Bioinformatik fir Biologen

Heiko A. Schmidt

Center for Integrative Bioinformatics Vienna (CIBIV)
Max F. Perutz Laboratories (MFPL)
Vienna, Austria
http://www.cibiv.at

Heiko A. Schmidt Bioinformatik fiir Biologen

Genome Sequencing, Assembly and NGS Data

template (e.g. genome)

Shotgun sequencing

template (e.g. genome)

lbreak template into random fragments

Heiko A. Schmidt Bioinformatik fiir Biologen

Shotgun sequencing

template (e.g. genome)

lbreak template into random fragments

lbuild sequencing library (add adaptors etc)

Heiko A. Schmidt Bioinformatik fiir Biologen

Shotgun sequencing

template (e.g. genome)

lbreak template into random fragments

lbuild sequencing library (add adaptors etc)

lsequence the ends of the fragments

.

—
single—end
reads

Heiko A. Schmidt Bioinformatik fiir Biologen

Shotgun sequencing

template (e.g. genome)

lbreak template into random fragments

lbuild sequencing library (add adaptors etc)

lsequence the ends of the fragments

- =

paired—end
reads

&

b)

—
single—end
reads

Heiko A. Schmidt Bioinformatik fiir Biologen

Shotgun sequencing

template (e.g. genome)

lbreak template into random fragments

lbuild sequencing library (add adaptors etc)

lsequence the ends of the fragments

—

=
-— =

paired—end

reads

&

b) =

—
single—end
reads

lmany sequencing reads

Heiko A. Schmidt Bioinformatik fiir Biologen

Shotgun sequencing

template (e.g. genome)

lbreak template into random fragments

lbuild sequencing library (add adaptors etc)

lsequence the ends of the fragments

—

=
-— =

paired—end

reads

&

b) =

—
single—end
reads

lmany sequencing reads

Aim: reconstruct template sequence from reads

Heiko A. Schmidt Bioinformatik fiir Biologen

Shotgun sequencing

template (e.g. genome)

lbreak template into random fragments

lbuild sequencing library (add adaptors etc)

lsequence the ends of the fragments

—

=
-— =

paired—end

reads

&

b) =

—
single—end
reads

lmany sequencing reads

Aim: reconstruct template sequence from reads
- reference-guided assembly (map against reference)

Heiko A. Schmidt Bioinformatik fiir Biologen

Shotgun sequencing

template (e.g. genome)

lbreak template into random fragments

lbuild sequencing library (add adaptors etc)

lsequence the ends of the fragments

—

=
-— =

paired—end

reads

&

b) =

—
single—end
reads

lmany sequencing reads

Aim: reconstruct template sequence from reads
- reference-guided assembly (map against reference)
- de—novo assembly (reconstruct directly from reads)

Heiko A. Schmidt Bioinformatik fiir Biologen

Reference-based Genome Assembly

o If a reference genome of the sequenced species exists (or a relatively
close taxonomic relative), we can use it to guide the assembly.

@ The reads are mapped to the reference genome using approximative
search algorithms.

@ The closer the reference is to the sequenced genome, the easier is the
mapping and assembly.

@ From mapped contiguous reads we construct consensus sequences -
the contigs.

Heiko A. Schmidt Bioinformatik fiir Biologen

Why re-sequencing

Why re-sequencing if a close reference genome already exists?

@ Typically one does not re-sequence exactly the same individual the
reference originated from.
@ Usually one uses the reference to find
o the differences in an individual carrying a disease (e.g. personalized
medicine),
o the characteristic changes in a new infectious virus (epidemiology),
e the abundance of alleles in a population (population genetics),

o or just to make the assembly of the (yet unassembled) genome of a
related species a little bit easier.

Heiko A. Schmidt Bioinformatik fiir Biologen

de novo Genome Assembly

@ If no reference genome exists, assembling the sequenced genome is
much harder.

@ We have to find overlapping reads to stitch them together to longer
and longer contigs.

Heiko A. Schmidt Bioinformatik fiir Biologen

Overlap Layout Consensus (as in CAP3): Overlap search

Heiko A. Schmidt Bioinformatik fiir Biologen

Overlap Layout Consensus (as in CAP3): Overlap search

concatenate with separation letters:
reds: {4 2 3 4 5 6 7

© concatenate reads (separated by a separation character)

Heiko A. Schmidt Bioinformatik fiir Biologen

Overlap Layout Consensus (as in CAP3): Overlap search

concatenate with separation letters:
reads: {4 2 3 4 5 6 7
1

trivial

© concatenate reads (separated by a separation character)

@ identify candidate overlaps (local alignments of reads against the
concatenated string)
o discard the trivial matches (i.e. read / matches itself)

Heiko A. Schmidt Bioinformatik fiir Biologen

Overlap Layout Consensus (as in CAP3): Overlap search

concatenate with separation letters:

reads: 1 2 3 4 5 6 7
1— d—

© concatenate reads (separated by a separation character)

@ identify candidate overlaps (local alignments of reads against the
concatenated string)
o discard the trivial matches (i.e. read / matches itself)

Heiko A. Schmidt Bioinformatik fiir Biologen

Overlap Layout Consensus (as in CAP3): Overlap search

concatenate with separation letters:

reeds: 1 2 3 4 5 6 7
]

2

2 local alignments for:

_ 3 5

S 1t I

7

© concatenate reads (separated by a separation character)

@ identify candidate overlaps (local alignments of reads against the
concatenated string)
o discard the trivial matches (i.e. read / matches itself)

Heiko A. Schmidt Bioinformatik fiir Biologen

Overlap Layout Consensus (as in CAP3): Overlap search

concatenate with separation letters:

reads: 1 2 3 4 5 6 7
1 ol o—l Il
2

2 local alignments for:

_ 3 5

S 1t I

7

© concatenate reads (separated by a separation character)

@ identify candidate overlaps (local alignments of reads against the
concatenated string)
o discard the trivial matches (i.e. read / matches itself)

Heiko A. Schmidt Bioinformatik fiir Biologen

Overlap Layout Consensus (as in CAP3): Overlap search

concatenate with separation letters:

reeds: 1 2 3 4 5 6 7
]
2
2 local alignments for:
_ 3 5
S 1t I
7] 3 6 6
2: ,_ T, T m .,

© concatenate reads (separated by a separation character)

@ identify candidate overlaps (local alignments of reads against the
concatenated string)
o discard the trivial matches (i.e. read / matches itself)

Heiko A. Schmidt Bioinformatik fiir Biologen

Overlap Layout Consensus (as in CAP3): Overlap search

concatenate with separation letters:

reads: 1 2 3 4 5 6 7
1 a—L I
2
2 local alignments for:
_ 3 5
S 1t I
7] 3 6 6
2: ,_ T, T m .,

© concatenate reads (separated by a separation character)

@ identify candidate overlaps (local alignments of reads against the
concatenated string)
o discard the trivial matches (i.e. read / matches itself)

Heiko A. Schmidt Bioinformatik fiir Biologen

Overlap Layout Consensus (as in CAP3): Overlap search

concatenate with separation letters:

reads: 1 2 3 4 5 6 7
]
2
2 local alignments for:
- 3 5
> 1t _Ir - I
7] 3 6 6
2: ,_ T ,_Tr I,

7
3, T IC

© concatenate reads (separated by a separation character)

@ identify candidate overlaps (local alignments of reads against the
concatenated string)
o discard the trivial matches (i.e. read / matches itself)

Heiko A. Schmidt Bioinformatik fiir Biologen

Overlap Layout Consensus (as in CAP3): Overlap search

concatenate with separation letters:

reads: 1 2 3 4 5 6 7
]
2
2 local alignments for:
- 3 5
> 1t _Ir - I
7] 3 6 6
2: ,_ T ,_Tr I,

6 7
3: g—IL s
7: nothing new

© concatenate reads (separated by a separation character)
@ identify candidate overlaps (local alignments of reads against the
concatenated string)

o discard the trivial matches (i.e. read / matches itself)
e each pair only once (result of i vs j should be identical to j vs i)

Heiko A. Schmidt Bioinformatik fiir Biologen

Overlap Layout Consensus (as in CAP3): Filtering

3 5 6
Z_M'LL ‘l'm']'L 2_'IIIT
7
3 3 6
1 —IL —Ir_,
6
1T

© remove poor quality reads

Heiko A. Schmidt Bioinformatik fiir Biologen

Overlap Layout Consensus (as in CAP3): Filtering

3 5 6
Z_M'LL ‘l'm']'L 2_'IIIT
7
5 == 6
1 —IL —Ir_,
6
a—TIC

© remove poor quality reads
© compute global alignment for high quality pairs.

Heiko A. Schmidt Bioinformatik fiir Biologen

Overlap Layout Consensus (as in CAP3): Filtering

3 5 6
Z_M'LL ‘l'm']'L 2_'IIIT
7
3 3 6
1 —IL —Ir_,
6
1T

© remove poor quality reads

© compute global alignment for high quality pairs.
© evaluate alignments due to

minimum length

minimum identity

minimum similarity

number of high-quality (true) mismatches

0000

Heiko A. Schmidt Bioinformatik fiir Biologen

Overlap Layout Consensus (as in CAP3): Filtering

3 5 6
Z_M'LL ‘l'm']'L 2_'IIIT
E7 i
3 3 6
1 —IL —Ir_,
6
1T

© remove poor quality reads
© compute global alignment for high quality pairs.
© evaluate alignments due to
@ minimum length
@ minimum identity
@ minimum similarity
@ number of high-quality (true) mismatches
@ remove pairs that do not match thresholds 5.1-5.4.

Heiko A. Schmidt Bioinformatik fiir Biologen

Overlap Layout Consensus (as in CAP3): Contig building

3 5 6
Z_M'LL ‘l'm']'L 2_'IIIT

j—I 3 —Im

Heiko A. Schmidt Bioinformatik fiir Biologen

Overlap Layout Consensus (as in CAP3): Contig building

S 6

oIl

j—Ir 3

AL, I

@ add all reads without overlaps

Heiko A. Schmidt

6
, TII_,
6
s T —

Bioinformatik fiir Biologen

Overlap Layout Consensus (as in CAP3): Contig building

S 6
ey S

2
6
3
7 Y ! —
6
3_TIIL_

@ add all reads without overlaps

© generate a general layout using overlapping reads
(ordered with decreasing overlap scores)

Heiko A. Schmidt Bioinformatik fiir Biologen

Overlap Layout Consensus (as in CAP3): Contig building

S 6
ey S

2 1 I, 6
7 Y ! —

@ add all reads without overlaps

© generate a general layout using overlapping reads
(ordered with decreasing overlap scores)

Heiko A. Schmidt Bioinformatik fiir Biologen

Overlap Layout Consensus (as in CAP3): Contig building

6
o1
6
2 1 I, 6
5 7 Y ! —

@ add all reads without overlaps

© generate a general layout using overlapping reads
(ordered with decreasing overlap scores)

Heiko A. Schmidt Bioinformatik fiir Biologen

Overlap Layout Consensus (as in CAP3): Contig building

6
o1
6
2¢ [11113 6
5 7 Y ! —

@ add all reads without overlaps

© generate a general layout using overlapping reads
(ordered with decreasing overlap scores)

@ check for incompatibilities

@ in the layout (remove greedily from layout)
@ between overlap candidates (remove candidate greedily)

Heiko A. Schmidt Bioinformatik fiir Biologen

Overlap Layout Consensus (as in CAP3): Contig building

24 \[I, 6
5 7 Y ! —

@ add all reads without overlaps

© generate a general layout using overlapping reads
(ordered with decreasing overlap scores)

@ check for incompatibilities

@ in the layout (remove greedily from layout)
@ between overlap candidates (remove candidate greedily)

Heiko A. Schmidt Bioinformatik fiir Biologen

Overlap Layout Consensus (as in CAP3): Contig building

@ add all reads without overlaps

© generate a general layout using overlapping reads
(ordered with decreasing overlap scores)

@ check for incompatibilities

@ in the layout (remove greedily from layout)
@ between overlap candidates (remove candidate greedily)

Heiko A. Schmidt Bioinformatik fiir Biologen

Overlap Layout Consensus (as in CAP3): Contig building

@ add all reads without overlaps

© generate a general layout using overlapping reads
(ordered with decreasing overlap scores)

@ check for incompatibilities

@ in the layout (remove greedily from layout)
@ between overlap candidates (remove candidate greedily)

Heiko A. Schmidt Bioinformatik fiir Biologen

Overlap Layout Consensus (as in CAP3): Contig building

@ add all reads without overlaps

© generate a general layout using overlapping reads
(ordered with decreasing overlap scores)

@ check for incompatibilities

@ in the layout (remove greedily from layout)
@ between overlap candidates (remove candidate greedily)

Heiko A. Schmidt Bioinformatik fiir Biologen

Overlap Layout Consensus (as in CAP3): Contig building

6
3
s;m—m_m_ 7 4 T

@ add all reads without overlaps

© generate a general layout using overlapping reads
(ordered with decreasing overlap scores)

@ check for incompatibilities

@ in the layout (remove greedily from layout)
@ between overlap candidates (remove candidate greedily)

Heiko A. Schmidt Bioinformatik fiir Biologen

Overlap Layout Consensus (as in CAP3): Contig building

6 2
M
5 7 4

@ add all reads without overlaps

© generate a general layout using overlapping reads
(ordered with decreasing overlap scores)

@ check for incompatibilities

@ in the layout (remove greedily from layout)
@ between overlap candidates (remove candidate greedily)

Heiko A. Schmidt Bioinformatik fiir Biologen

Overlap Layout Consensus (as in CAP3): Contig building

6 2
3
5 1 | 7 4
! consensus ' '
\/ \] \
a c b

@ add all reads without overlaps
© generate a general layout using overlapping reads
(ordered with decreasing overlap scores)
@ check for incompatibilities
@ in the layout (remove greedily from layout)
@ between overlap candidates (remove candidate greedily)
@ construct consensus sequence for each contig

Heiko A. Schmidt Bioinformatik fiir Biologen

Overlap Layout Consensus (as in CAP3): Contig building

6 2
3

5 — | 7 4

! consensus '

\/ v v

a c b

~—— _—-————
contig

@ add all reads without overlaps

© generate a general layout using overlapping reads
(ordered with decreasing overlap scores)

@ check for incompatibilities

@ in the layout (remove greedily from layout)
@ between overlap candidates (remove candidate greedily)

@ construct consensus sequence for each contig

Heiko A. Schmidt Bioinformatik fiir Biologen

Overlap Layout Consensus (as in CAP3): Contig building

6 2
3

5 1 | 7 4

| | |

v consensus v

a c b
~—— _—-———— —— ——
contig contig contig

@ add all reads without overlaps

© generate a general layout using overlapping reads
(ordered with decreasing overlap scores)

@ check for incompatibilities

@ in the layout (remove greedily from layout)
@ between overlap candidates (remove candidate greedily)

@ construct consensus sequence for each contig

Heiko A. Schmidt Bioinformatik fiir Biologen

Overlap Layout Consensus (as in CAP3): Scaffolding

u Y W
contig contig contig

(now, assume that all above contigs were constructed from many shorter reads.)

@ the set of contigs can often be extended

Heiko A. Schmidt Bioinformatik fiir Biologen

Overlap Layout Consensus (as in CAP3): Scaffolding

u \"/ <+-——W

— — —

(now, assume that all above contigs were constructed from many shorter reads.)
@ the set of contigs can often be extended

@ using additional information like paired-end reads (if available)

Heiko A. Schmidt Bioinformatik fiir Biologen

Overlap Layout Consensus (as in CAP3): Scaffolding

(now, assume that all above contigs were constructed from many shorter reads.)
@ the set of contigs can often be extended
@ using additional information like paired-end reads (if available)

@ order contigs to bring matching paired-ends next to each other

Heiko A. Schmidt Bioinformatik fiir Biologen

Overlap Layout Consensus (as in CAP3): Scaffolding

u W \'/

— — —

(now, assume that all above contigs were constructed from many shorter reads.)
@ the set of contigs can often be extended
@ using additional information like paired-end reads (if available)

@ order contigs to bring matching paired-ends next to each other

Heiko A. Schmidt Bioinformatik fiir Biologen

Overlap Layout Consensus (as in CAP3): Scaffolding

u W \'/

- -

(now, assume that all above contigs were constructed from many shorter reads.)
@ the set of contigs can often be extended

@ using additional information like paired-end reads (if available)

@ order contigs to bring matching paired-ends next to each other

@ orientate contigs according to the paired-ends

Heiko A. Schmidt Bioinformatik fiir Biologen

Overlap Layout Consensus (as in CAP3): Scaffolding

u W -

— — A

(now, assume that all above contigs were constructed from many shorter reads.)
@ the set of contigs can often be extended

@ using additional information like paired-end reads (if available)

@ order contigs to bring matching paired-ends next to each other

@ orientate contigs according to the paired-ends

Heiko A. Schmidt Bioinformatik fiir Biologen

Overlap Layout Consensus (as in CAP3): Scaffolding

u W -

— — A

(now, assume that all above contigs were constructed from many shorter reads.)
@ the set of contigs can often be extended

using additional information like paired-end reads (if available)

order contigs to bring matching paired-ends next to each other

orientate contigs according to the paired-ends

®© 6 6 6

fill the gaps with N's according to the insert sizes used when
preparing the sequencing library

Heiko A. Schmidt Bioinformatik fiir Biologen

Overlap Layout Consensus (as in CAP3): Scaffolding

u W -

— — A
SN—— ——— ——

super—contig / scaffold

(now, assume that all above contigs were constructed from many shorter reads.)
@ the set of contigs can often be extended

using additional information like paired-end reads (if available)

order contigs to bring matching paired-ends next to each other

orientate contigs according to the paired-ends

®© 6 6 6

fill the gaps with N's according to the insert sizes used when
preparing the sequencing library

@ the joined contigs are called super-contigs or scaffolds

Heiko A. Schmidt Bioinformatik fiir Biologen

Assembly Completeness and Contig Location

@ usually it is not possible to easily assemble each chromosome into a
single contig or scaffold
(e.g. due to repeats, low quality regions, too low read coverage)

@ thus, it can be important to locate scaffolds in the genome using,
e.g., FISH (fluorescence in-situ hybridization) with genetic markers.

ource: www.stjuderesearch.org
Source: Westbrook et al. (2008)

Heiko A. Schmidt Bioinformatik fiir Biologen

red chromosome marker, green probe

Assembly from 2nd and 3rd generation sequencing reads

CAP3 has been developed for Sanger sequencing reads.

NGS reads are typically shorter and come in huge numbers.

@ Thus, also the overlaps are short, producing false positives easily.

(]

Assembly of NGS data works along the same principles.

@ However they have to employ more elaborate methods to deal with
the amount of data, the short overlaps and to efficiently detect false
positive overlaps.

A number of such tools apply approaches like de Bruijn graphs.

Heiko A. Schmidt Bioinformatik fiir Biologen

Excursion: Beginning of Graph Theory

KONINGSBERGA

Leonhard Euler (1707-1783)

Popular 18" century problem:
Is there a walk through
Konigsberg using each bridge
exactly once?

Heiko A. Schmidt Bioinformatik fiir Biologen

Excursion: Beginning of Graph Theory

KONINGSBERGA

Leonhard Euler (1707-1783)

Popular 18" century problem:
Is there a walk through
Konigsberg using each bridge
exactly once?

Heiko A. Schmidt Bioinformatik fiir Biologen

Excursion: Beginning of Graph Theory

KONINGSBERGA

Leonhard Euler (1707-1783)

Popular 18" century problem:
Is there a walk through
Konigsberg using each bridge
exactly once?

Heiko A. Schmidt Bioinformatik fiir Biologen

Given an undirected connected graph G = (V, E) with nodes V and
edges E, we define:

Euler Paths and Tours

Given an undirected connected graph G = (V/, E) with nodes V and
edges E, we define:

Euler Path or Trail

is a path visiting each edge (of a graph) exactly once.

Heiko A. Schmidt Bioinformatik fiir Biologen

Euler Paths and Tours

Given an undirected connected graph G = (V/, E) with nodes V and
edges E, we define:

Euler Path or Trail

is a path visiting each edge (of a graph) exactly once.

Euler Tour or Circuit or Cycle

is a path visiting each edge (of a graph) exactly once and ending at the
starting point.

Heiko A. Schmidt Bioinformatik fiir Biologen

Euler Paths and Tours: Solution?

Leonhard Euler (1735) showed that the existence of
such paths or tours depend on the degree of the
nodes.

Heiko A. Schmidt Bioinformatik fiir Biologen

Euler Paths and Tours: Solution?

Leonhard Euler (1735) showed that the existence of
such paths or tours depend on the degree of the
nodes.

exists if there are exactly 0 or 2 nodes with uneven
degree (i.e. number of attached edges).

Heiko A. Schmidt Bioinformatik fiir Biologen

Euler Paths and Tours: Solution?

Leonhard Euler (1735) showed that the existence of
such paths or tours depend on the degree of the
nodes.

exists if there are exactly 0 or 2 nodes with uneven
degree (i.e. number of attached edges).

exists iff the graph is connected and has no nodes of
odd degree.

Heiko A. Schmidt Bioinformatik fiir Biologen

Euler Paths and Tours: Solution?

Leonhard Euler (1735) showed that the existence of

such paths or tours depend on the degree of the

128 SOLVTIO PROBLEMATIS
nodes. SOLVTIO PROBLEMATIS

GEOMETRIAM SITVS

PER’ lil.\‘hI\‘TlS.

Lanb, Bars.
exists if there are exactly 0 or 2 nodes with uneven . ot o, e s
degree (i.e. number of attached edges). . = f S e

problematis cui
ad geometriam

e hand - ubitaui:
onfide-

ullivs prorfus fic vis,
B0 meam quam ad huius generis proble-

exists iff the graph is connected and has no nodes of
odd degree.

Heiko A. Schmidt Bioinformatik fiir Biologen

Euler Paths and Tours on directed graphs

In directed graphs, that means, that edges have only one direction in
which they can be crossed. ..

exists iff the in-degree of each node is equal to its out-degree and if the
graph is a strongly connected component, i.e. every node is reachable
from every other node via a directed path.

Heiko A. Schmidt Bioinformatik fiir Biologen

Euler Paths and Tours on directed graphs

In directed graphs, that means, that edges have only one direction in
which they can be crossed. ..

exists iff the in-degree of each node is equal to its out-degree and if the
graph is a strongly connected component, i.e. every node is reachable
from every other node via a directed path.

exists iff there at most one node with in-degree - out-degree = 1 exists at
most one node with out-degree - in-degree = 1.

Note, in graph theory the terms node and vertex (pl. vertices) are used
interchangeably, as are directed edge and arc.

Heiko A. Schmidt Bioinformatik fiir Biologen

Variation: Hamiltonian Paths and Tours

William Rowan Hamilton
(1805-1865)

Heiko A. Schmidt Bioinformatik fiir Biologen

Variation: Hamiltonian Paths and Tours

Hamiltonian Path (or traceable path)

is a path that visits every node (of a graph) exactly
once.

William Rowan Hamilton
(1805-1865)

Heiko A. Schmidt Bioinformatik fiir Biologen

Variation: Hamiltonian Paths and Tours

Hamiltonian Path (or traceable path)

is a path that visits every node (of a graph) exactly
once.

Hamiltonian Tour

is a Hamiltonian path ending at its starting point.

William Rowan Hamilton
(1805-1865)

Heiko A. Schmidt Bioinformatik fiir Biologen

Variation: Hamiltonian Paths and Tours

Hamiltonian Path (or traceable path)

is a path that visits every node (of a graph) exactly
once.

Hamiltonian Tour

is a Hamiltonian path ending at its starting point.

Problems:

@ determining whether such a path/tour exists is

NP—COmplete. William Rowan Hamilton
(1805-1865)

Heiko A. Schmidt Bioinformatik fiir Biologen

Variation: Hamiltonian Paths and Tours

Hamiltonian Path (or traceable path)

is a path that visits every node (of a graph) exactly
once.

Hamiltonian Tour

is a Hamiltonian path ending at its starting point.

Problems:

@ determining whether such a path/tour exists is
NP-complete.

William Rowan Hamilton
(1805-1865)

@ Hamiltonian Tours are a special case of the
Traveling Salesman Problem.

Heiko A. Schmidt Bioinformatik fiir Biologen

Nicolaas de Bruijn

In 1946 Nicolaas de Bruijn got interested in the
superstring problem:

@ Find the shortest circular superstring that
contains all possible k-mers as substrings.

Nicolaas de Bruijn (1918-2012)

Heiko A. Schmidt Bioinformatik fiir Biologen

Nicolaas de Bruijn

In 1946 Nicolaas de Bruijn got interested in the
superstring problem:
@ Find the shortest circular superstring that
contains all possible k-mers as substrings.
@ There are n k-mers for an alphabet of size
n=|x|

Nicolaas de Bruijn (1918-2012)

Heiko A. Schmidt Bioinformatik fiir Biologen

Nicolaas de Bruijn

In 1946 Nicolaas de Bruijn got interested in the
superstring problem:

@ Find the shortest circular superstring that
contains all possible k-mers as substrings.

@ There are n k-mers for an alphabet of size
n=|x|
@ For example, the number DNA-triplets

Nicolaas de Bruijn (1918-2012)

Heiko A. Schmidt Bioinformatik fiir Biologen

Nicolaas de Bruijn

In 1946 Nicolaas de Bruijn got interested in the
superstring problem:

@ Find the shortest circular superstring that
contains all possible k-mers as substrings.

@ There are n k-mers for an alphabet of size

n=|x|
@ For example, the number DNA-triplets:
nk = 43 = 64.

Nicolaas de Bruijn (1918-2012)

Heiko A. Schmidt Bioinformatik fiir Biologen

De Bruijn Graphs

De Bruijn Graph

@ nodes: for all possible (k — 1)-mers

Heiko A. Schmidt Bioinformatik fiir Biologen

De Bruijn Graphs

De Bruijn Graph

@ nodes: for all possible (k — 1)-mers

@ edges: directed links between nodes a and b if the kK — 2-long prefix of
b is the suffix of a.

Heiko A. Schmidt Bioinformatik fiir Biologen

De Bruijn Graphs

De Bruijn Graph

@ nodes: for all possible (k — 1)-mers

@ edges: directed links between nodes a and b if the kK — 2-long prefix of
b is the suffix of a.

@ Note: A Eulerian Tour exists because every node have one in-edge
and one out-edge for each character in X.

Heiko A. Schmidt Bioinformatik fiir Biologen

De Bruijn Graph Example

@ The nodes are labeled

De Bruijn Graph for k =4 and ¥ = {0,1}: with 000, 001, 010, 011,
100, 101, 110, 111.

@ The edges are labeled
linking the overlapping
node labels, e.g. 100—
001 with 1001.

1001 0110

Heiko A. Schmidt Bioinformatik fiir Biologen

De Bruijn Graph Example

@ The nodes are labeled

De Bruijn Graph for k =4 and ¥ = {0,1}: with 000, 001, 010, 011,
100, 101, 110, 111.

@ The edges are labeled
linking the overlapping
node labels, e.g. 100—
001 with 1001.

0110 @ An Eulerian Tour exists,
each node has in-degree
and out-degree 2.

1001

Heiko A. Schmidt Bioinformatik fiir Biologen

De Bruijn Graph Example

De Bruijn Graph for k =4 and ¥ = {0, 1}:

1001

Heiko A. Schmidt

0110

The nodes are labeled
with 000, 001, 010, 011,
100, 101, 110, 111.

The edges are labeled
linking the overlapping
node labels, e.g. 100—
001 with 1001.

An Eulerian Tour exists,
each node has in-degree
and out-degree 2.

The Eulerian Tour
(marked by blue
numbers) spells out the
circular superstring:
0000110010111101.

Bioinformatik fiir Biologen

a M b v
A ATGGCGT
N i
v o 2 e
........ > (TGCAATG) (ATGGCGT) CGTGCAA
o @ Short-read 1 TECAATG
sequencing NN
<9 2 CAAT

i
ATGGCGT

Genome: ATGGCGTGCAATGGCGT

a M b v
A ATGGCGT
N i
v o 2 e
........ > (TGCAATG) (ATGGCGT) CGTGCAA
o @ Short-read 1 TECAATG
sequencing NN
<9 2 CAAT

i
ATGGCGT

Genome: ATGGCGTGCAATGGCGT
split reads into k-mers

De Bruijn Graphs in Sequence Assembly

a

v b v
vl il
o 9 GGCGTGC
e
........ > (TGCAATG) (ATGGCGT e
v @ Short-read 1 TGCAATG

< o) sequencing

Genome: ATGGCGTGCAATGGCGT
split reads into k-mers

Vertices are k-mers L
Edges are pairwise alignments .-~

o

Heiko A. Schmidt Bioinformatik fiir Biologen

De Bruijn Graphs in Sequence Assembly

a

v b M
v A s ATGSSST
. 3 GGCGTGC
e
........ » (TGCARTG] (ATGGCGT) 1
v @ Short-read 7 TGCAATG

< ° o) sequencing HMHGIGC
ATGGCGT
Genome: ATGGCGTGCAATGGCGT
split reads into k-mers
Vertices are k-mers Pt - T ... Vertices are (k—1)-mers
Edges are pairwise alignments _.-* *-.. Edges are k-mers

o RN

Heiko A. Schmidt Bioinformatik fiir Biologen

De Bruijn Graphs in Sequence Assembly

a v b !
v A s ATGGCeT
- 3 GGCGTGC
e
........ » (TGCARTG] (ATGGCGT) 1
v @ Short-read 7 TGCAATG
¢ o) sequencing &A/‘\+G‘GC
) rrr
ATGGCGT

Genome: ATGGCGTGCAATGGCGT
split reads into k-mers

Vertices are k-mers e e

Edges are pairwise alignments _.-* - el Edges are k-mers

4 A
A
Al
6
GGC
11
i
CGT
. 11 s
k-mers from vertices GT? k-mers from edges
TGC
11
én
CAA
1
M
ATG

Genome: ATGGCGTGCAATG

Hamiltonian cycle
Visit each vertex once
(harder to solve)

Heiko A. Schmidt Bioinformatik fiir Biologen

.. \Vertices are (k-1)-mers

Eulerian cycle
Visit each edge once
(easier to solve)

Source: Compeau et al. (2011)

Sequence De Bruijn Graph (from reads to graph)

read 1:
G G A C T A A A T

@ construct a de Bruijn graph for each read with k —1 =3

Heiko A. Schmidt Bioinformatik fiir Biologen

Sequence De Bruijn Graph (from reads to graph)

read 1:
G G A A A A T
G G A
G A C
A C T
C T A
T A A
A A A
A AT

@ construct a de Bruijn graph for each read with k —1 =3

@ split the read into overlapping k — 1mers

Heiko A. Schmidt Bioinformatik fiir Biologen

Sequence De Bruijn Graph (from reads to graph)

read 1:
G G A A A A T
G G A
G A C
A C T
C T A
T A A
A A A
A AT

O—O0—0O0—>0——>0O0—>0—0
GGA GAC ACT CTA TAA AAA AAT

@ construct a de Bruijn graph for each read with k —1 =3
@ split the read into overlapping k — 1mers

@ and construct the de Bruijn graph

Heiko A. Schmidt Bioinformatik fiir Biologen

Sequence De Bruijn Graph (from reads to graph)

read 1:
G G A A A A T
G G A
G A C
A C T
C T A
T A A
A A A
A AT

O—O0—0O0—>0——>0O0—>0—0
GGA GAC ACT CTA TAA AAA AAT

@ o o o 0O 0O O
construct a de Bruijn graph for each read with k —1 =3

°
@ split the read into overlapping k — 1mers
@ and construct the de Bruijn graph

°

count 1 for the read at each node

Heiko A. Schmidt Bioinformatik fiir Biologen

Sequence De Bruijn Graph (from reads to graph)

. read 2:
E,?adsl'A c T A A A T G A C C A A A T C
c ¢ a G A C
c A C A C C
A Cc T cC Cc A
c T a cC A A
T a a A A A
A A a A A T
A a T A T C
O—0—0—>0—>0—>0—0
oA GAC ACT OTA TAA ARA AAT G(?)C ‘?f)c c(f;* c(?)’* "(’1‘;‘ A(?)T A('f)c

®m o o o 6O O M

construct a de Bruijn graph for each read with k —1 =3
split the read into overlapping k — Llmers
and construct the de Bruijn graph

count 1 for the read at each node

Heiko A. Schmidt Bioinformatik fiir Biologen

Sequence De Bruijn Graph (merging identical nodes)

O—O—>O0—>O0—>O—>O0—0
GGA GAC ACT CTA TAA AAA AAT

m o o o @O O O

GAC ACC CCA CAA AAA AAT ATC

®m o @ o o 0O @

Heiko A. Schmidt

o take all 'read graphs’

Bioinformatik fiir Biologen

Sequence De Bruijn Graph (merging identical nodes)

o take all 'read graphs’

@ ...and merge identical nodes

Heiko A. Schmidt Bioinformatik fiir Biologen

Sequence De Bruijn Graph (merging identical nodes)

o take all 'read graphs’

@ ...and merge identical nodes

.. gaining a large de Bruijn
graph

merge identical nodes

ACT CTA TAA)

GGA GAC AAA AAT ATC

ACC CCA CAA

Heiko A. Schmidt Bioinformatik fiir Biologen

Sequence De Bruijn Graph (merging identical nodes)

o take all 'read graphs’

@ ...and merge identical nodes

.. gaining a large de Bruijn

merge identical nodes

and update read counts gra ph
°
AO—’O—’“ PSR sum up the read counts at the
I merged node
GGA GAC AAA BAT ATC

m @ () @ o
ACC cca caa
M m o

Heiko A. Schmidt Bioinformatik fiir Biologen

Sequence De Bruijn Graph (merging identical nodes)

o take all 'read graphs’

@ ...and merge identical nodes

@ ...gaining a large de Bruijn

merge identical nodes

and update read counts gra ph
°
AO—’O—’“ PSR sum up the read counts at the
I merged node
GGA GAC AAA BAT ATC

@ do repeat this for all other

M @ () @ 1)
ACC CCA CAA reads
M M M

Heiko A. Schmidt Bioinformatik fiir Biologen

Sequence De Bruijn Graph (reducing the graph to contigs)

TGAG ATGA GATG CGAT CCGA TCCG ATCC GATC AGAT
(9) (8) (5) (8)) (7) 7) (8) (8)

O—>0—>0—
GCTC CTCT TTAC AGTC
(2) W] @) (@)

O—>0— O—0
AAGT AGTC GTCG TCGA\ CGAG GAGG AGGC GGCT TAGA AGAG GAGA AGAC GACA ACAA
@) @) () (10) (®) (16) (16 (1) (16) () (12) ©) (®) ©®)

O—0O—>0 GCTT CTTT TTTA TTAG
CGAC GACG ACGC (8) (®) (8) (12)
(1) 1) (1)

Heiko A. Schmidt Bioinformatik fiir Biologen

Sequence De Bruijn Graph (reducing the graph to contigs)

TGAG ATGA GATG CGAT CCGA TCCG ATCC GATC AGAT
() @®)) (6) @ %) [® ®
O O O O O O O O O

bulge caused by seq. error
O

GCTC CTCT TTAC AGTC
(2) (1) () 2

O O O—0
AAGT AGTC GTCG TCGA\ CGAG GAGG AGGC GGCT TAGA AGAG GAGA AGAC GACA ACAA
@) @) () (10) (8) (16) ~ (16) (1) (16) () (12) ©) (®) ©®)

tip caused by seq. error

O—0O0——=0 GCTT CTTT TTTA TTAG
CGAC GACG ACGC (8) (®) (8) (12)

(1) (1) Q]

@ sequencing errors cause tips and bulges with low read counts and can
be identified using thresholds

Heiko A. Schmidt Bioinformatik fiir Biologen

Sequence De Bruijn Graph (reducing the graph to contigs)

TGAGA

TGAG MTCA GATG CGAT cOGA TCCC AfCC GATC AGAT
@ ® @) TAGETCCGARGAG (7) (8 (@)

TGAGE GGCTCTAGA

O——>0——>0—
GCTC CTCT TTAC AGTC
@ e e GAGACAA

AAGTCGA TCGAGG

AAGT AGTC GTCG TCGA\ CGAG GAGG AGGC GGCT

TAGA AGAG GAGA AGAC GACA ACAA
® o @ o\ ® (8 (16 (1) GGCTTTAGA (i @ (1 © ©® 6
CGACGC
GCTT CTTT TTTA TTAG
CGAC GACG ACGC (8) (®) (8) (12)

(1) (1) m

@ sequencing errors cause tips and bulges with low read counts and can
be identified using thresholds

e compactify the graph by merging the branch labels (rf. de Bruijn
graph definition) on non-branching paths

Heiko A. Schmidt Bioinformatik fiir Biologen

Sequence De Bruijn Graph (reducing the graph to contigs)

TGAGA
TGAG TAGATCCGATGAG
— GGCTCTAGA
AAGTCGA TCGAGG GAGGCT TAGAGA GAGACAA
TCGA GAGG GGCT GAGA

GGCTTTAGA
CGACGC

@ sequencing errors cause tips and bulges with low read counts and can
be identified using thresholds

e compactify the graph by merging the branch labels (rf. de Bruijn
graph definition) on non-branching paths

o delete the obsolete nodes and re-link the branching nodes

Heiko A. Schmidt Bioinformatik fiir Biologen

Sequence De Bruijn Graph (reducing the graph to contigs)

TGAGA

TGAG TAGATCCGATGAG

TGAGG

AAGTCGA TCGAGG GAGGCT TAGAGA GAGACAA

TCGA GAGG GGCT TAGA GAGA
GGCTTTAGA

@ sequencing errors cause tips and bulges with low read counts and can
be identified using thresholds

e compactify the graph by merging the branch labels (rf. de Bruijn
graph definition) on non-branching paths

o delete the obsolete nodes and re-link the branching nodes

@ remove the tips and bulges with low read counts (sequencing errors)

Heiko A. Schmidt Bioinformatik fiir Biologen

Sequence De Bruijn Graph (reducing the graph to contigs)

TGAGA

TGAG TAGATCCGATGAG

TGAGG

AAGTCGAGG GAGGCTTTAGA TAGAGA GAGACAA

GAGG TAGA GAGA

@ sequencing errors cause tips and bulges with low read counts and can
be identified using thresholds

e compactify the graph by merging the branch labels (rf. de Bruijn
graph definition) on non-branching paths

o delete the obsolete nodes and re-link the branching nodes

@ remove the tips and bulges with low read counts (sequencing errors)

@ re-compactify the graph

Heiko A. Schmidt Bioinformatik fiir Biologen

Sequence De Bruijn Graph (reducing the graph to contigs)

TGAGA

TGAG TAGATCCGATGAG
TGAGG
o AAGTCGAGG GAGGCTTTAGA TAGAGA GAGACAA
GAGG TAGA GAGA
@ sequencing errors cause tips and bulges with low read counts and can

be identified using thresholds

compactify the graph by merging the branch labels (rf. de Bruijn
graph definition) on non-branching paths

delete the obsolete nodes and re-link the branching nodes

remove the tips and bulges with low read counts (sequencing errors)
re-compactify the graph

all the labels on the non-branching paths are our reconstructed contigs

Heiko A. Schmidt Bioinformatik fiir Biologen

De Bruijn Graphs for Assembly with Sequencing Errors

@ The number of reads
participating in bulges
and tips tell us which
are the frequent, and
thus likely true ones.

Heiko A. Schmidt Bioinformatik fiir Biologen

De Bruijn Graphs for Assembly with Sequencing Errors

@ The number of reads
participating in bulges
and tips tell us which
are the frequent, and
thus likely true ones.

@ Bulges and tips with
few reads are removed.

Heiko A. Schmidt Bioinformatik fiir Biologen

De Bruijn Graphs for Assembly with Repeats

AAGACTCCGACTGGGACTTT @ In the case of repeats, Euler

paths are not possible, because
the edges of the repeated
region have to be used
repeatedly.

A de Bruijn graph of a sequence

ACTCCGAC
AAGAC m ACTTT
AAGD GAC>—~CACT T

ACTGGGAC
B condensed de Bruijn graph

Source: Chaisson et al. (2009)

Heiko A. Schmidt Bioinformatik fiir Biologen

De Bruijn Graphs for Assembly with Repeats

AAGACTCCGACTGGGACTTT @ In the case of repeats, Euler

paths are not possible, because
the edges of the repeated
region have to be used
repeatedly.

@ Typically the order in which
edges from a repeat have to be
followed cannot be determined.

ACTCCGAC Then the paths have to be kept

RAGH AAGAC s i et ACTTT p as separate contigs.

A de Bruijn graph of a sequence

ACTGGGAC
B condensed de Bruijn graph

Source: Chaisson et al. (2009)

Heiko A. Schmidt Bioinformatik fiir Biologen

De Bruijn Graphs for Assembly with Repeats

AAGACTCCGACTGGGACTTT

A de Bruijn graph of a sequence

ACTCCGAC

AAG>AACAE % A

ACTGGGAC
B condensed de Bruijn graph

Source: Chaisson et al. (2009)

Heiko A. Schmidt

@ In the case of repeats, Euler

paths are not possible, because
the edges of the repeated
region have to be used
repeatedly.

Typically the order in which
edges from a repeat have to be
followed cannot be determined.
Then the paths have to be kept
as separate contigs.

Exception: if we have reads or
paired-end information, which
reach longer than the repeat,

this helps to order the contigs.

Bioinformatik fiir Biologen

Bidirected de Bruijn Graphs (Medvedev et al. 2007)

seql: GGACTAAAT

@ Problem: How do we
know which strand our
read is from? We don’t!

Heiko A. Schmidt Bioinformatik fiir Biologen

Bidirected de Bruijn Graphs (Medvedev et al. 2007)

seql: GGACTARAT
convert to bidirectional
De Bruijn subgraphs @ Problem: How do we
(GGA) »(GAC) +(ACT| »{CTA} »(TAA} +(AAA} »BAT) seql know which strand our
(OO L+ (OLDf IO/ {9V {(WILj+ (IILj*(I1V] read is from? We don't!

1 1 1 1 1 1 1
@ o o o o o M o With bidirected de

Bruijn Graphs one can
cover k-mers and their
complements.

Heiko A. Schmidt Bioinformatik fiir Biologen

Bidirected de Bruijn Graphs (Medvedev et al. 2007)

seql: GGACTAAAT seq2: GATTTGGTC
convert to bidirectional
De Bruijn subgraphs @ Problem: How do we
(GGA} »(GAC) »/ACT) »[CTA} »[TAA| »(AAA| »(AAT) seql know which strand our
(O0L)+ (OI9)(IDY OV L (VILJ+ (I1L1)+ (1LY read is from? We don't!
m o o @O @ @O M . .
@ With bidirected de

GAC) »(ACC) »(CCA) »CAA) »(AAA) »[AAT)} »ATC) Bruijn Graphs one can
gbss [DL9)+ (199991 (OLL/*LLL/*{LL¥/*I¥D) :
cover k-mers and their

(1) (1) (1) (1) (1) (1) (1)
complements.

Heiko A. Schmidt Bioinformatik fiir Biologen

Bidirected de Bruijn Graphs (Medvedev et al. 2007)

seql: GGACTAAAT seq2: GATTTGGTC
convert to bidirectional
De Bruijn subgraphs @ Problem: How do we

know which strand our

read is from? We don’t!
@ With bidirected de
L(ATC) Bruijn Graphs one can
@ cover k-mers and their

complements.

~{z99 |901 (oL
(1) (1) (1)

merge identical nodes
and update read counts

Heiko A. Schmidt Bioinformatik fiir Biologen

Bidirected de Bruijn Graphs (Medvedev et al. 2007)

seql: GGACTAAAT seq2: GATTTGGTC
convert to bidirectional
De Bruijn subgraphs @ Problem: How do we

know which strand our

read is from? We don't!
@ With bidirected de
LLATC) Bruijn Graphs one can
F%BJ cover k-mers and their
complements.

seql

~{zo9 |901 (O8]
(1) (1) (1)

and update read counts @ Note:
At no time two nodes

with identical strings can
exist in one (sub)graph,
and both strings have to
be treated equally.

lmerge identical nodes

m o m

Heiko A. Schmidt Bioinformatik fiir Biologen

Some measures on genome sequencing and assembly

Coverage

Coverage describes the average number of times a nucleotide in the
template DNA has been sequenced which is equivalent to the number of
reads that cover each nucleotide on average.

Y. length of read i
ie{all reads}

length of template or genome

coverage —

Rule of thumb: the higher the better!

Heiko A. Schmidt Bioinformatik fiir Biologen

Some measures on genome sequencing and assembly

The quality of an assembly is hard to measure. Typically several values are
used like

e maximum contig/scaffold length
@ average contig/scaffold length
@ combined total length

o the N50 or the NG50 value

Heiko A. Schmidt Bioinformatik fiir Biologen

N50 and NG50

N50 value

All contigs/scaffold are ordered descending in size. Starting from the
largest contig/scaffold add their lengths. The N50 value is the length of
the first contig, for which this sum of contig lengths covers > 50% of the
total length of contigs/scaffolds, i.e. the entire assembly.

Rule of thumb: the longer the better!

NG50 value

All contigs/scaffold are ordered descending in size. Starting from the
largest contig/scaffold add their lengths. The NG50 value is the length of
the first contig, for which this sum of contig lengths covers > 50% of the
total length of the sequenced genome.

Rule of thumb: the longer the better!

Sometimes other percentages than 50% are used leading to, e.g. N70 etc.

Heiko A. Schmidt Bioinformatik fiir Biologen

The whole procedure gets much easier if we have a reference genome
available.

Reference based assembly

The whole procedure gets much easier if we have a reference genome
available.

@ mapping using search tools like BLAST or BLAT

Heiko A. Schmidt Bioinformatik fiir Biologen

Reference based assembly

The whole procedure gets much easier if we have a reference genome
available.

@ mapping using search tools like BLAST or BLAT
e dynamic programming (e.g. Smith-Waterman) with pre-filtering to
keep the candidate regions small, using

e hash-based k-mer index
e spaced-seeds index

@ Approaches using the Burrows-Wheeler-Transform (BWT) of the
reference sequence,

and the mapped reads are then summarized to contigs using consensus
approaches.

Heiko A. Schmidt Bioinformatik fiir Biologen

Hash-based approaches

@ Hash-based approaches typically require matching seed sequences
(one or several) to identify candidate regions to be checked (similar to
Baeza-Yeates-Perleberg)

Heiko A. Schmidt Bioinformatik fiir Biologen

Hash-based approaches

@ Hash-based approaches typically require matching seed sequences
(one or several) to identify candidate regions to be checked (similar to
Baeza-Yeates-Perleberg)

@ often contiguous seeds are used (e.g. perfectly matching words of
length k)

..ACTATCATCGTACACAT... referencesequence

ACTATCATTGTACACAT query sequence

Heiko A. Schmidt Bioinformatik fiir Biologen

Hash-based approaches

@ Hash-based approaches typically require matching seed sequences
(one or several) to identify candidate regions to be checked (similar to
Baeza-Yeates-Perleberg)

@ often contiguous seeds are used (e.g. perfectly matching words of
length k)

111111111 seed encoding
..ACTATCATCGTACACAT... referencesequence
TCATCGTAC seed sequence (len=9)

ACTATCATTGTACACAT query sequence

Heiko A. Schmidt Bioinformatik fiir Biologen

Hash-based approaches

@ Hash-based approaches typically require matching seed sequences
(one or several) to identify candidate regions to be checked (similar to
Baeza-Yeates-Perleberg)

@ often contiguous seeds are used (e.g. perfectly matching words of

length k)
111111111 seed encoding
WACTATCATCGTACACAT... reference sequence
ACTATCATC seed sequence (len=9)

ACTATCATTGTACACAT query sequence

Heiko A. Schmidt Bioinformatik fiir Biologen

Hash-based approaches

@ Hash-based approaches typically require matching seed sequences
(one or several) to identify candidate regions to be checked (similar to

Baeza-Yeates-Perleberg)

@ often contiguous seeds are used (e.g. perfectly matching words of

length k)
111111111

..ACTATCATCGTACACAT..

CGTACACAT
ACTATCATTGTACACAT

seed encoding
reference sequence
seed sequence (len=9)
query sequence

Heiko A. Schmidt Bioinformatik fiir Biologen

Hash-based approaches

@ Hash-based approaches typically require matching seed sequences
(one or several) to identify candidate regions to be checked (similar to

Baeza-Yeates-Perleberg)

@ often contiguous seeds are used (e.g. perfectly matching words of

length k)
111111111

..ACTATCATCGTACACAT..

CGTACACAT
ACTATCATTGTACACAT

seed encoding
reference sequence
seed sequence (len=9)
query sequence

@ Another way is to use spaced seeds, i.e. that only certain letters in a

longer word have to match.

Heiko A. Schmidt Bioinformatik fiir Biologen

Hash-based approaches

@ Hash-based approaches typically require matching seed sequences
(one or several) to identify candidate regions to be checked (similar to
Baeza-Yeates-Perleberg)

@ often contiguous seeds are used (e.g. perfectly matching words of
length k)
111111111 seed encoding
..ACTATCATCGTACACAT... referencesequence
CGTACACAT seed sequence (len=9)
ACTATCATTGTACACAT query sequence

@ Another way is to use spaced seeds, i.e. that only certain letters in a

longer word have to match.
10001110001110011 seed encoding
WACTATCATCGTACACAT... reference sequence
A...TCA...TAC. .AT spaced seed (weight=9, len=17)
ACTATCATTGTACACAT query sequence

Heiko A. Schmidt Bioinformatik fiir Biologen

Hash-based approaches

@ Hash-based approaches typically require matching seed sequences
(one or several) to identify candidate regions to be checked (similar to
Baeza-Yeates-Perleberg)

@ often contiguous seeds are used (e.g. perfectly matching words of

length k)
111111111 seed encoding
..ACTATCATCGTACACAT... referencesequence
CGTACACAT seed sequence (len=9)
ACTATCATTGTACACAT query sequence

@ Another way is to use spaced seeds, i.e. that only certain letters in a

longer word have to match.
10001110001110011 seed encoding

WACTATCATCGTACACAT... reference sequence
A...TCA...TAC. .AT spaced seed (weight=9, len=17)
ACTATCATTGTACACAT query sequence

@ It has been shown that the use of spaced seeds is much more sensitive,
missing less hits. Especially, when using sets of spaced seeds.

Heiko A. Schmidt Bioinformatik fiir Biologen

Hash-based mapping

“onx” positions

Reference genome Short read
(> 3 gigabases)
Chr1
Chr2
Chr3m==
Chr4
Extract seeds
‘ Position N
Position 2
CTGC CGTA AACT AATG
Position 1
ACTG COGT ARAC TAAT ACTC COGT ACTC TAAT
ACTG x1s AMAC onv 1
wxas COGT aaas TAAT Six seed L2
ACTG #44s #ass TAAT pairs per — 3
........ AAAC TAAT read/ 4
ACTG CCGT #sxx #xsx fragment Ls |
wves GCGT AMAG ~nes L6 |
Index seed pairs
Seed index .
(tens of gigabytes) Look up each pair
of seeds in index
ACTG ars ARAC ont
Q Hits identify positions
in genome where
spaced seed pair
$ is found
ACTG wawx wanx TAAT Confirm hits
#xxs CCGT AMAC ++ex by checking

Report alignment to user

Source: Trapnell+Salzberg (2009)

mapping with candidate filtering based on
(spaced) seed matches is easy to
implement

however, to generate a typical seed index is
memory-intense (about 50GB for the
human genome of 3 Gbp)

the example uses six spaced seeds

(1111111100000000, 0000000011111111,
0000111100001111, 1111000011110000,
0000111111110000, 1111000000001111)

from all candidates the actual best hit
position of the read has to be found by
alignment and reported

Heiko A. Schmidt Bioinformatik fiir Biologen

Burrows-Wheeler-Transform (BWT) - encoding

Methods using the Burrows-Wheeler-Transform (BWT) for mapping generate the
BWT from the text, e.g. the genome, adding an start (~) and end character ($):

(Note, in the example we assume that ~ and $ sort after the letters.)

use text with start+end:

“"BANANAS

Heiko A. Schmidt Bioinformatik fiir Biologen

Burrows-Wheeler-Transform (BWT) - encoding

Methods using the Burrows-Wheeler-Transform (BWT) for mapping generate the
BWT from the text, e.g. the genome, adding an start (~) and end character ($):

(Note, in the example we assume that ~ and $ sort after the letters.)

use text with start+end: generate all rotations:

~“"BANANAS

“"BANANAS

Heiko A. Schmidt Bioinformatik fiir Biologen

Burrows-Wheeler-Transform (BWT) - encoding

Methods using the Burrows-Wheeler-Transform (BWT) for mapping generate the
BWT from the text, e.g. the genome, adding an start (~) and end character ($):

(Note, in the example we assume that ~ and $ sort after the letters.)
use text with start+end: generate all rotations:
~“"BANANAS
S$*“"BANANA

“"BANANAS

Heiko A. Schmidt Bioinformatik fiir Biologen

Burrows-Wheeler-Transform (BWT) - encoding

Methods using the Burrows-Wheeler-Transform (BWT) for mapping generate the
BWT from the text, e.g. the genome, adding an start (~) and end character ($):

(Note, in the example we assume that ~ and $ sort after the letters.)

use text with start+end: generate all rotations:

~“"BANANAS
S$*“"BANANA
A$"~“BANAN

“"BANANAS

Heiko A. Schmidt Bioinformatik fiir Biologen

Burrows-Wheeler-Transform (BWT) - encoding

Methods using the Burrows-Wheeler-Transform (BWT) for mapping generate the
BWT from the text, e.g. the genome, adding an start (~) and end character ($):

(Note, in the example we assume that ~ and $ sort after the letters.)

use text with start+end: generate all rotations:

~“"BANANAS
S$*“"BANANA
A$"~“BANAN

A
ABANANAS NAS*"BANA

Heiko A. Schmidt Bioinformatik fiir Biologen

Burrows-Wheeler-Transform (BWT) - encoding

Methods using the Burrows-Wheeler-Transform (BWT) for mapping generate the
BWT from the text, e.g. the genome, adding an start (") and end character ($):

(Note, in the example we assume that ~ and $ sort after the letters.)

use text with start+end: generate all rotations:

“"BANANAS
S*“"BANANA
A$~“BANAN
NAS"*"BANA
ANAS$~“BAN
NANAS~BA
ANANAS"B
BANANA S~

“"BANANAS

Heiko A. Schmidt Bioinformatik fiir Biologen

Burrows-Wheeler-Transform (BWT) - encoding

Methods using the Burrows-Wheeler-Transform (BWT) for mapping generate the
BWT from the text, e.g. the genome, adding an start (") and end character ($):

(Note, in the example we assume that ~ and $ sort after the letters.)

use text with start+end:

“"BANANAS

generate all rotations:

“"BANANAS
S$*“"BANANA
AS$"~“BANAN
NAS"*BANA
ANAS$~“BAN
NANAS~BA
ANANAS"B
BANANA S~

Heiko A. Schmidt

sort lexicographically:

ANANAS” B
ANAS~“BAN
AS$~“BANAN
BANANAS~

NANAS$*BA
NAS$~*BANA
~“"BANANAS
$~*"BANANA

Bioinformatik fiir Biologen

Burrows-Wheeler-Transform (BWT) - encoding

Methods using the Burrows-Wheeler-Transform (BWT) for mapping generate the
BWT from the text, e.g. the genome, adding an start (") and end character ($):

(Note, in the example we assume that ~ and $ sort after the letters.)

use text with start+end: generate all rotations: sort lexicographically: BWT is the last column:

“"BANANAS ANANAS
S$*“"BANANA ANAS~*BA
AS$"~“BANAN AS$~“BANA

EEEREY-T1.)

R NAS~BANA BANANAS R
BANANAS . e paAN NANAS-BaA BNN"AASA
NANAS~BA NAS$SABAN
ANANAS*B ~ABANANA
BANANAS A $~BANAN

Heiko A. Schmidt Bioinformatik fiir Biologen

Burrows-Wheeler-Transform (BWT) - encoding

Methods using the Burrows-Wheeler-Transform (BWT) for mapping generate the
BWT from the text, e.g. the genome, adding an start (") and end character ($):

(Note, in the example we assume that ~ and $ sort after the letters.)

use text with start+end:

generate all rotations:

“"BANANAS
S$*“"BANANA

“"BANANAS

Heiko A. Schmidt

sort lexicographically:

ANANAS
ANAS~*BA
AS$~“BANA
BAN

BWT is the last column:

BNN*"AAS$A

w >Z2
>t P
EEEREY-T1.)

ANAS
AS$"B
“BAN
NANA
ANAN

W nZ

Bioinformatik fiir Biologen

Burrows-Wheeler-Transform (BWT) - encoding

Methods using the Burrows-Wheeler-Transform (BWT) for mapping generate the
BWT from the text, e.g. the genome, adding an start (") and end character ($):

(Note, in the example we assume that ~ and $ sort after the letters.)

use text with start+end: generate all rotations:

“"BANANAS
S$*“"BANANA

“"BANANAS

Heiko A. Schmidt

sort lexicographically:

EEEREY-T1.)

Bioinformatik fiir Biologen

BWT is the last column:

BNN*"AAS$A

Burrows-Wheeler-Transform (BWT) - encoding

Methods using the Burrows-Wheeler-Transform (BWT) for mapping generate the
BWT from the text, e.g. the genome, adding an start (") and end character ($):

(Note, in the example we assume that ~ and $ sort after the letters.)

use text with start+end: generate all rotations: sort lexicographically: BWT is the last column:

“"BANANAS
S$*“"BANANA

“"BANANAS BNN*"AAS$A

EEEREY-T1.)

Originally, the Burrows-Wheeler-Transform (BWT) has been introduced in the
field of data compression, because (a) the BTW compresses better than the
original text and (b) one can decode the original text from the BWT.

Heiko A. Schmidt Bioinformatik fiir Biologen

Burrows-Wheeler-Transform (BWT) - decoding

From the BTW the original text can easily decoded:

start from
the BTW

Puppy >Z22 W)

Heiko A. Schmidt Bioinformatik fiir Biologen

Burrows-Wheeler-Transform (BWT) - decoding

From the BTW the original text can easily decoded:

start from
the BTW sort

Puppy >Z22 W)
w»H>ZZ2Wp

Heiko A. Schmidt Bioinformatik fiir Biologen

Burrows-Wheeler-Transform (BWT) - decoding

From the BTW the original text can easily decoded:

start from we know 1st
the BTW sort +last column
B] A A ...(B
N A A...N
N A A...N
A B B...|*
A N N...A
A N N...|A
$ A A . $
A $ $...a

Heiko A. Schmidt Bioinformatik fiir Biologen

Burrows-Wheeler-Transform (BWT) - decoding

From the BTW the original text can easily decoded:

start from we know 1st rotate
the BTW sort +last column (BTW front)
B A A...B (BA.
N A A...N NA .
N A A...N NA .
A B B...|* ~B .
A N N...A AN .
A N N...A AN .
$ A ALLLl8 S|~ .
A $ $...a [as.

Heiko A. Schmidt Bioinformatik fiir Biologen

Burrows-Wheeler-Transform (BWT) - decoding

From the BTW the original text can easily decoded:

start from we know 1st rotate

the BTW sort +last column (BTW front) sort
B A A...B (BA. AN...
N A A...|N NA . AN...
N A A...N NA . AS...
A B B...|* ~B . BA...
A N N...|A AN . NA...
A N N...A AN . NA...
$ ~ A~ L8 s~ “B...
A $ $...a As. $4 ...

Heiko A. Schmidt Bioinformatik fiir Biologen

Burrows-Wheeler-Transform (BWT) - decoding

From the BTW the original text can easily decoded:

start from we know 1st rotate rotate
the BTW sort +last column (BTW front) sort (BTW front)
B A A...B| (BA. AN... [BAN...
N A A...N NA . AN... NAN...
N A A...N NA . AS... NAS...
A B B...|* ~B . BA... ~ABA ...
A N N...A AN . NA... ANA ...
A N N...|A AN . NA... ANA ...
$ ~ A~ L8 s~ “B... |§*B...
A $ $...a As. $A... ASALL.

Heiko A. Schmidt Bioinformatik fiir Biologen

Burrows-Wheeler-Transform (BWT) - decoding

From the BTW the original text can easily decoded:

start from we know 1st rotate rotate
the BTW sort +last column (BTW front) sort (BTW front)
B A A...B (BA. AN... [BAN...
N A A...|N NA . AN... NAN...
N A A...N NA . AS$S... [NAS...
A B B...|* ~B . BA... |[“BA...
A N N...|A AN . NA... ANA ...
A N N...A AN . NA... |ANA...
$ ~ A~ L8 s~ “B... |§*B...
A $ $...1a ASs. $4... ASH. ..

Heiko A. Schmidt Bioinformatik fiir Biologen

Burrows-Wheeler-Transform (BWT) - decoding

From the BTW the original text can easily decoded:

start from

the BTW

Puppy >Z22 W)

add BTW
and sort

ANAN
ANAS
AS$S"B
BANA
NANA
NA S~
“"BAN
$~“BA

sort

w»H>ZZ2Wp

we know 1st rotate

+last column (BTW front) sort
A...B| (BA. AN...
A...N NA . AN...
A...N NA . AS...
B...*" ~AB . BA...
N...A AN . NA...
N...A AN . NA...
I - S|~ . ~“B...
$...1a ASs. $4 ...

Heiko A. Schmidt

Bioinformatik fiir Biologen

rotate
(BTW front)

Puppy >Z22 W)

AN...
AN...
AS...
BA...
NA...
NA...
“B...
S$~...

Burrows-Wheeler-Transform (BWT) - decoding

From the BTW the original text can easily decoded:

start from

the BTW

Puppy >Z22 W)

add BTW
and sort

ANAN
ANAS
AS$S"B
BANA
NANA
NA S~
“BAN
$”*“BA

sort

w»H>ZZ2Wp

add BTW

and sort
ANANA
ANAS*
AS$S*BA
BANAN
NANAS
NAS*B
~“"BANA
$~“BAN

we know 1st rotate

+last column (BTW front) sort
A...B| (BA. AN...
A...N NA . AN...
A...N NA . AS...
B...*" ~AB . BA...
N...A AN . NA...
N...A AN . NA...
I - S|~ . ~“B...
$...1a ASs. $4 ...

Heiko A. Schmidt

Bioinformatik fiir Biologen

rotate
(BTW front)

Puppy >Z22 W)

AN...
AN...
AS...
BA...
NA...
NA...
“B...
S$~...

Burrows-Wheeler-Transform (BWT) - decoding

From the BTW the original text can easily decoded:

start from

the BTW

Puppy >Z22 W)

add BTW
and sort

ANAN
ANAS
AS$*B
BANA
NANA
NA S~
“"BAN
$*BA

sort

w»H>ZZ2Wp

add BTW
and sort

ANANA
ANAS A
AS$~BA
BANAN
NANAS
NA S B
“"BANA
$~“BAN

we know 1st rotate
+last column (BTW front) sort
A...B| (BA. AN...
A...N NA . AN...
A...N NA . AS...
B...*" ~AB . BA...
N...A AN . NA...
N...A AN . NA...
A~ L8 s~ “B...
$...1a ASs. $4 ...
add BTW
and sort

ANANAS

ANAS“ B

A$"*"BAN

BANANA

NANAS®

NAS~*BA

~“"BANAN

S$~“"BANA

Heiko A. Schmidt

Bioinformatik fiir Biologen

rotate
(BTW front)

Puppy >Z22 W)

AN...
AN...
AS...
BA...
NA...
NA...
“B...
S$~...

Burrows-Wheeler-Transform (BWT) - decoding

From the BTW the original text can easily decoded:

start from

the BTW

Puppy >Z22 W)

add BTW
and sort

ANAN
ANAS
AS$*B
BANA
NANA
NA S~
“BAN
$~“BA

sort

w»H>ZZ2Wp

add BTW

and sort
ANANA
ANAS "
AS$S*BA
BANAN
NANAS
NAS*B
~“"BANA
$~“BAN

we know 1st

Heiko A. Schmidt

rotate

+last column (BTW front) sort
A...B| (BA. AN...
A...N NA . AN...
A...N NA . AS...
B...*" ~AB . BA...
N...A AN . NA...
N...A AN . NA...
A~ L8 s~ “B...
$...1a ASs. $4 ...

add BTW add BTW

and sort and sort
ANANAS ANANAS
ANAS“ B ANAS~*BA
A$"*"BAN AS~“BANA
BANANA BANANAS
NANAS® NANAS*B
NAS~*BA NAS*BAN
~“"BANAN ~“"BANANA
S$~“"BANA $*"BANAN

Bioinformatik fiir Biologen

rotate
(BTW front)

Puppy >Z22 W)

AN...
AN...
AS...
BA...
NA...
NA...
“B...
S$~...

Burrows-Wheeler-Transform (BWT) - decoding

From the BTW the original text can easily decoded:

start from

the BTW

Puppy >Z22 W)

add BTW
and sort

ANAN
ANAS
AS$*B
BANA
NANA
NA S~
“BAN
$~BA

sort

w»H>ZZ2Wp

add BTW
and sort

ANANA

we know 1st

Heiko A. Schmidt

rotate

+last column (BTW front) sort
A...B| (BA. AN...
A...N NA . AN...
A...N NA . AS...
B...*" ~AB . BA...
N...A AN . NA...
N...A AN . NA...
A~ L8 s~ “B...
$...1a ASs. $4 ...

add BTW add BTW

and sort and sort
ANANAS ANANAS "
ANAS“ B ANAS~*BA
A$"*"BAN AS~“BANA
BANANA BANANAS
NANAS® NANAS*B
NAS~*BA NAS*BAN
~“"BANAN “"BANANA
S~“"BANA $~*"BANAN

Bioinformatik fiir Biologen

rotate

(BTW front) sort
BAN... ANA
NAN... ANA
NAS... AS$~A
~ABA... BAN
AINA... NAN
ANA... NAS
$~B... ~“BA
A$~... $~B

...until the matrix
has its width again

ANANAS"B

Burrows-Wheeler-Transform (BWT) - decoding

From the BTW the original text can easily decoded:

start from

the BTW

Puppy >Z22 W)

add BTW
and sort

ANAN
ANAS
AS$*B
BANA
NANA
NA S~
“BAN
$~BA

sort

w»H>ZZ2Wp

add BTW
and sort

ANANA
ANAS A
AS$~BA
BANAN
NANAS
NA S B
“"BANA
$*“BAN

we know 1st

rotate

+last column (BTW front) sort
A...B| (BA. AN...
A...N NA . AN...
A...N NA . AS...
B...*" ~AB . BA...
N...A AN . NA...
N...A AN . NA...
A~ L8 s~ “B...
$...1a ASs. $4 ...

add BTW add BTW

and sort and sort
ANANAS ANANAS "
ANAS“ B ANAS~*BA
A$"*"BAN AS~“BANA
BANANA BANANAS
NANAS® NANAS*B
NAS~*BA NAS*BAN
~“"BANAN “"BANANA
S~“"BANA $~*"BANAN

rotate

(BTW front) sort
BIAN... ANA
NAN... ANA
NAS... AS$~A
~ABA... BAN
AINA... NAN
ANA... NAS
$~B... ~“BA
A$A... $~B

...until the matrix
has its width again

ANANAS "B
ANAS$~“BAN
A$~BANAN
BANANAS *
NANAS$ ~“BA
NA$~“BANA
~“BANANAS
$“"BANANA

The original text can be found in the line starting with ~ and ending with $.

Heiko A. Schmidt

Bioinformatik fiir Biologen

Burrows-Wheeler-Transform (BWT) - some observations

~NBAN'ANA S

Heiko A. Schmidt Bioinformatik fiir Biologen

Burrows-Wheeler-Transform (BWT) - some observations

~NBAN'ANA S

SA B2
5A N4
7A NG
ZB Al
4N A3
GN A5
1A $8
8$ A7

Heiko A. Schmidt Bioinformatik fiir Biologen

Burrows-Wheeler-Transform (BWT) - some observations

AB'AN'ANA S
@ a letter in the 1lst column is easy to find,

:i flj because they are sorted
7A NG
ZB A1l
4N A3
GN A5
1A $8
8 $ A7

Heiko A. Schmidt Bioinformatik fiir Biologen

Burrows-Wheeler-Transform (BWT) - some observations

AB'AN'ANA S
@ a letter in the 1lst column is easy to find,

SA T A T > 2

A B because they are sorted
SANA-S A B- > N* _

, > NS @ the letter in the last column preceeds the
A N one in the 1st column (thus, searching for
‘BANANA- > A words starts at the last letter)

AN s > A’

ON 7= -5~ 2 7 - > AS

1A R -A N -A N - >» $8

8§~ BANA > A’

Heiko A. Schmidt Bioinformatik fiir Biologen

Burrows-Wheeler-Transform (BWT) - some observations

AB'AN'ANA S
@ a letter in the 1lst column is easy to find,

3 2

52‘\\\ 24 because they are sorted

7A‘\\ s N¢ @ the letter in the last column preceeds the
L SN one in the 1st column (thus, searching for

B AU AR A words starts at the last letter)

‘N \\\ WIAY @ the order of occurrence of a single letter in

°N S 2 IDAS the last and the 1st column is the same

A A §° (the 2nd A in the one is the 2nd A in the

58 NA7 other)

Heiko A. Schmidt Bioinformatik fiir Biologen

Burrows-Wheeler-Transform (BWT) - some observations

~NBAN'ANA S

-\ B?
SA o N*
A // 1N
2B I-A // A1
4NL/ S Al
GNA/ AS
1A $8
s$ A’

@ a letter in the 1lst column is easy to find,
because they are sorted

@ the letter in the last column preceeds the
one in the 1st column (thus, searching for
words starts at the last letter)

@ the order of occurrence of a single letter in
the last and the 1st column is the same
(the 2nd A in the one is the 2nd A in the
other)

Heiko A. Schmidt Bioinformatik fiir Biologen

Burrows-Wheeler-Transform (BWT) - searching

Searching from the last letter to the first of the search string (q=ANA):
query: g=ANA

N B2
SA N4
A N°¢
2B Al
N Al
BN AS
1A se
) A’

Heiko A. Schmidt Bioinformatik fiir Biologen

Burrows-Wheeler-Transform (BWT) - searching

Searching from the last letter to the first of the search string (q=ANA):

. = find last =
query: g=ANA find I g=ANA

3A BZ 3A BZ
SA N4 5A N4
7A NG 7A NG
2B Al 2B Al
‘N A* °N A’
BN AS GN AS
1A $ 8 1A $ 8
8$ A7 3$ A7

Heiko A. Schmidt Bioinformatik fiir Biologen

Burrows-Wheeler-Transform (BWT) - searching

Searching from the last letter to the first of the search string (q=ANA):

query: g=ANA H.-I;tdellfaSt g=ANA :)%rs‘ﬁi)gn qg=ANA
N B2 A B2 3A G- ~ B2
A N °A LD S 45 N
A N¢ A N° 7A”’?‘/’/’,”’/:/’:/N5
g A1 2pg Al 2BA' J-A /// A1
‘N A* °N A* N4 LT A
°N A° °N AS N4 As
1A $3 1A $B 1A $5
8$ A7 3$ A7 B$ A7

Heiko A. Schmidt Bioinformatik fiir Biologen

Burrows-Wheeler-Transform (BWT) - searching

Searching from the last letter to the first of the search string (q=ANA):

query: g=ANA H.-I;tdellfaSt g=ANA :)%rs‘ﬁi)gn qg=ANA
A B2 G:A B2 CANANA-S-A
SA N4 5A N4 SA ,,,,,,, - A -A
7A Ne A Ne 7A”’?‘/’/’, ,,,,,,
B Al °g Al 2BA’ 37)

N A® N A N A J-A

N A° °N A° °N A

1A gs 1A gs 1A

°g A7 8 A7 8

check2nd gq=A N A

last letter

SA B2

SA N4

A N°©

:g Al

‘N A A’

‘N A A’

1A §°

°g A’

Heiko A. Schmidt Bioinformatik fiir Biologen

Burrows-Wheeler-Transform (BWT) - searching

Searching from the last letter to the first of the search string (q=ANA):

query: g=ANA H.-I;tdellfaSt g=ANA :)%rs‘ﬁi)gn qg=ANA
A B2 A B2 A oE-s s
SA N4 5A N4 EA ,,,,,,, AR A
7A Ne A Ne 7A”’?‘/’/’, ,,,,,,
B A1l °g Al 2BA’ 37)

N A® N Al 4NA’ J-A

N A° °N As GNA/

1A $3 1A $B 1A

8$ A7 3$ A7 B$

check2nd gq=A N A to next qg=ANA

last letter position

SA B2 SA*\ B2

SA N4 5A*\\\\\ N4

7A NG 7A " 3 J NG

2B A1 2B \\ \\ Al

‘N A A3 AN,,,,,,,,L.,\:‘,\As

N A A’ NA-SABAA ‘,\As

1A $3 1A $-B

8$ A7 8$ A7

Heiko A. Schmidt Bioinformatik fiir Biologen

Burrows-Wheeler-Transform (BWT) - searching

Searching from the last letter to the first of the search string (q=ANA):

. = find last = t t =
query: g=ANA Ig;teras g=ANA p%rs‘ﬁixon qg=ANA
A B2 3A B2 *ANANA-S-~
SA N4 5A N4 EA ,,,,,,,,,,,
7A Ne A Ne 7A,,,:41/ ,,,,,,,
B Al °g Al 2BA’//,’
4N AB 4N A3 4N " ; g A
N A° °N A° °N A//
1A $a 1A $s 1A $s
8$ A7 3$ A7 B$ A7
check2nd gq=A N A to next qg=ANA found qg=ANA
last letter position twice!
‘A B* ‘Ay B> ‘ANA B*
A N Ay N* SANA N
A N¢ A AN T N° A Né
2B A1 2B \\ \\ Al 2B Al
4N A AS 4N A N -A - ,\;.,\:\,\AS 4N Aa
SN A AS 6N ,,,,,,,,,,, \,\AS GN AS
1A $3 1A $a 1A $s
8$ A7 8$ A7 B$ A7

Heiko A. Schmidt Bioinformatik fiir Biologen

Burrows-Wheeler-Transform (BWT) - approximate
matches

this way exact matches can be found easily

to find approximate matches,
everytime a mismatch is detected,

a backtrace is done, introducing changes at any position

at the beginning only one change and later more if still no match is
found

Heiko A. Schmidt Bioinformatik fiir Biologen

BWT-based mapping

Reference genome Short read
(> 3 gigabases)

Chr1
Chr2
Chr3 ===
Chr4

Concatenate into l

single string

Burrows-Wheeler
transform and indexing

Bowtie index 3 v

(-2 gigabytes) A ACTCCCGTACTOTART

T
AT

Look up

‘suffixes’ ”) ~ AAT
of read 0
! /
= =< ACTCCCGTACTCTAAT
Hits identify
positions in /

genome where
read is found H//

Convert each
hit back to
genome location

@ BWT-based is harder to implement than
seed based approaches

@ however, it is less memory intense (only
(about 1-2GB for the human genome of 3
Gbp) and much faster

@ on the other hand, seed based approaches
have been shown to be much more
sensitive, and thus able to match more
reads correctly

Report alignment to user
Source: Trapnell+Salzberg (2009)

Heiko A. Schmidt Bioinformatik fiir Biologen

