in data clades with BPs of 80% or more were relatively
immune. To avoid this deterioration, increasing the stringency of heuristic searches
to include at least some minimal branch swapping may be necessary.

When Bootstrapping in Maximum Likelihood Analyses,
Experiment with Model Complexity

Bootstrapping in conjunction with maximum likelihood inference is computa-
tionally expensive but is a viable option if the number of taxa is not too large
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(perhaps less than about 25 sequences using commonly available hardware). It
is generally assumed that increasing model complexity decreases bias but at the
expense of increasing variance (Berry & Gascuel 1996, Burnham & Anderson
1998). Thus, as the number of parameters increases BPs might be expected to
decline (Berry & Gascuel 1996). However, Buckley et al. (2001) found little evi-
dence of a consistent pattern in which parameter-rich models had lower BPs than
parameter-poor models, although they did find large differences in BPs between
models. Computational limitations when bootstrapping ML runs make exploration
of the bias-variance tradeoff difficult, and much more work is needed to determine
in what direction model choice should be aimed.

SIGNALS FROM DIFFERENT DATA SETS OR
PARTITIONS CONFLICT

Since molecular data (including allozymes and DNA sequences) became an im-
portant element of phylogenetics, the question of how to best utilize the phylo-
genetic information in different data partitions has loomed large on the horizon.
The problem of conflicts among characters in phylogenetics goes back at least to
Hennig (1966), who felt that character conflicts must represent investigator error
in making homology statements. However, the current methodological attention
to the resolution of conflicts among data partitions dates to Kluge (1989). In that
key paper, Kluge made at least two important observations and recommendations.
First, to increase the likelihood of character independence, different classes, or
kinds of characters should be sampled for a given phylogeny. Second, these dif-
ferent data “partitions” should be combined into a single analysis (often referred
to as a “total evidence” approach), rather than testing each partition separately for
the presence of different signals. In response to this view, a decade of research
has led to new tools for determining whether different partitions have divergent
phylogenetic signals, and (to a lesser extent) methods for treating data incongru-
ence. For the practicing phylogeneticist, at least three problems regularly arise.
First, how does one determine if data partitions are in conflict? Second, if there
is a conflict, how should one obtain a single, best tree from the conflicting data?
Third, are there empirical or theoretical guidelines for when one should worry
about single-partition trees, given that most practitioners still have data from only
a single gene? That is, under some conditions one may feel quite confident that
single-gene trees represent true “species trees,” whereas in other cases one may
feel very uncomfortable with only a single data partition.

Do Different Data Partitions Agree or Disagree in
Their Phylogenetic Information?

Over the past two decades, a number of strategies have been proposed to examine
the level of disagreement among data partitions. Swofford (1991) provides an
excellent review of the first decade. Of the several methods that have stood the test
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of time, the incongruence length difference test (ILD; also known as the partition
homogeneity test), which was originally outlined some 20 years ago (Mickevich
& Farris 1981; see also Swofford 1991) is by far the most widely used. The ILD is
based on the difference in tree length (that is, the total number of inferred changes
under parsimony) between a single tree in which two data partitions are combined,
compared to the sum of the tree lengths of each partition on its own maximum
parsimony tree. Thus,

DXY = L(X+Y) − (LX + LY),

where DXY is the length difference, L(X+Y) is the total length of the tree where
data partitions X and Y are combined, and LX, LY are the lengths of the most
parsimonious trees for each partition separately. Significance is judged by creating
random data partitions from the original data set of the same size as X and Y, and
asking how frequently a value of DXY as great or greater occurs from this simulated
distribution (Farris et al. 1995). When significant incongruence is found, it may be
due to differences in the phylogenetic signal of the two data partitions, differences
in the level of noise (that is, the randomness of a data set caused by saturation),
or a combination of the two (Dolphin et al. 2000). Although the interpretation of
the ILD as a test of combinability has received increased scrutiny (Yoder et al.
2001), it remains the test of choice for the moment. It is implemented in PAUP∗

(Swofford 1999) and other programs.
Several other tests of partition homogeneity have been suggested recently and

have considerable appeal. They include an alternative randomization test to the
ILD (Rodrigo et al. 1993), the use of congruence among trees rather than data
sets (Miyamoto & Fitch 1995), Partitioned Bremer Support (which quantifies the
positive or negative contribution of each data partition to the character support
for a particular node in a combined data analysis; Baker & Desalle 1997), and a
likelihood ratio test that compares differences in likelihood with and without the
constraint that the same phylogeny underlies all data partitions (Huelsenbeck &
Bull 1996). While each of these recent alternatives has merit, none are as easily
implemented as the ILD, and we presume that they will enjoy less widespread use
than the ILD test in the near future.

Resolving Conflicts Among Data Partition

As molecular data sets grow to include more genes, conflicts among some or all
data partitions appear to be something of a rule. Early comparisons of biochemical
and morphological data often found this to be the case (Kluge 1989, reanalyzed in
Swofford 1991; Shaffer et al. 1991). However, a small sampling of recent DNA-
based analyses with or without morphology on a wide range of plant (Olmstead &
Sweere 1994, Nickrent et al. 2000, Sanderson et al. 2000) and metazoan (Baker
et al. 1998, Cao et al. 1998, Shaffer et al. 1997, Wiegmann et al. 2000, O’Grady
et al. 1998) taxa emphasize that virtually any outcome is possible, with some data
sets showing strong conflicts among partitions, and others not. A clear result from
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these and many other studies is that partitions often conflict in their phylogenetic
signal, leaving it to the practitioner to decide how to handle such conflicts.

Fundamentally, there are two strategies for resolving conflicts among data par-
titions. The first is that advocated by Kluge (1989)—based on first principles: All
data should always be included in a combined analysis for any phylogenetic prob-
lem. Even when a problematic data partition is successfully identified, some argue
that the clearest and most reasonable strategy is to combine (Baker & Desalle
1997). Data conflicts that lead to two well-resolved, but different topologies may
result in an unresolved bush when combined (e.g., Shaffer et al. 1991), but even
so, advocates feel that this correctly summarizes the current state of knowledge.
The alternative view is most clearly laid out by Bull et al. (1993), who advocate a
“conditional combinability” strategy. They propose that one should test for homo-
geneity, and either combine (if the null of homogeneity cannot be rejected), remove
the cause of heterogeneity (if the null is rejected and the cause can be identified),
or give up (if the null is rejected but the cause cannot be identified). The last op-
tion comes down to the “No Obvious Resolution” in Bull et al.’s flow chart. This
conditional combinability strategy has been embraced by most systematists (but
notable exceptions exist, e.g., Miyamoto & Fitch 1995), and later methodological
and simulation work has largely focused on what to do when conflict exists.

Two reasonable solutions appear to be emerging. First, using the ILD (Cunning-
ham 1997), Partitioned Bremer Support (Baker et al. 1998), or visual examination
of data conflicts, attempt to identify one gene or data partition within a gene that
accounts for much of the conflict (Cao et al. 1998). If a single problematic partition
exists, eliminate that partition (Huelsenbeck & Bull 1996). In a similar vein, John-
son (2001) argues for using the ILD to identify problematic taxa and remove them
from the analysis. However, as noted by Baker & Desalle (1997) as more gene
partitions become available, the likelihood of complex patterns of overlapping con-
flict becomes ever greater, making it difficult to determine which, if any, partitions
should be eliminated (Krzywinski et al. 2001). An emerging theme from several
recent analyses is that saturated data (that is, very noisy data suffering from many
multiple substitutions per site) is a major source of data conflict (Baker & Desalle
1997, Dolphin et al. 2000). Perhaps because of the problem of long-branch attrac-
tion (see above), saturated data partitions are a real source of conflict, and should
be eliminated. Unfortunately, these same partitions may be informative in the more
recent parts of a tree, but misleading deeper in the tree, making their complete elim-
ination a less desirable choice (K¨allersjö et al. 1999). In this case, restricting the use
of such genes to recently diverged sets of taxa is an attractive analytical solution.

Theoretical Guidelines on Potential Conflicts in New Data Sets

Over the past decade, several guidelines have been proposed regarding the pre-
dicted relationship between monophyly in different genome partitions, and how
those individual gene partitions reflect the underlying species phylogeny. These
guidelines are spread across two divergent literatures, that of phylogenetics/
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phylogeography (Ball et al. 1990, Maddison 1997, Moore 1995, Palumbi et al.
2001) and of theoretical population genetics/coalescent modeling (Wu 1991,
Hudson 1992). The fundamental issue is the extent to which intra- or interspe-
cific monophyly for a single gene partition predicts monophyly in other partitions,
or for the species as a whole. Because single gene mitochondrial (mtDNA) se-
quences have been used so extensively in metazoan phylogenetics, Moore (1995)
used a neutral coalescent framework and the four-fold difference in effective pop-
ulation size of mitochondrial and nuclear genes to calculate the difference in “time
to monophyly” (the age of the most recent common ancestor of the sample of
sequences) for these two classes of gene partition. Moore concluded that it would
take, on average, 16 times as much nuclear DNA sequence information as mito-
chondrial to achieve equivalent phylogenetic resolution. He thus recommended
using mtDNA trees, although some fraction of the time the species trees based on
mtDNA will be incorrect. Using very similar logic, Palumbi et al. (2001) formu-
lated their “three times rule” for the predicted concordance of nuclear and mtDNA
gene trees. The rule states that, on average, nuclear coalescence (that is, mono-
phyly) is predicted when mtDNA shows a pattern of relatively great divergence
between clades compared to the within-clade diversity. In particular, when clades
for mtDNA are monophyletic and the ratio of the length of the branch subtending
a clade to the depth of the within-clade mtDNA gene tree is greater than about
three, nuclear genes may often be monophyletic. Additional theoretical work (R.R.
Hudson, M. Turelli, personal communication) has questioned the assumptions
leading to the “three times” part of the rule, and emphasizes that guidelines may
be lineage-specific with high variances, and therefore have little predictive value.
However, the basic premise that low levels of within-clade divergence compared
to among-clade divergence in one gene should be associated with similar patterns
across loci remains a potentially important result (Hudson 1992, Wu 1991).

The determination of an “x-times rule,” including whatx may be, is clearly an
empirical question, as emphasized by most authors. However, the general frame-
work offers the opportunity to determine, a priori, when a given level of intra-
clade sampling and a resultant gene tree may predict concordance in other gene
partitions. If general rules emerge from empirical results, this could allow molec-
ular systematists to predict when a single gene should suffice, and when many,
potentially conflicting, partitions need to be examined to determine organismal
phylogenies.

ROOTING THE TREE IS PROBLEMATIC

Rooting phylogenetic trees is a relatively neglected component of many phylo-
genetic studies. Often considered straightforward, rooting has been identified as
“frequently the most precarious step in any phylogenetic analysis” (Swofford et al.
1996, p. 478). Virtually all users of phylogenetic trees want rooted (rather than
unrooted) trees, because directionality of evolutionary change and the concept of
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monophyly itself only have meaning on rooted trees (Smith 1994). By default,
software for tree reconstruction typically generates unrooted trees (although they
may be displayed as rooted). Rooting, the process of selecting a branch of the
unrooted tree into which a root node is inserted, is accomplished afterwards. Al-
though several strategies for rooting trees exist, the one most generally embraced
by the phylogenetics community is outgroup analysis, in which some taxa are
assigned to a monophyletic ingroup, and one or more taxa to the outgroup. After
the analysis is complete, the (unrooted) ingroup tree is rooted at the branch where
the outgroup(s) joins the ingroup tree. In many ways, outgroup analysis is nothing
more than adding a few additional taxa to an analysis and building a tree, although
the initial assumption of monophyly of the ingroup is a strong one. The repercus-
sions of outgroup choice are enormous, however, for they can determine which
character states are interpreted as shared derived features and which are ancestral
for the entire ingroup (Nixon & Carpenter 1994). In addition, outgroup choice
can affect ingroup topology, even for nodes far removed from the presumed root
placement (Milinkovitch & Lyons-Weiler 1998, Tarrio et al. 2000).

We discuss two of the more difficult problems with rooting a tree. First, what can
be done if reasonable choices exist for potential outgroups, but they are distantly
related to the ingroup? Second, what strategies are useful when no obvious potential
outgroup(s) can be identified?

Dealing with Distantly Related Outgroups

For previously studied groups, one often knows or can make an educated guess on
a set of taxa that are outside of, but closely related to, the ingroup. One or more
of these candidates will generally comprise the outgroup (Smith 1994, Nixon &
Carpenter 1994). Unfortunately, outgroup sequences are sometimes very divergent
from those in the ingroup (Johnson 2001). In the extreme, outgroups may represent
little more than randomized, fully-saturated sequences with respect to the ingroup
(Wheeler 1990, Maddison et al. 1992). In such cases, outgroup placement reduces
to a long-branch attraction problem, and the root will often fall on the longest
internal branch of the ingroup tree. As Smith (1994) notes, when a molecular
clock is in effect (unusual for most molecular data), this will generally lead to the
correct placement of the root. However, the root placement will still result from
two long branches (the internal branch and the outgroup branch) attracting, not
because of correct phylogenetic signal.

A number of strategies have been suggested that improve the chances of an
outgroup correctly rooting a tree. First, attempt to identify and include the sister
group to the ingroup for rooting purposes. Generally, this taxon’s sequence will
be closer to the ingroups than more distantly related outgroups, and will therefore
more reliably root the ingroup tree. However, if the sister group has experienced
a severe rate speedup, more distantly related—but less divergent—outgroups will
provide more reliable evidence on ingroup rooting than the sister group (Lyons-
Weiler et al. 1998), although this may be an uncommon scenario.
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Second, add additional outgroup taxa (Maddison et al. 1984). Ideally, these
additional outgroups should be chosen in such a way that they will break up the
branch between the first outgroup and the ingroup, and thus reduce any long-branch
attraction problem associated with root placement. The alternative, adding addi-
tional outgroups that fall outside of the ingroup-plus-first-outgroup, may simply
add long branches to the base of the tree, contributing little to the rooting solution.
Unfortunately, choosing multiple outgroups correctly requires prior knowledge
of their relationships to each other and to the ingroup, and this knowledge is of-
ten not available. Although most recent studies strongly advocate using multiple
outgroups, this is not universally accepted (Lyons-Weiler et al. 1998). Sometimes
extinct fossil lineages are more relevant outgroups than extant ones, in which case
morphological data alone or in combination with molecular data can be used to
root the tree (Shaffer et al. 1997).

Finally, if the sister group is only a single species, or a set of very closely related
species (Johnson 2001, Maddison et al. 1992), one should test whether the rooting
is relatively robust. Strategies include: (a) adding different, divergent outgroups
to determine if root placement changes, in which case it is suspect (Tarrio et al.
2000, Hutcheon et al. 1998, Dalevi et al. 2001), and (b) identifying and removing
hypervariable sites from the data matrix, because they probably contribute to any
long-branch attraction (Hendy & Penny 1989, Smith 1994). In this latter case, the
hypervariable regions may well be informative within the ingroup, in which case
the ingroup tree can be built with all sites. This topology can then be fixed, the
hypervariable sites removed, and the outgroup(s) added to the analysis. A related
problem recently emphasized by Hutcheon et al. (1998) and Tarrio et al. (2000)
occurs when codon usage in an outgroup is very different from the ingroup. This is
a special case of an outgroup that is so divergent from the ingroup that it has little
value in identifying the ingroup root. Midpoint rooting of the ingroup tree (see
below) may be preferable to using such a divergent outgroup (Tarrio et al. 2000).

What to Do When No Obvious Outgroup is Known

When studying the phylogeny of very poorly known groups, or groups at the base of
the tree of life (Dalevi et al. 2001), there may be no particularly close outgroup with
which to root a tree. In this case, exploratory experiments with different strategies
may be useful. One possibility is to use midpoint rooting, which assigns the root to
the midpoint of the longest path between two terminal taxa in the tree. Under the
assumption that the two most divergent lineages in the ingroup tree have evolved
at an equal rate, this method correctly roots a tree without reference to an outgroup
(Swofford et al. 1996). More generally, reconstructing a tree under the assumption
of a molecular clock will also infer the root, although this is a slightly stronger
assumption. Alternatively, a variety of outgroups can be tested and compared for
their effect on both the ingroup topology and placement of the root. If all give the
same result (and even better if it matches the midpoint root), then this lends some
support to the root placement being correct. This type of experiment has led to a
variety of results ranging from constancy across outgroups (Hutcheon et al. 1998,
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Dalevi et al. 2001) to considerable heterogeneity (Milinkovitch & Lyons-Weiler
1998). Tarrio et al. (2000) found that, at least in the case of thewillistoni and
saltansgroups ofDrosophila, using a simple model of DNA sequence evolution
(as opposed to a more complex model) seemed to eliminate outgroup instability,
although the generality of this result remains untested.

COMPUTATION TIME IS TOO LONG

Phylogeneticists are spending more time waiting for analyses to finish than ever
before. Molecular data sets containing hundreds to thousands of sequences (e.g.,
Källersjö et al. 1998, Lipscomb et al. 1998, Savolainen et al. 2000, Tehler et al.
2000, Johnson 2001) are increasingly common, pushing the computational abil-
ity of phylogenetic algorithms to their limits and beyond. Parametric inference
methods such as maximum likelihood are often invoked with complex models
of molecular evolution, which also demand time-consuming computation. As-
sessment of confidence limits in a tree with bootstrapping adds several orders of
magnitude to processing time over and above inferring the tree. Besides taking
increasingly long coffee breaks, several strategies may help.

Use Fast(er) Algorithms

The dominant factor in determining the running time of phylogenetic algorithms is
the number of sequences,N. No known algorithms are guaranteed to find solutions
for optimization-based tree-building procedures, such as MP or ML, in running
times that scale better than exponential (eN). Commonly used heuristics, such as
those implemented in PAUP∗ (Swofford 1999) and other programs, have running
times that scale polynomially, asNk, wherek is some constant, and this represents a
huge improvement in run times. However, these provide no guarantees about how
close they will come to finding the optimal tree. Simulation results suggest that
the ML heuristics using sequential addition and branch-swapping scale worse than
MP, by a factor of aboutN in standard implementations (Sanderson & Kim 2000).
Other heuristics have been proposed more recently (Goloboff 1999, Nixon 1999,
Quicke et al. 2001), which may find better scoring trees faster than more widely
used heuristics, but these ultimately have the same worst-case running times and
likewise lack guarantees on their solutions. Parsimony heuristics using sequential
addition of sequences without rearrangement steps scale asN2, so this may be
the method of choice in desperate circumstances. Note that even non-optimization
methods such as NJ (Saitou & Nei 1987), which are often regarded as being fast,
scale no better thanN3.

A variety of “divide and conquer” methods have been proposed, which break
data sets into subsets (often quartets), build the corresponding trees, and then
reassemble them. Quartet Puzzling (Strimmer & Von Haeseler 1996) and a recent
variant, Weighted Optimization (Ranwez & Gascuel 2001) can be implemented in
running times that scale asN4. They are thus mainly useful for ML searches; they
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can be faster than standard heuristic search strategies because finding many small
trees is much faster than one larger tree. Ota & Li (2000, 2001) took this strategy
in a rather different direction with a hybrid between ML and NJ, which identifies
well-supported subtrees via NJ and then performs constrained searches across the
less-well supported nodes via ML.

One of the main problems in all optimization strategies is the existence of mul-
tiple local optima, which are well known in MP (Maddison 1991) and ML (Salter
2001). Stochastic optimization methods such as simulated annealing (Barker 1997,
Salter & Pearl 2001) or genetic/evolutionary algorithms (Matsuda 1996; Lewis
1998; Goloboff 1999; Moilanen 1999, 2001; Katoh et al. 2001) strive to avoid
being trapped at local solutions by randomly moving away from local optima
according to various schemes. Some of these can be significantly faster than tradi-
tional heuristic searches in large data sets (Salter & Pearl 2001), but have not been
road-tested much on real data.

Thus, a speed-up in search time can generally be obtained by switching algo-
rithms or computer programs. As always, the difficult question concerns whether
accuracy is sacrificed. The literature on accuracy of tree-building algorithms is
exceptionally large and difficult to distill, mainly because it has relied on simu-
lations done under different conditions of substitution models, parameter values,
data set sizes, and measures of accuracy. A new framework for understanding per-
formance of these methods is provided by the notion of fast convergence (Huson
et al. 1999, Nakleh et al. 2001). A method is said to be fast converging if the
number of characters needed to guarantee a certain level of accuracy grows at
worst polynomially with the number of taxa. Unfortunately, the only theoretical
results regarding this concept relate to nonstandard methods such as Disk-Covering
(Huson et al. 1999), which is fast converging. It is not yet known whether any stan-
dard tree-building method is fast converging, but simulation studies hint that NJ
and MP are, at least within the class of phylogenies generated by simple branching
processes (Bininda-Emonds et al. 2001, Nakleh et al. 2001).

Reduce the Complexity of Parametric Models

Workers using ML methods have developed many shortcuts that decrease running
times when using complex models with many parameters, by using approximations
for many of the parameter estimates. A typical strategy is to estimate parameters of
the substitution model once on a single “seed” tree, such as one obtained by fast NJ
or MP analyses, and then fix parameters at the estimates obtained on that one tree
during heuristic searches across many trees (e.g., Moncalvo et al. 2000). Various
features in PAUP∗ facilitate these shortcuts. In moderate-sized data sets (<100
sequences), running times can be improved by an order of magnitude or more.

Sequence More Genes for the Same Taxa

A long-term solution for improving running times for data sets may be to acquire
more sequence data for the same taxa. Addition of data can dramatically decrease
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running times of heuristic searches in data sets with many taxa (Hillis 1996, Soltis
et al. 1998, Savolainen et al. 2000), presumably by enhancing the signal to noise
ratio (Hillis 1996). Thus, although one might assume that running times would be
positively correlated with number of characters, because tree-score calculations
must be done for all characters independently, this increase is apparently offset
by decreases in the volume of tree space that must be examined during heuristic
searches. One caveat is that the addition of genes with different evolutionary histo-
ries (whether due to recombination, lineage sorting of ancestral polymorphisms, or
other processes) may have the opposite effect, because algorithms are forced to try
to sort out significantly conflicting partitions in the data. Tests for homogeneity in
the phylogenetic signal (see above) between genes should therefore be performed
prior to combining.

Estimate the “Consensus Support” Tree
Rather Than the Optimal Tree

A fundamentally different strategy is to abandon attempts to obtain the optimal
(i.e., best) tree and estimate instead only the best-supported elements of that tree
(Goloboff & Farris 2001). Implementations generally involve randomization of
some type. The parsimony jackknife (PJ) runs repeated heuristic searches using
data matrices randomly subsampled from the original, while discarding clades
that appear in fewer than some cutoff frequency of replicates. Bayesian Markov
Chain Monte Carlo (MCMC) methods (Mau et al. 1999, Larget & Simon 1999)
estimate the marginal posterior probabilities of clades. Both methods are much
quicker than optimization per se, but not surprisingly, probably do not provide
good estimates of the optimal tree. This is particularly true for MCMC in the
case of large data sets (Salter & Pearl 2001), because the Markov chains rarely
visit any specific tree, rendering the estimate of its posterior probability subject
to large sampling error. However, estimating well-supported groups may often be
sufficient or even preferable, because they emphasize areas where the data are
informative. Consensus trees obtained by these methods do have limitations if
they are to be used in subsequent evolutionary studies. However, reconstructions
of character evolution or applications of the comparative method, which generally
require resolved trees (Maddison & Maddison 1992), can be weighted by posterior
probabilities sampled from an MCMC chain (Huelsenbeck et al. 2001).

Use Faster Hardware

Although computer hardware improvements are unlikely to permit solution of
large phylogenetic optimization problems exactly, they can certainly speed up
heuristic searches. Processor speed continues to double every 1.5 years (Moore’s
law), but high performance computing now almost always entails some form of
parallel processing. Practical and inexpensive commodity hardware in the form
of Beowulf clusters (Sterling et al. 1999) have generated much interest among
phylogeneticists, although software to take advantage of these architectures is not
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yet widely used. Some phylogenetic problems such as bootstrapping are trivially
parallelizable, whereas others, such as sequential addition and branch swapping
are not (Janies & Wheeler 2001, Stewart et al. 2001). Many stochastic methods
requiring simple replication, such as bootstrapping, PJ, genetic algorithms, or
MCMC, can be distributed at the operating system level without writing true
parallel code. However, truly parallelized optimization software is now available
for MP (Gladstein & Wheeler 1996), ML (Ceron et al. 1998, Stewart et al. 2001),
Quartet Puzzling (Schmidt et al. 2002) and genetic algorithms (Katoh et al. 2001),
but development of additional tools is badly needed.

CONCLUSIONS

The diversity and complexity of methods available for phylogeny reconstruction
presents both a steep learning curve for newcomers and a considerable investment
of time and energy in exploring and exploiting the information content of a data
set. Just as statisticians in the twentieth century were increasingly called upon to
provide advice and guidance to biologists, phylogeneticists play a similar role in
the twenty-first century as diverse biologists come to terms with the abundance
of comparative sequence data. Particularly as data sets become larger and more
diverse, creative and user-friendly strategies, computer programs, and trouble-
shooting guidelines are necessary for empiricists to continue building the tree of
life. Solutions to some of these emerging problems already exist, but many are un-
resolved challenges worthy of attention. As these problems attract a progressively
broader assemblage of workers interested in studying them, we look forward to
new solutions to some of the more recalcitrant problems described here.

The Annual Review of Ecology and Systematicsis online at
http://ecolsys.annualreviews.org
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A. 1998. Support, ribosomal sequences and
the phylogeny of the eukaryotes.Cladistics
14:303–38

Lockhart PJ, Huson D, Maier U, Fraunholz
MJ, Van de Peer Y, et al. 2000. How mole-
cules evolve in eubacteria.Mol. Biol. Evol.
17:835–38

Lockhart PJ, Larkum AWD, Steel MA, Waddell
PJ, Penny D. 1996. Evolution of chlorophyll
and bacteriochlorophyll: the problem of in-
variant sites in sequence analysis.Proc. Natl.
Acad. Sci. USA93:1930–34

Lockhart PJ, Steel MA, Barbrook AC, Huson
DH, Charleston MA, Howe CJ. 1998. A co-
variotide model explains apparent phyloge-
netic structure of oxygenic photosynthetic
lineages.Mol. Biol. Evol.15:1183–88

Lockhart PJ, Steel MA, Hendy MD, Penny D.
1994. Recovering evolutionary trees under a
more realistic model of sequence evolution.
Mol. Biol. Evol.11:605–12

Lopez P, Forterre P, Philippe H. 1999. The root
of the tree of life in the light of the covarion
model.J. Mol. Evol.49:496–508

Lyons-Weiler J, Hoelzer GA, Tausch RJ. 1998.
Optimal outgroup analysis.Biol. J. Linn. Soc.
64:493–511

Maddison DR. 1991. The discovery and impor-
tance of multiple islands of most-parsimo-
nious trees.Syst. Zool.40:315–28

Maddison DR, Baker MD, Ober KA. 1999.
Phylogeny of carabid beetles as inferred
from 18S ribosomal DNA (Coleoptera: Cara-
bidae).Syst. Entomol.24:103–38

Maddison DR, Ruvolo M, Swofford DL. 1992.
Geographic origins of human mitochondrial
DNA phylogenetic evidence from control re-
gion sequences.Syst. Biol.41:111–24

Maddison WP. 1997. Gene trees in species trees.
Syst. Biol.46:523–36

Maddison WP, Donoghue MJ, Maddison DR.
1984. Outgroup analysis and parsimony.
Syst. Zool.33:83–103

Maddison WP, Maddison DR. 1992.Mac-
Clade: Analysis of Phylogeny and Character
Evolution. Sunderland, MA: Sinauer

Matsuda H. 1996. Protein phylogenetic infer-

ence using maximum likelihood with a ge-
netic algorithm. InPacific Symposium on
Biocomputing, ed. L Hunter, TE Klein, pp.
512–13. Singapore: World Sci.

Mau B, Newton MA, Larget B. 1999. Bayesian
phylogenetic inference via Markov chain
Monte Carlo methods.Biometrics55:1–12

Mickevich MF, Farris JS. 1981. The implica-
tions of congruence inMenidia. Syst. Zool.
30:351–70

Milinkovitch MC, Lyons-Weiler J. 1998. Find-
ing optimal ingroup topologies and convexi-
ties when the choice of outgroups is not ob-
vious.Mol. Phylogenet. Evol.9:348–57

Mitchell A, Mitter C, Regier JC. 2000. More
taxa or more characters revisited: combin-
ing data from nuclear protein-encoding genes
for phylogenetic analyses of Noctuoidea
(Insecta: Lepidoptera).Syst. Biol.49:202–
24

Miyamoto MM, Fitch WM. 1995. Testing spe-
cies phylogenies and phylogenetic methods
with congruence.Syst. Biol.44:64–76

Moilanen A. 1999. Searching for most parsi-
monious trees with simulated evolutionary
optimization.Cladistics15:39–50

Moilanen A. 2001. Simulated evolutionary op-
timization and local search: introduction and
application to tree search.Cladistics17:S12–
25

Moncalvo J-M, Lutzoni FM, Rehner SA, John-
son J, Vilgalys R. 2000. Phylogenetic rela-
tionships of agaric fungi based on nuclear
large subunit ribosomal DNA sequences.
Syst. Biol.49:278–305

Moore WS. 1995. Inferring phylogenies from
mtDNA variation: mitochondrial-gene trees
versus nuclear-gene trees.Evolution49:718–
26

Morrison DA, Ellis JT. 1997. Effects of nu-
cleotide sequence alignment on phylogeny
estimation: a case study of 18S rDNAs of
apicomplexa.Mol. Biol. Evol.14:428–41

Mort ME, Soltis PS, Soltis DE, Mabry ML.
2000. Comparison of three methods for es-
timating internal support on phylogenetic
trees.Syst. Biol.49:160–71

Nakleh L, Roshan U, St . John K, Sun J, Warnow



30 Sep 2002 18:29 AR AR173-ES33-03.tex AR173-ES33-03.SGM LaTeX2e(2002/01/18)P1: ILV

70 SANDERSON¥ SHAFFER

TJ. 2001. Designing fast converging phylo-
genetic methods.Bioinformatics1:1–9

Naylor GJP, Brown WM. 1998. Amphioxus mi-
tochondrial DNA, chordate phylogeny, and
the limits of inference based on comparisons
of sequences.Syst. Biol.47:61–76

Newton MA. 1996. Bootstrapping phyloge-
nies: large deviations and dispersion effects.
Biometrika83:315–28

Nickrent DL, Parkinson CL, Palmer JD, Duff
RJ. 2000. Multigene phylogeny of land plants
with special reference to bryophytes and the
earliest land plants.Mol. Biol. Evol. 17:
1885–95

Nixon KC. 1999. The Parsimony Ratchet, a new
method for rapid parsimony analysis.Cladis-
tics 15:407–14

Nixon KC, Carpenter JM. 1994. On outgroups.
Cladistics9:413–26

O’Grady PM, Clark JB, Kidwell MG. 1998.
Phylogeny of theDrosophila saltansspecies
group based on combined analysis of nu-
clear and mitochondrial DNA sequences.
Mol. Biol. Evol.15:656–64

Olmstead RG, Sweere JA. 1994. Combining
data in phylogenetic systematics: an empiri-
cal approach using three molecular data sets
in the Solanaceae.Syst. Biol.43:467–81

Omilian AR, Taylor DJ. 2001. Rate acceler-
ation and long-branch attraction in a con-
served gene of cryptic daphniid (Crustacea)
species.Mol. Biol. Evol.18:2201–12

Omland KE, Lanyon SM, Fritz SJ. 1999. A
molecular phylogeny of the New World ori-
oles (Icterus): the importance of dense taxon
sampling.Mol. Phylogenet. Evol.12:224–39

Ota S, Li W-H. 2000. NJML: a hybrid algo-
rithm for the neighbor-joining and maxi-
mum-likelihood methods.Mol. Biol. Evol.
17:1401–9

Ota S, Li W-H. 2001. NJML+: an extension of
the NJML method to handle protein sequence
data and computer software implementation.
Mol. Biol. Evol.18:1983–92

Page RDM, Charleston MA. 1997. From gene
to organismal phylogeny: reconciled trees
and the gene tree/species tree problem.Mol.
Phylogenet. Evol.7:231–40

Page RDM, Cotton JA. 2002. Vertebrate phy-
logenomics: reconciled trees and gene dupli-
cations.Pac. Symp. Biocomput.7:536–47

Palumbi SR, Cipriano F, Hare MP. 2001. Pre-
dicting nuclear gene coalescence from mito-
chondrial data: the three-times rule.Evolu-
tion 55:859–68

Philippe H, Germot A. 2000. Phylogeny of
eukaryotes based on ribosomal RNA: long-
branch attraction and models of sequence
evolution.Mol. Biol. Evol.17:830–34

Posada D, Crandall KA. 1998. MODELTEST:
testing the model of DNA substitution.Bioin-
formatics14:817–18

Posada D, Crandall KA. 2001. Selecting the
best-fit model of nucleotide substitution.
Syst. Biol.50:580–601

Quicke DLJ, Taylor J, Purvis A. 2001. Chang-
ing the landscape: a new strategy for estimat-
ing large phylogenies.Syst. Biol.50:60–66

Rambaut A, Grassly NC. 1997. Seq-Gen: an ap-
plication for the Monte Carlo simulation of
DNA sequence evolution along phylogenetic
trees.Cabios13:235–38

Ranwez V, Gascuel O. 2001. Quartet-based
phylogenetic inference: improvements and
limits. Mol. Biol. Evol.18:1103–16

Rieppel O, Reisz RR. 1999. The origin and early
evolution of turtles.Annu. Rev. Ecol. Syst.
30:1–22

Rodrigo AG, Kelly-Borges M, Bergquist PR,
Bergquist PL. 1993. A randomisation test of
the null hypothesis that two cladograms are
sample estimates of a parametric phyloge-
netic tree.NZ J. Bot.31:257–68

Saitou N, Nei M. 1987. The neighbor-joining
method: a new method for reconstructing
phylogenetic trees.Mol. Biol. Evol. 4:406–
25

Salter LA. 2001. Complexity of the likelihood
surface for a large DNA dataset.Syst. Biol.
50:970–78

Salter LA, Pearl DK. 2001. Stochastic search
strategy for estimation of maximum likeli-
hood phylogenetic trees.Syst. Biol.50:7–17

Sanderson MJ. 1989. Confidence limits on phy-
logenies the bootstrap revisited.Cladistics5:
113–30



30 Sep 2002 18:29 AR AR173-ES33-03.tex AR173-ES33-03.SGM LaTeX2e(2002/01/18)P1: ILV

TROUBLESHOOTING PHYLOGENIES 71

Sanderson MJ. 1995. Objections to bootstrap-
ping phylogenies: a critique.Syst. Biol.44:
299–320

Sanderson MJ, Donoghue MJ. 1996. The rela-
tionship between homoplasy and confidence
in phylogenetic trees. InHomoplasy: The Re-
currence of Similarity in Evolution, ed. MJ
Sanderson, L Hufford, pp. 67–89. New York:
Academic

Sanderson MJ, Kim J. 2000. Parametric phylo-
genetics?Syst. Biol.49:817–29

Sanderson MJ, Wojciechowski MF. 2000. Im-
proved bootstrap confidence limits in large-
scale phylogenies, with an example from
Neo-Astragalus (Leguminosae).Syst. Biol.
49:671–85

Sanderson MJ, Wojciechowski MF, Hu JM,
Khan TS, Brady SG. 2000. Error, bias, and
long-branch attraction in data for two chloro-
plast photosystem genes in seed plants.Mol.
Biol. Evol.17:782–97

Savolainen V, Chase MW, Hoot SB, Morton
CM, Soltis DE, et al. 2000. Phylogenetics
of flowering plants based on combined anal-
ysis of plastid atpB and rbcL gene sequences.
Syst. Biol.49:306–62

Schmidt HA, Strimmer K, Vingron M, von Hae-
seler A. 2002. TREE-PUZZLE: maximum
likelihood phylogenetic analysis using quar-
tets and parallel computing.Bioinformatics
18:502–4

Shaffer HB, Clark JM, Kraus F. 1991. When
molecules and morphology clash: a phy-
logenetic analysis of the North American
ambystomatid salamanders (Caudata: Am-
bystomatidae).Syst. Zool.40:284–303

Shaffer HB, Meylan P, McKnight ML. 1997.
Tests of turtle phylogeny: molecular, mor-
phological, and paleontological approaches.
Syst. Biol.46:235–68

Shimodaira H, Hasegawa M. 2001. CONSEL:
for assessing the confidence of phylogenetic
tree selection.Bioinformatics17:1246–47

Small RL, Wendel JF. 2000. Copy number la-
bility and evolutionary dynamics of the Adh
gene family in diploid and tetraploid cotton
(Gossypium).Genetics155:1913–26

Smith AB. 1994. Rooting molecular trees:

problems and strategies.Biol. J. Linn. Soc.
51:279–92

Soltis DE, Soltis PS, Mort ME, Chase MW,
Savolainen V, et al. 1998. Inferring complex
phylogenies using parsimony: an empirical
approach using three large DNA data sets for
angiosperms.Syst. Biol.47:32–42

Steel MA, Lockhart PJ, Penny D. 1993. Con-
fidence in evolutionary trees from biological
sequence data.Nature364:440–42

Steel MA, Penny D. 2000. Parsimony, likeli-
hood, and the role of models in molecular
phylogenetics.Mol. Biol. Evol.17:839–50

Sterling T, Salmon J, Becker D, Savarese D.
1999.How To Build A Beowulf: A Guide to
the Implementation and Application of PC
Clusters. Cambridge, MA: MIT Press

Stewart CA, Hart D, Berry DK, Olsen GJ, Wern-
ert EA, Fischer W. 2001.Parallel imple-
mentation and performance of fastDNAml-
aprogram for maximum likelihood phyloge-
netic inference. Presented at SC2001, Denver

Strimmer K, Von Haeseler A. 1996. Quar-
tet puzzling: a quartet maximum-likelihood
method for reconstructing tree topologies.
Mol. Biol. Evol.13:964–69

Swofford DL. 1991. When are phylogeny es-
timates from molecular and morphological
data incongruent? InPhylogenetic Analysis
of DNA Sequences, ed. MM Miyamoto, J
Cracraft, pp. 295–333. New York: Oxford
Univ. Press

Swofford DL. 1999. PAUP∗ 4.0.Phylogenetic
Analysis Using Parsimony and Other Meth-
ods. Sunderland, MA: Sinauer

Swofford DL, Olsen GJ, Waddell PJ, Hillis DM.
1996. Phylogenetic inference. InMolecular
Systematics, ed. DM Hillis, C Moritz, BK
Mable, pp. 407–514. Sunderland, MA: Sin-
auer

Tamura K. 1992. Estimation of the number
of nucleotide substitutions when there are
strong transition-transversion and G-plus-C-
content biases.Mol. Biol. Evol.9:678–87

Tarrio R, Rodriguez-Trelles F, Ayala FJ. 2000.
Tree rooting with outgroups when they differ
in their nucleotide composition from the in-
group: theDrosophila saltansandwillistoni



30 Sep 2002 18:29 AR AR173-ES33-03.tex AR173-ES33-03.SGM LaTeX2e(2002/01/18)P1: ILV

72 SANDERSON¥ SHAFFER

groups, a case study.Mol. Phylogenet. Evol.
16:344–49

Tarrio R, Rodriguez-Trelles F, Ayala FJ. 2001.
Shared nucleotide composition biases among
species and their impact on phylogenetic
reconstructions of the Drosophilidae.Mol.
Biol. Evol.18:1464–73

Tehler A, Farris JS, Lipscomb DL, K¨allersjö
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