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Shotgun sequencing

− de−novo assembly (reconstruct directly from reads)
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Reference-based Genome Assembly

If a reference genome of the sequenced species exists (or a relatively
close taxonomic relative), we can use it to guide the assembly.

The reads are mapped to the reference genome using approximative
search algorithms.

The closer the reference is to the sequenced genome, the easier is the
mapping and assembly.

From mapped contiguous reads we construct consensus sequences -
the contigs.
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Why re-sequencing

Why re-sequencing if a close reference genome already exists?

Typically one does not re-sequence exactly the same individual the
reference originated from.

Usually one uses the reference to find

the differences in an individual carrying a disease (e.g. personalized
medicine),
the characteristic changes in a new infectious virus (epidemiology),
the abundance of alleles in a population (population genetics),
or just to make the assembly of the (yet unassembled) genome of a
related species a little bit easier.
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de novo Genome Assembly

If no reference genome exists, assembling the sequenced genome is
much harder.

We have to find overlapping reads to stitch them together to longer
and longer contigs.

Heiko A. Schmidt Bioinformatik für Biologen



Overlap Layout Consensus (as in CAP3): Overlap search
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2 identify candidate overlaps (local alignments of reads against the

concatenated string)

discard the trivial matches (i.e. read i matches itself)
each pair only once (result of i vs j should be identical to j vs i)
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Overlap Layout Consensus (as in CAP3): Overlap search
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Overlap Layout Consensus (as in CAP3): Filtering
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3 remove poor quality reads

4 compute global alignment for high quality pairs.
5 evaluate alignments due to

1 minimum length
2 minimum identity
3 minimum similarity
4 number of high-quality (true) mismatches

6 remove pairs that do not match thresholds 5.1-5.4.
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Overlap Layout Consensus (as in CAP3): Contig building
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Overlap Layout Consensus (as in CAP3): Scaffolding

contigcontigcontig

wvu

(now, assume that all above contigs were constructed from many shorter reads.)

11 the set of contigs can often be extended

12 using additional information like paired-end reads (if available)

13 order contigs to bring matching paired-ends next to each other

14 orientate contigs according to the paired-ends

15 fill the gaps with N’s according to the insert sizes used when
preparing the sequencing library

16 the joined contigs are called super-contigs or scaffolds
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Assembly Completeness and Contig Location

usually it is not possible to easily assemble each chromosome into a
single contig or scaffold
(e.g. due to repeats, low quality regions, too low read coverage)

thus, it can be important to locate scaffolds in the genome using,
e.g., FISH (fluorescence in-situ hybridization) with genetic markers.
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Assembly from 2nd and 3rd generation sequencing reads

CAP3 has been developed for Sanger sequencing reads.

NGS reads are typically shorter and come in huge numbers.

Thus, also the overlaps are short, producing false positives easily.

Assembly of NGS data works along the same principles.

However they have to employ more elaborate methods to deal with
the amount of data, the short overlaps and to efficiently detect false
positive overlaps.

A number of such tools apply approaches like de Bruijn graphs.
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Excursion: Beginning of Graph Theory

Leonhard Euler (1707-1783)

Popular 18th century problem:
Is there a walk through
Königsberg using each bridge
exactly once?
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Euler Paths and Tours

Given an undirected connected graph G = (V ,E ) with nodes V and
edges E , we define:

Euler Path or Trail

is a path visiting each edge (of a graph) exactly once.

Euler Tour or Circuit or Cycle

is a path visiting each edge (of a graph) exactly once and ending at the
starting point.
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Euler Paths and Tours: Solution?

Leonhard Euler (1735) showed that the existence of
such paths or tours depend on the degree of the
nodes.

Euler Path

exists if there are exactly 0 or 2 nodes with uneven
degree (i.e. number of attached edges).

Euler Tour

exists iff the graph is connected and has no nodes of
odd degree.
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Euler Paths and Tours on directed graphs

In directed graphs, that means, that edges have only one direction in
which they can be crossed. . .

Euler Tour

exists iff the in-degree of each node is equal to its out-degree and if the
graph is a strongly connected component, i.e. every node is reachable
from every other node via a directed path.

Euler Path

exists iff there at most one node with in-degree - out-degree = 1 exists at
most one node with out-degree - in-degree = 1.

Note, in graph theory the terms node and vertex (pl. vertices) are used
interchangeably, as are directed edge and arc.
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Variation: Hamiltonian Paths and Tours

Hamiltonian Path (or traceable path)

is a path that visits every node (of a graph) exactly
once.

Hamiltonian Tour

is a Hamiltonian path ending at its starting point.

Problems:

determining whether such a path/tour exists is
NP-complete.

Hamiltonian Tours are a special case of the
Traveling Salesman Problem.

William Rowan Hamilton
(1805-1865)
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Nicolaas de Bruijn

In 1946 Nicolaas de Bruijn got interested in the
superstring problem:

Find the shortest circular superstring that
contains all possible k-mers as substrings.

There are nk k-mers for an alphabet of size
n = |Σ|.
For example, the number DNA-triplets

:
nk = 43 = 64.

Nicolaas de Bruijn (1918-2012)
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De Bruijn Graphs

De Bruijn Graph

nodes: for all possible (k − 1)-mers

edges: directed links between nodes a and b if the k − 2-long prefix of
b is the suffix of a.

Note: A Eulerian Tour exists because every node have one in-edge
and one out-edge for each character in Σ.
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De Bruijn Graph Example

De Bruijn Graph for k = 4 and Σ = {0, 1}:
The nodes are labeled
with 000, 001, 010, 011,
100, 101, 110, 111.

The edges are labeled
linking the overlapping
node labels, e.g. 100→
001 with 1001.

An Eulerian Tour exists,
each node has in-degree
and out-degree 2.

The Eulerian Tour
(marked by blue
numbers) spells out the
circular superstring:
0000110010111101.
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De Bruijn Graphs in Sequence Assembly

nature biotechnology  volume 29   number 11   november 2011 989

states that a connected directed graph has an 
Eulerian cycle if and only if it is balanced. In 
particular, Euler’s theorem implies that our 
de Bruijn graph contains an Eulerian cycle as 
long as we have located all k-mers  present in 
the genome. Indeed, in this case, for any node, 
both its indegree and outdegree represent the 
number of times the (k–1)-mer assigned to that 
node occurs in the genome.

To see why Euler’s theorem must be true, 
first note that a graph that contains an Eulerian 
cycle is balanced because every time an ant 
traversing an Eulerian cycle passes through a 
particular vertex, it enters on one edge of the 
cycle and exits on the next edge. This pairs up 
all the edges touching each vertex, showing that 
half the edges touching the vertex lead into it 
and half lead out from it. It is a bit harder to see 
the converse—that every connected balanced 

nucleotide of the k-mer assigned to that edge.
Euler considered graphs for which there 

exists a path between every two nodes (called 
connected graphs). He proved that a connected 
graph with undirected edges contains an 
Eulerian cycle exactly when every node in the 
graph has an even number of edges touching 
it. For the Königsberg Bridge graph (Fig. 1b),  
this is not the case because each of the four 
nodes has an odd number of edges touching 
it and so the desired stroll through the city 
does not exist.

The case of directed graphs (that is, graphs 
with directed edges) is similar. For any node 
in a directed graph, define its indegree as the 
 number of edges leading into it and its  outdegree 
as the number of edges leaving it. A graph in 
which indegrees are equal to  outdegrees for 
all nodes is called ‘balanced’. Euler’s theorem 

(e.g., AT, TG, GG, GC, CG, GT, CA and AA) 
can appear only once as a node of the graph. 
Then, connect node x to node y with a directed 
edge if some k-mer (e.g., ATG) has prefix x (e.g., 
AT) and suffix y (e.g., TG), and label the edge 
with this k-mer (Fig. 3d; in Box 3, we describe 
how this approach was originally discussed in 
the context of sequencing by hybridization).

Now imagine an ant that follows a differ-
ent strategy: instead of visiting every node of 
the graph (as before), it now attempts to visit 
every edge of the graph exactly once. Sound 
familiar? This is exactly the kind of path that 
would solve the Bridges of Königsberg prob-
lem and is called an Eulerian cycle. As it visits 
all edges of the de Bruijn graph, which rep-
resent all possible k-mers, this new ant also 
spells out a candidate genome; for each edge 
that the ant traverses, one records the first 

Figure 3  Two strategies for genome assembly: from Hamiltonian cycles to Eulerian cycles. (a) An example small circular genome. (b) In traditional Sanger 
sequencing algorithms, reads were represented as nodes in a graph, and edges represented alignments between reads. Walking along a Hamiltonian cycle by 
following the edges in numerical order allows one to reconstruct the circular genome by combining alignments between successive reads. At the end of the 
cycle, the sequence wraps around to the start of the genome. The repeated part of the sequence is grayed out in the alignment diagram. (c) An alternative 
assembly technique first splits reads into all possible k-mers: with k = 3, ATGGCGT comprises ATG, TGG, GGC, GCG and CGT. Following a Hamiltonian 
cycle (indicated by red edges) allows one to reconstruct the genome by forming an alignment in which each successive k-mer (from successive nodes) is 
shifted by one position. This procedure recovers the genome but does not scale well to large graphs. (d) modern short-read assembly algorithms construct a 
de Bruijn graph by representing all k-mer prefixes and suffixes as nodes and then drawing edges that represent k-mers having a particular prefix and suffix. 
For example, the k-mer edge ATG has prefix AT and suffix TG. Finding an Eulerian cycle allows one to reconstruct the genome by forming an alignment in 
which each successive k-mer (from successive edges) is shifted by one position. This generates the same cyclic genome sequence without performing the 
computationally expensive task of finding a Hamiltonian cycle.
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states that a connected directed graph has an 
Eulerian cycle if and only if it is balanced. In 
particular, Euler’s theorem implies that our 
de Bruijn graph contains an Eulerian cycle as 
long as we have located all k-mers  present in 
the genome. Indeed, in this case, for any node, 
both its indegree and outdegree represent the 
number of times the (k–1)-mer assigned to that 
node occurs in the genome.

To see why Euler’s theorem must be true, 
first note that a graph that contains an Eulerian 
cycle is balanced because every time an ant 
traversing an Eulerian cycle passes through a 
particular vertex, it enters on one edge of the 
cycle and exits on the next edge. This pairs up 
all the edges touching each vertex, showing that 
half the edges touching the vertex lead into it 
and half lead out from it. It is a bit harder to see 
the converse—that every connected balanced 

nucleotide of the k-mer assigned to that edge.
Euler considered graphs for which there 

exists a path between every two nodes (called 
connected graphs). He proved that a connected 
graph with undirected edges contains an 
Eulerian cycle exactly when every node in the 
graph has an even number of edges touching 
it. For the Königsberg Bridge graph (Fig. 1b),  
this is not the case because each of the four 
nodes has an odd number of edges touching 
it and so the desired stroll through the city 
does not exist.

The case of directed graphs (that is, graphs 
with directed edges) is similar. For any node 
in a directed graph, define its indegree as the 
 number of edges leading into it and its  outdegree 
as the number of edges leaving it. A graph in 
which indegrees are equal to  outdegrees for 
all nodes is called ‘balanced’. Euler’s theorem 

(e.g., AT, TG, GG, GC, CG, GT, CA and AA) 
can appear only once as a node of the graph. 
Then, connect node x to node y with a directed 
edge if some k-mer (e.g., ATG) has prefix x (e.g., 
AT) and suffix y (e.g., TG), and label the edge 
with this k-mer (Fig. 3d; in Box 3, we describe 
how this approach was originally discussed in 
the context of sequencing by hybridization).

Now imagine an ant that follows a differ-
ent strategy: instead of visiting every node of 
the graph (as before), it now attempts to visit 
every edge of the graph exactly once. Sound 
familiar? This is exactly the kind of path that 
would solve the Bridges of Königsberg prob-
lem and is called an Eulerian cycle. As it visits 
all edges of the de Bruijn graph, which rep-
resent all possible k-mers, this new ant also 
spells out a candidate genome; for each edge 
that the ant traverses, one records the first 

Figure 3  Two strategies for genome assembly: from Hamiltonian cycles to Eulerian cycles. (a) An example small circular genome. (b) In traditional Sanger 
sequencing algorithms, reads were represented as nodes in a graph, and edges represented alignments between reads. Walking along a Hamiltonian cycle by 
following the edges in numerical order allows one to reconstruct the circular genome by combining alignments between successive reads. At the end of the 
cycle, the sequence wraps around to the start of the genome. The repeated part of the sequence is grayed out in the alignment diagram. (c) An alternative 
assembly technique first splits reads into all possible k-mers: with k = 3, ATGGCGT comprises ATG, TGG, GGC, GCG and CGT. Following a Hamiltonian 
cycle (indicated by red edges) allows one to reconstruct the genome by forming an alignment in which each successive k-mer (from successive nodes) is 
shifted by one position. This procedure recovers the genome but does not scale well to large graphs. (d) modern short-read assembly algorithms construct a 
de Bruijn graph by representing all k-mer prefixes and suffixes as nodes and then drawing edges that represent k-mers having a particular prefix and suffix. 
For example, the k-mer edge ATG has prefix AT and suffix TG. Finding an Eulerian cycle allows one to reconstruct the genome by forming an alignment in 
which each successive k-mer (from successive edges) is shifted by one position. This generates the same cyclic genome sequence without performing the 
computationally expensive task of finding a Hamiltonian cycle.
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states that a connected directed graph has an 
Eulerian cycle if and only if it is balanced. In 
particular, Euler’s theorem implies that our 
de Bruijn graph contains an Eulerian cycle as 
long as we have located all k-mers  present in 
the genome. Indeed, in this case, for any node, 
both its indegree and outdegree represent the 
number of times the (k–1)-mer assigned to that 
node occurs in the genome.

To see why Euler’s theorem must be true, 
first note that a graph that contains an Eulerian 
cycle is balanced because every time an ant 
traversing an Eulerian cycle passes through a 
particular vertex, it enters on one edge of the 
cycle and exits on the next edge. This pairs up 
all the edges touching each vertex, showing that 
half the edges touching the vertex lead into it 
and half lead out from it. It is a bit harder to see 
the converse—that every connected balanced 

nucleotide of the k-mer assigned to that edge.
Euler considered graphs for which there 

exists a path between every two nodes (called 
connected graphs). He proved that a connected 
graph with undirected edges contains an 
Eulerian cycle exactly when every node in the 
graph has an even number of edges touching 
it. For the Königsberg Bridge graph (Fig. 1b),  
this is not the case because each of the four 
nodes has an odd number of edges touching 
it and so the desired stroll through the city 
does not exist.

The case of directed graphs (that is, graphs 
with directed edges) is similar. For any node 
in a directed graph, define its indegree as the 
 number of edges leading into it and its  outdegree 
as the number of edges leaving it. A graph in 
which indegrees are equal to  outdegrees for 
all nodes is called ‘balanced’. Euler’s theorem 

(e.g., AT, TG, GG, GC, CG, GT, CA and AA) 
can appear only once as a node of the graph. 
Then, connect node x to node y with a directed 
edge if some k-mer (e.g., ATG) has prefix x (e.g., 
AT) and suffix y (e.g., TG), and label the edge 
with this k-mer (Fig. 3d; in Box 3, we describe 
how this approach was originally discussed in 
the context of sequencing by hybridization).

Now imagine an ant that follows a differ-
ent strategy: instead of visiting every node of 
the graph (as before), it now attempts to visit 
every edge of the graph exactly once. Sound 
familiar? This is exactly the kind of path that 
would solve the Bridges of Königsberg prob-
lem and is called an Eulerian cycle. As it visits 
all edges of the de Bruijn graph, which rep-
resent all possible k-mers, this new ant also 
spells out a candidate genome; for each edge 
that the ant traverses, one records the first 

Figure 3  Two strategies for genome assembly: from Hamiltonian cycles to Eulerian cycles. (a) An example small circular genome. (b) In traditional Sanger 
sequencing algorithms, reads were represented as nodes in a graph, and edges represented alignments between reads. Walking along a Hamiltonian cycle by 
following the edges in numerical order allows one to reconstruct the circular genome by combining alignments between successive reads. At the end of the 
cycle, the sequence wraps around to the start of the genome. The repeated part of the sequence is grayed out in the alignment diagram. (c) An alternative 
assembly technique first splits reads into all possible k-mers: with k = 3, ATGGCGT comprises ATG, TGG, GGC, GCG and CGT. Following a Hamiltonian 
cycle (indicated by red edges) allows one to reconstruct the genome by forming an alignment in which each successive k-mer (from successive nodes) is 
shifted by one position. This procedure recovers the genome but does not scale well to large graphs. (d) modern short-read assembly algorithms construct a 
de Bruijn graph by representing all k-mer prefixes and suffixes as nodes and then drawing edges that represent k-mers having a particular prefix and suffix. 
For example, the k-mer edge ATG has prefix AT and suffix TG. Finding an Eulerian cycle allows one to reconstruct the genome by forming an alignment in 
which each successive k-mer (from successive edges) is shifted by one position. This generates the same cyclic genome sequence without performing the 
computationally expensive task of finding a Hamiltonian cycle.
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states that a connected directed graph has an 
Eulerian cycle if and only if it is balanced. In 
particular, Euler’s theorem implies that our 
de Bruijn graph contains an Eulerian cycle as 
long as we have located all k-mers  present in 
the genome. Indeed, in this case, for any node, 
both its indegree and outdegree represent the 
number of times the (k–1)-mer assigned to that 
node occurs in the genome.

To see why Euler’s theorem must be true, 
first note that a graph that contains an Eulerian 
cycle is balanced because every time an ant 
traversing an Eulerian cycle passes through a 
particular vertex, it enters on one edge of the 
cycle and exits on the next edge. This pairs up 
all the edges touching each vertex, showing that 
half the edges touching the vertex lead into it 
and half lead out from it. It is a bit harder to see 
the converse—that every connected balanced 
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Euler considered graphs for which there 

exists a path between every two nodes (called 
connected graphs). He proved that a connected 
graph with undirected edges contains an 
Eulerian cycle exactly when every node in the 
graph has an even number of edges touching 
it. For the Königsberg Bridge graph (Fig. 1b),  
this is not the case because each of the four 
nodes has an odd number of edges touching 
it and so the desired stroll through the city 
does not exist.

The case of directed graphs (that is, graphs 
with directed edges) is similar. For any node 
in a directed graph, define its indegree as the 
 number of edges leading into it and its  outdegree 
as the number of edges leaving it. A graph in 
which indegrees are equal to  outdegrees for 
all nodes is called ‘balanced’. Euler’s theorem 

(e.g., AT, TG, GG, GC, CG, GT, CA and AA) 
can appear only once as a node of the graph. 
Then, connect node x to node y with a directed 
edge if some k-mer (e.g., ATG) has prefix x (e.g., 
AT) and suffix y (e.g., TG), and label the edge 
with this k-mer (Fig. 3d; in Box 3, we describe 
how this approach was originally discussed in 
the context of sequencing by hybridization).

Now imagine an ant that follows a differ-
ent strategy: instead of visiting every node of 
the graph (as before), it now attempts to visit 
every edge of the graph exactly once. Sound 
familiar? This is exactly the kind of path that 
would solve the Bridges of Königsberg prob-
lem and is called an Eulerian cycle. As it visits 
all edges of the de Bruijn graph, which rep-
resent all possible k-mers, this new ant also 
spells out a candidate genome; for each edge 
that the ant traverses, one records the first 

Figure 3  Two strategies for genome assembly: from Hamiltonian cycles to Eulerian cycles. (a) An example small circular genome. (b) In traditional Sanger 
sequencing algorithms, reads were represented as nodes in a graph, and edges represented alignments between reads. Walking along a Hamiltonian cycle by 
following the edges in numerical order allows one to reconstruct the circular genome by combining alignments between successive reads. At the end of the 
cycle, the sequence wraps around to the start of the genome. The repeated part of the sequence is grayed out in the alignment diagram. (c) An alternative 
assembly technique first splits reads into all possible k-mers: with k = 3, ATGGCGT comprises ATG, TGG, GGC, GCG and CGT. Following a Hamiltonian 
cycle (indicated by red edges) allows one to reconstruct the genome by forming an alignment in which each successive k-mer (from successive nodes) is 
shifted by one position. This procedure recovers the genome but does not scale well to large graphs. (d) modern short-read assembly algorithms construct a 
de Bruijn graph by representing all k-mer prefixes and suffixes as nodes and then drawing edges that represent k-mers having a particular prefix and suffix. 
For example, the k-mer edge ATG has prefix AT and suffix TG. Finding an Eulerian cycle allows one to reconstruct the genome by forming an alignment in 
which each successive k-mer (from successive edges) is shifted by one position. This generates the same cyclic genome sequence without performing the 
computationally expensive task of finding a Hamiltonian cycle.
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states that a connected directed graph has an 
Eulerian cycle if and only if it is balanced. In 
particular, Euler’s theorem implies that our 
de Bruijn graph contains an Eulerian cycle as 
long as we have located all k-mers  present in 
the genome. Indeed, in this case, for any node, 
both its indegree and outdegree represent the 
number of times the (k–1)-mer assigned to that 
node occurs in the genome.

To see why Euler’s theorem must be true, 
first note that a graph that contains an Eulerian 
cycle is balanced because every time an ant 
traversing an Eulerian cycle passes through a 
particular vertex, it enters on one edge of the 
cycle and exits on the next edge. This pairs up 
all the edges touching each vertex, showing that 
half the edges touching the vertex lead into it 
and half lead out from it. It is a bit harder to see 
the converse—that every connected balanced 

nucleotide of the k-mer assigned to that edge.
Euler considered graphs for which there 

exists a path between every two nodes (called 
connected graphs). He proved that a connected 
graph with undirected edges contains an 
Eulerian cycle exactly when every node in the 
graph has an even number of edges touching 
it. For the Königsberg Bridge graph (Fig. 1b),  
this is not the case because each of the four 
nodes has an odd number of edges touching 
it and so the desired stroll through the city 
does not exist.

The case of directed graphs (that is, graphs 
with directed edges) is similar. For any node 
in a directed graph, define its indegree as the 
 number of edges leading into it and its  outdegree 
as the number of edges leaving it. A graph in 
which indegrees are equal to  outdegrees for 
all nodes is called ‘balanced’. Euler’s theorem 

(e.g., AT, TG, GG, GC, CG, GT, CA and AA) 
can appear only once as a node of the graph. 
Then, connect node x to node y with a directed 
edge if some k-mer (e.g., ATG) has prefix x (e.g., 
AT) and suffix y (e.g., TG), and label the edge 
with this k-mer (Fig. 3d; in Box 3, we describe 
how this approach was originally discussed in 
the context of sequencing by hybridization).

Now imagine an ant that follows a differ-
ent strategy: instead of visiting every node of 
the graph (as before), it now attempts to visit 
every edge of the graph exactly once. Sound 
familiar? This is exactly the kind of path that 
would solve the Bridges of Königsberg prob-
lem and is called an Eulerian cycle. As it visits 
all edges of the de Bruijn graph, which rep-
resent all possible k-mers, this new ant also 
spells out a candidate genome; for each edge 
that the ant traverses, one records the first 

Figure 3  Two strategies for genome assembly: from Hamiltonian cycles to Eulerian cycles. (a) An example small circular genome. (b) In traditional Sanger 
sequencing algorithms, reads were represented as nodes in a graph, and edges represented alignments between reads. Walking along a Hamiltonian cycle by 
following the edges in numerical order allows one to reconstruct the circular genome by combining alignments between successive reads. At the end of the 
cycle, the sequence wraps around to the start of the genome. The repeated part of the sequence is grayed out in the alignment diagram. (c) An alternative 
assembly technique first splits reads into all possible k-mers: with k = 3, ATGGCGT comprises ATG, TGG, GGC, GCG and CGT. Following a Hamiltonian 
cycle (indicated by red edges) allows one to reconstruct the genome by forming an alignment in which each successive k-mer (from successive nodes) is 
shifted by one position. This procedure recovers the genome but does not scale well to large graphs. (d) modern short-read assembly algorithms construct a 
de Bruijn graph by representing all k-mer prefixes and suffixes as nodes and then drawing edges that represent k-mers having a particular prefix and suffix. 
For example, the k-mer edge ATG has prefix AT and suffix TG. Finding an Eulerian cycle allows one to reconstruct the genome by forming an alignment in 
which each successive k-mer (from successive edges) is shifted by one position. This generates the same cyclic genome sequence without performing the 
computationally expensive task of finding a Hamiltonian cycle.
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states that a connected directed graph has an 
Eulerian cycle if and only if it is balanced. In 
particular, Euler’s theorem implies that our 
de Bruijn graph contains an Eulerian cycle as 
long as we have located all k-mers  present in 
the genome. Indeed, in this case, for any node, 
both its indegree and outdegree represent the 
number of times the (k–1)-mer assigned to that 
node occurs in the genome.

To see why Euler’s theorem must be true, 
first note that a graph that contains an Eulerian 
cycle is balanced because every time an ant 
traversing an Eulerian cycle passes through a 
particular vertex, it enters on one edge of the 
cycle and exits on the next edge. This pairs up 
all the edges touching each vertex, showing that 
half the edges touching the vertex lead into it 
and half lead out from it. It is a bit harder to see 
the converse—that every connected balanced 

nucleotide of the k-mer assigned to that edge.
Euler considered graphs for which there 

exists a path between every two nodes (called 
connected graphs). He proved that a connected 
graph with undirected edges contains an 
Eulerian cycle exactly when every node in the 
graph has an even number of edges touching 
it. For the Königsberg Bridge graph (Fig. 1b),  
this is not the case because each of the four 
nodes has an odd number of edges touching 
it and so the desired stroll through the city 
does not exist.

The case of directed graphs (that is, graphs 
with directed edges) is similar. For any node 
in a directed graph, define its indegree as the 
 number of edges leading into it and its  outdegree 
as the number of edges leaving it. A graph in 
which indegrees are equal to  outdegrees for 
all nodes is called ‘balanced’. Euler’s theorem 

(e.g., AT, TG, GG, GC, CG, GT, CA and AA) 
can appear only once as a node of the graph. 
Then, connect node x to node y with a directed 
edge if some k-mer (e.g., ATG) has prefix x (e.g., 
AT) and suffix y (e.g., TG), and label the edge 
with this k-mer (Fig. 3d; in Box 3, we describe 
how this approach was originally discussed in 
the context of sequencing by hybridization).

Now imagine an ant that follows a differ-
ent strategy: instead of visiting every node of 
the graph (as before), it now attempts to visit 
every edge of the graph exactly once. Sound 
familiar? This is exactly the kind of path that 
would solve the Bridges of Königsberg prob-
lem and is called an Eulerian cycle. As it visits 
all edges of the de Bruijn graph, which rep-
resent all possible k-mers, this new ant also 
spells out a candidate genome; for each edge 
that the ant traverses, one records the first 

Figure 3  Two strategies for genome assembly: from Hamiltonian cycles to Eulerian cycles. (a) An example small circular genome. (b) In traditional Sanger 
sequencing algorithms, reads were represented as nodes in a graph, and edges represented alignments between reads. Walking along a Hamiltonian cycle by 
following the edges in numerical order allows one to reconstruct the circular genome by combining alignments between successive reads. At the end of the 
cycle, the sequence wraps around to the start of the genome. The repeated part of the sequence is grayed out in the alignment diagram. (c) An alternative 
assembly technique first splits reads into all possible k-mers: with k = 3, ATGGCGT comprises ATG, TGG, GGC, GCG and CGT. Following a Hamiltonian 
cycle (indicated by red edges) allows one to reconstruct the genome by forming an alignment in which each successive k-mer (from successive nodes) is 
shifted by one position. This procedure recovers the genome but does not scale well to large graphs. (d) modern short-read assembly algorithms construct a 
de Bruijn graph by representing all k-mer prefixes and suffixes as nodes and then drawing edges that represent k-mers having a particular prefix and suffix. 
For example, the k-mer edge ATG has prefix AT and suffix TG. Finding an Eulerian cycle allows one to reconstruct the genome by forming an alignment in 
which each successive k-mer (from successive edges) is shifted by one position. This generates the same cyclic genome sequence without performing the 
computationally expensive task of finding a Hamiltonian cycle.
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states that a connected directed graph has an 
Eulerian cycle if and only if it is balanced. In 
particular, Euler’s theorem implies that our 
de Bruijn graph contains an Eulerian cycle as 
long as we have located all k-mers  present in 
the genome. Indeed, in this case, for any node, 
both its indegree and outdegree represent the 
number of times the (k–1)-mer assigned to that 
node occurs in the genome.

To see why Euler’s theorem must be true, 
first note that a graph that contains an Eulerian 
cycle is balanced because every time an ant 
traversing an Eulerian cycle passes through a 
particular vertex, it enters on one edge of the 
cycle and exits on the next edge. This pairs up 
all the edges touching each vertex, showing that 
half the edges touching the vertex lead into it 
and half lead out from it. It is a bit harder to see 
the converse—that every connected balanced 

nucleotide of the k-mer assigned to that edge.
Euler considered graphs for which there 

exists a path between every two nodes (called 
connected graphs). He proved that a connected 
graph with undirected edges contains an 
Eulerian cycle exactly when every node in the 
graph has an even number of edges touching 
it. For the Königsberg Bridge graph (Fig. 1b),  
this is not the case because each of the four 
nodes has an odd number of edges touching 
it and so the desired stroll through the city 
does not exist.

The case of directed graphs (that is, graphs 
with directed edges) is similar. For any node 
in a directed graph, define its indegree as the 
 number of edges leading into it and its  outdegree 
as the number of edges leaving it. A graph in 
which indegrees are equal to  outdegrees for 
all nodes is called ‘balanced’. Euler’s theorem 

(e.g., AT, TG, GG, GC, CG, GT, CA and AA) 
can appear only once as a node of the graph. 
Then, connect node x to node y with a directed 
edge if some k-mer (e.g., ATG) has prefix x (e.g., 
AT) and suffix y (e.g., TG), and label the edge 
with this k-mer (Fig. 3d; in Box 3, we describe 
how this approach was originally discussed in 
the context of sequencing by hybridization).

Now imagine an ant that follows a differ-
ent strategy: instead of visiting every node of 
the graph (as before), it now attempts to visit 
every edge of the graph exactly once. Sound 
familiar? This is exactly the kind of path that 
would solve the Bridges of Königsberg prob-
lem and is called an Eulerian cycle. As it visits 
all edges of the de Bruijn graph, which rep-
resent all possible k-mers, this new ant also 
spells out a candidate genome; for each edge 
that the ant traverses, one records the first 

Figure 3  Two strategies for genome assembly: from Hamiltonian cycles to Eulerian cycles. (a) An example small circular genome. (b) In traditional Sanger 
sequencing algorithms, reads were represented as nodes in a graph, and edges represented alignments between reads. Walking along a Hamiltonian cycle by 
following the edges in numerical order allows one to reconstruct the circular genome by combining alignments between successive reads. At the end of the 
cycle, the sequence wraps around to the start of the genome. The repeated part of the sequence is grayed out in the alignment diagram. (c) An alternative 
assembly technique first splits reads into all possible k-mers: with k = 3, ATGGCGT comprises ATG, TGG, GGC, GCG and CGT. Following a Hamiltonian 
cycle (indicated by red edges) allows one to reconstruct the genome by forming an alignment in which each successive k-mer (from successive nodes) is 
shifted by one position. This procedure recovers the genome but does not scale well to large graphs. (d) modern short-read assembly algorithms construct a 
de Bruijn graph by representing all k-mer prefixes and suffixes as nodes and then drawing edges that represent k-mers having a particular prefix and suffix. 
For example, the k-mer edge ATG has prefix AT and suffix TG. Finding an Eulerian cycle allows one to reconstruct the genome by forming an alignment in 
which each successive k-mer (from successive edges) is shifted by one position. This generates the same cyclic genome sequence without performing the 
computationally expensive task of finding a Hamiltonian cycle.
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states that a connected directed graph has an 
Eulerian cycle if and only if it is balanced. In 
particular, Euler’s theorem implies that our 
de Bruijn graph contains an Eulerian cycle as 
long as we have located all k-mers  present in 
the genome. Indeed, in this case, for any node, 
both its indegree and outdegree represent the 
number of times the (k–1)-mer assigned to that 
node occurs in the genome.

To see why Euler’s theorem must be true, 
first note that a graph that contains an Eulerian 
cycle is balanced because every time an ant 
traversing an Eulerian cycle passes through a 
particular vertex, it enters on one edge of the 
cycle and exits on the next edge. This pairs up 
all the edges touching each vertex, showing that 
half the edges touching the vertex lead into it 
and half lead out from it. It is a bit harder to see 
the converse—that every connected balanced 

nucleotide of the k-mer assigned to that edge.
Euler considered graphs for which there 

exists a path between every two nodes (called 
connected graphs). He proved that a connected 
graph with undirected edges contains an 
Eulerian cycle exactly when every node in the 
graph has an even number of edges touching 
it. For the Königsberg Bridge graph (Fig. 1b),  
this is not the case because each of the four 
nodes has an odd number of edges touching 
it and so the desired stroll through the city 
does not exist.

The case of directed graphs (that is, graphs 
with directed edges) is similar. For any node 
in a directed graph, define its indegree as the 
 number of edges leading into it and its  outdegree 
as the number of edges leaving it. A graph in 
which indegrees are equal to  outdegrees for 
all nodes is called ‘balanced’. Euler’s theorem 

(e.g., AT, TG, GG, GC, CG, GT, CA and AA) 
can appear only once as a node of the graph. 
Then, connect node x to node y with a directed 
edge if some k-mer (e.g., ATG) has prefix x (e.g., 
AT) and suffix y (e.g., TG), and label the edge 
with this k-mer (Fig. 3d; in Box 3, we describe 
how this approach was originally discussed in 
the context of sequencing by hybridization).

Now imagine an ant that follows a differ-
ent strategy: instead of visiting every node of 
the graph (as before), it now attempts to visit 
every edge of the graph exactly once. Sound 
familiar? This is exactly the kind of path that 
would solve the Bridges of Königsberg prob-
lem and is called an Eulerian cycle. As it visits 
all edges of the de Bruijn graph, which rep-
resent all possible k-mers, this new ant also 
spells out a candidate genome; for each edge 
that the ant traverses, one records the first 

Figure 3  Two strategies for genome assembly: from Hamiltonian cycles to Eulerian cycles. (a) An example small circular genome. (b) In traditional Sanger 
sequencing algorithms, reads were represented as nodes in a graph, and edges represented alignments between reads. Walking along a Hamiltonian cycle by 
following the edges in numerical order allows one to reconstruct the circular genome by combining alignments between successive reads. At the end of the 
cycle, the sequence wraps around to the start of the genome. The repeated part of the sequence is grayed out in the alignment diagram. (c) An alternative 
assembly technique first splits reads into all possible k-mers: with k = 3, ATGGCGT comprises ATG, TGG, GGC, GCG and CGT. Following a Hamiltonian 
cycle (indicated by red edges) allows one to reconstruct the genome by forming an alignment in which each successive k-mer (from successive nodes) is 
shifted by one position. This procedure recovers the genome but does not scale well to large graphs. (d) modern short-read assembly algorithms construct a 
de Bruijn graph by representing all k-mer prefixes and suffixes as nodes and then drawing edges that represent k-mers having a particular prefix and suffix. 
For example, the k-mer edge ATG has prefix AT and suffix TG. Finding an Eulerian cycle allows one to reconstruct the genome by forming an alignment in 
which each successive k-mer (from successive edges) is shifted by one position. This generates the same cyclic genome sequence without performing the 
computationally expensive task of finding a Hamiltonian cycle.
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states that a connected directed graph has an 
Eulerian cycle if and only if it is balanced. In 
particular, Euler’s theorem implies that our 
de Bruijn graph contains an Eulerian cycle as 
long as we have located all k-mers  present in 
the genome. Indeed, in this case, for any node, 
both its indegree and outdegree represent the 
number of times the (k–1)-mer assigned to that 
node occurs in the genome.

To see why Euler’s theorem must be true, 
first note that a graph that contains an Eulerian 
cycle is balanced because every time an ant 
traversing an Eulerian cycle passes through a 
particular vertex, it enters on one edge of the 
cycle and exits on the next edge. This pairs up 
all the edges touching each vertex, showing that 
half the edges touching the vertex lead into it 
and half lead out from it. It is a bit harder to see 
the converse—that every connected balanced 

nucleotide of the k-mer assigned to that edge.
Euler considered graphs for which there 

exists a path between every two nodes (called 
connected graphs). He proved that a connected 
graph with undirected edges contains an 
Eulerian cycle exactly when every node in the 
graph has an even number of edges touching 
it. For the Königsberg Bridge graph (Fig. 1b),  
this is not the case because each of the four 
nodes has an odd number of edges touching 
it and so the desired stroll through the city 
does not exist.

The case of directed graphs (that is, graphs 
with directed edges) is similar. For any node 
in a directed graph, define its indegree as the 
 number of edges leading into it and its  outdegree 
as the number of edges leaving it. A graph in 
which indegrees are equal to  outdegrees for 
all nodes is called ‘balanced’. Euler’s theorem 

(e.g., AT, TG, GG, GC, CG, GT, CA and AA) 
can appear only once as a node of the graph. 
Then, connect node x to node y with a directed 
edge if some k-mer (e.g., ATG) has prefix x (e.g., 
AT) and suffix y (e.g., TG), and label the edge 
with this k-mer (Fig. 3d; in Box 3, we describe 
how this approach was originally discussed in 
the context of sequencing by hybridization).

Now imagine an ant that follows a differ-
ent strategy: instead of visiting every node of 
the graph (as before), it now attempts to visit 
every edge of the graph exactly once. Sound 
familiar? This is exactly the kind of path that 
would solve the Bridges of Königsberg prob-
lem and is called an Eulerian cycle. As it visits 
all edges of the de Bruijn graph, which rep-
resent all possible k-mers, this new ant also 
spells out a candidate genome; for each edge 
that the ant traverses, one records the first 

Figure 3  Two strategies for genome assembly: from Hamiltonian cycles to Eulerian cycles. (a) An example small circular genome. (b) In traditional Sanger 
sequencing algorithms, reads were represented as nodes in a graph, and edges represented alignments between reads. Walking along a Hamiltonian cycle by 
following the edges in numerical order allows one to reconstruct the circular genome by combining alignments between successive reads. At the end of the 
cycle, the sequence wraps around to the start of the genome. The repeated part of the sequence is grayed out in the alignment diagram. (c) An alternative 
assembly technique first splits reads into all possible k-mers: with k = 3, ATGGCGT comprises ATG, TGG, GGC, GCG and CGT. Following a Hamiltonian 
cycle (indicated by red edges) allows one to reconstruct the genome by forming an alignment in which each successive k-mer (from successive nodes) is 
shifted by one position. This procedure recovers the genome but does not scale well to large graphs. (d) modern short-read assembly algorithms construct a 
de Bruijn graph by representing all k-mer prefixes and suffixes as nodes and then drawing edges that represent k-mers having a particular prefix and suffix. 
For example, the k-mer edge ATG has prefix AT and suffix TG. Finding an Eulerian cycle allows one to reconstruct the genome by forming an alignment in 
which each successive k-mer (from successive edges) is shifted by one position. This generates the same cyclic genome sequence without performing the 
computationally expensive task of finding a Hamiltonian cycle.
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states that a connected directed graph has an 
Eulerian cycle if and only if it is balanced. In 
particular, Euler’s theorem implies that our 
de Bruijn graph contains an Eulerian cycle as 
long as we have located all k-mers  present in 
the genome. Indeed, in this case, for any node, 
both its indegree and outdegree represent the 
number of times the (k–1)-mer assigned to that 
node occurs in the genome.

To see why Euler’s theorem must be true, 
first note that a graph that contains an Eulerian 
cycle is balanced because every time an ant 
traversing an Eulerian cycle passes through a 
particular vertex, it enters on one edge of the 
cycle and exits on the next edge. This pairs up 
all the edges touching each vertex, showing that 
half the edges touching the vertex lead into it 
and half lead out from it. It is a bit harder to see 
the converse—that every connected balanced 

nucleotide of the k-mer assigned to that edge.
Euler considered graphs for which there 

exists a path between every two nodes (called 
connected graphs). He proved that a connected 
graph with undirected edges contains an 
Eulerian cycle exactly when every node in the 
graph has an even number of edges touching 
it. For the Königsberg Bridge graph (Fig. 1b),  
this is not the case because each of the four 
nodes has an odd number of edges touching 
it and so the desired stroll through the city 
does not exist.

The case of directed graphs (that is, graphs 
with directed edges) is similar. For any node 
in a directed graph, define its indegree as the 
 number of edges leading into it and its  outdegree 
as the number of edges leaving it. A graph in 
which indegrees are equal to  outdegrees for 
all nodes is called ‘balanced’. Euler’s theorem 

(e.g., AT, TG, GG, GC, CG, GT, CA and AA) 
can appear only once as a node of the graph. 
Then, connect node x to node y with a directed 
edge if some k-mer (e.g., ATG) has prefix x (e.g., 
AT) and suffix y (e.g., TG), and label the edge 
with this k-mer (Fig. 3d; in Box 3, we describe 
how this approach was originally discussed in 
the context of sequencing by hybridization).

Now imagine an ant that follows a differ-
ent strategy: instead of visiting every node of 
the graph (as before), it now attempts to visit 
every edge of the graph exactly once. Sound 
familiar? This is exactly the kind of path that 
would solve the Bridges of Königsberg prob-
lem and is called an Eulerian cycle. As it visits 
all edges of the de Bruijn graph, which rep-
resent all possible k-mers, this new ant also 
spells out a candidate genome; for each edge 
that the ant traverses, one records the first 

Figure 3  Two strategies for genome assembly: from Hamiltonian cycles to Eulerian cycles. (a) An example small circular genome. (b) In traditional Sanger 
sequencing algorithms, reads were represented as nodes in a graph, and edges represented alignments between reads. Walking along a Hamiltonian cycle by 
following the edges in numerical order allows one to reconstruct the circular genome by combining alignments between successive reads. At the end of the 
cycle, the sequence wraps around to the start of the genome. The repeated part of the sequence is grayed out in the alignment diagram. (c) An alternative 
assembly technique first splits reads into all possible k-mers: with k = 3, ATGGCGT comprises ATG, TGG, GGC, GCG and CGT. Following a Hamiltonian 
cycle (indicated by red edges) allows one to reconstruct the genome by forming an alignment in which each successive k-mer (from successive nodes) is 
shifted by one position. This procedure recovers the genome but does not scale well to large graphs. (d) modern short-read assembly algorithms construct a 
de Bruijn graph by representing all k-mer prefixes and suffixes as nodes and then drawing edges that represent k-mers having a particular prefix and suffix. 
For example, the k-mer edge ATG has prefix AT and suffix TG. Finding an Eulerian cycle allows one to reconstruct the genome by forming an alignment in 
which each successive k-mer (from successive edges) is shifted by one position. This generates the same cyclic genome sequence without performing the 
computationally expensive task of finding a Hamiltonian cycle.
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states that a connected directed graph has an 
Eulerian cycle if and only if it is balanced. In 
particular, Euler’s theorem implies that our 
de Bruijn graph contains an Eulerian cycle as 
long as we have located all k-mers  present in 
the genome. Indeed, in this case, for any node, 
both its indegree and outdegree represent the 
number of times the (k–1)-mer assigned to that 
node occurs in the genome.

To see why Euler’s theorem must be true, 
first note that a graph that contains an Eulerian 
cycle is balanced because every time an ant 
traversing an Eulerian cycle passes through a 
particular vertex, it enters on one edge of the 
cycle and exits on the next edge. This pairs up 
all the edges touching each vertex, showing that 
half the edges touching the vertex lead into it 
and half lead out from it. It is a bit harder to see 
the converse—that every connected balanced 

nucleotide of the k-mer assigned to that edge.
Euler considered graphs for which there 

exists a path between every two nodes (called 
connected graphs). He proved that a connected 
graph with undirected edges contains an 
Eulerian cycle exactly when every node in the 
graph has an even number of edges touching 
it. For the Königsberg Bridge graph (Fig. 1b),  
this is not the case because each of the four 
nodes has an odd number of edges touching 
it and so the desired stroll through the city 
does not exist.

The case of directed graphs (that is, graphs 
with directed edges) is similar. For any node 
in a directed graph, define its indegree as the 
 number of edges leading into it and its  outdegree 
as the number of edges leaving it. A graph in 
which indegrees are equal to  outdegrees for 
all nodes is called ‘balanced’. Euler’s theorem 

(e.g., AT, TG, GG, GC, CG, GT, CA and AA) 
can appear only once as a node of the graph. 
Then, connect node x to node y with a directed 
edge if some k-mer (e.g., ATG) has prefix x (e.g., 
AT) and suffix y (e.g., TG), and label the edge 
with this k-mer (Fig. 3d; in Box 3, we describe 
how this approach was originally discussed in 
the context of sequencing by hybridization).

Now imagine an ant that follows a differ-
ent strategy: instead of visiting every node of 
the graph (as before), it now attempts to visit 
every edge of the graph exactly once. Sound 
familiar? This is exactly the kind of path that 
would solve the Bridges of Königsberg prob-
lem and is called an Eulerian cycle. As it visits 
all edges of the de Bruijn graph, which rep-
resent all possible k-mers, this new ant also 
spells out a candidate genome; for each edge 
that the ant traverses, one records the first 

Figure 3  Two strategies for genome assembly: from Hamiltonian cycles to Eulerian cycles. (a) An example small circular genome. (b) In traditional Sanger 
sequencing algorithms, reads were represented as nodes in a graph, and edges represented alignments between reads. Walking along a Hamiltonian cycle by 
following the edges in numerical order allows one to reconstruct the circular genome by combining alignments between successive reads. At the end of the 
cycle, the sequence wraps around to the start of the genome. The repeated part of the sequence is grayed out in the alignment diagram. (c) An alternative 
assembly technique first splits reads into all possible k-mers: with k = 3, ATGGCGT comprises ATG, TGG, GGC, GCG and CGT. Following a Hamiltonian 
cycle (indicated by red edges) allows one to reconstruct the genome by forming an alignment in which each successive k-mer (from successive nodes) is 
shifted by one position. This procedure recovers the genome but does not scale well to large graphs. (d) modern short-read assembly algorithms construct a 
de Bruijn graph by representing all k-mer prefixes and suffixes as nodes and then drawing edges that represent k-mers having a particular prefix and suffix. 
For example, the k-mer edge ATG has prefix AT and suffix TG. Finding an Eulerian cycle allows one to reconstruct the genome by forming an alignment in 
which each successive k-mer (from successive edges) is shifted by one position. This generates the same cyclic genome sequence without performing the 
computationally expensive task of finding a Hamiltonian cycle.

G

G

A

T

C

A T

G

C
G

CGTGCAA

ATGGCGT

CAATGGCGGCGTGC

TGCAATG

ATGGCGT

GGCGTGC

CGTGCAA

TGCAATG

CAATGGC

ATGGCGTGCAATGGCGT
ATGGCGT

Short-read
sequencing

Genome:

Vertices are k-mers
Edges are pairwise alignments

Vertices are (k 1)-mers
Edges are k-mers

a

c
1

2

3

4

56

7

8

9

10

d
AT

TG

GG

GC

CG

GT

CA

AA

3

45

6 7

8

1

2
9

10

ATG

TGG

GGC

GCGCGT

GTG
TGC

GCA

CAA

AAT
ATG

TGG

GGC

GCG

CGT

GTG

TGC

GCA

CAA

AAT

ATG
ATGGCGTGCAATG

b

Genome:

Hamiltonian cycle
Visit each vertex once

(harder to solve)

Eulerian cycle
Visit each edge once

(easier to solve)

1

2

3

4

5

GGC

TGG

ATG

AAT

CAA

GCA

TGC
GTG

GCG

CGT

k-mers from edgesk-mers from vertices

pR ImER

©
 2

01
1 

N
at

u
re

 A
m

er
ic

a,
 In

c.
  A

ll 
ri

g
h

ts
 r

es
er

ve
d

.

split reads into k-mers

nature biotechnology  volume 29   number 11   november 2011 989

states that a connected directed graph has an 
Eulerian cycle if and only if it is balanced. In 
particular, Euler’s theorem implies that our 
de Bruijn graph contains an Eulerian cycle as 
long as we have located all k-mers  present in 
the genome. Indeed, in this case, for any node, 
both its indegree and outdegree represent the 
number of times the (k–1)-mer assigned to that 
node occurs in the genome.

To see why Euler’s theorem must be true, 
first note that a graph that contains an Eulerian 
cycle is balanced because every time an ant 
traversing an Eulerian cycle passes through a 
particular vertex, it enters on one edge of the 
cycle and exits on the next edge. This pairs up 
all the edges touching each vertex, showing that 
half the edges touching the vertex lead into it 
and half lead out from it. It is a bit harder to see 
the converse—that every connected balanced 

nucleotide of the k-mer assigned to that edge.
Euler considered graphs for which there 

exists a path between every two nodes (called 
connected graphs). He proved that a connected 
graph with undirected edges contains an 
Eulerian cycle exactly when every node in the 
graph has an even number of edges touching 
it. For the Königsberg Bridge graph (Fig. 1b),  
this is not the case because each of the four 
nodes has an odd number of edges touching 
it and so the desired stroll through the city 
does not exist.

The case of directed graphs (that is, graphs 
with directed edges) is similar. For any node 
in a directed graph, define its indegree as the 
 number of edges leading into it and its  outdegree 
as the number of edges leaving it. A graph in 
which indegrees are equal to  outdegrees for 
all nodes is called ‘balanced’. Euler’s theorem 

(e.g., AT, TG, GG, GC, CG, GT, CA and AA) 
can appear only once as a node of the graph. 
Then, connect node x to node y with a directed 
edge if some k-mer (e.g., ATG) has prefix x (e.g., 
AT) and suffix y (e.g., TG), and label the edge 
with this k-mer (Fig. 3d; in Box 3, we describe 
how this approach was originally discussed in 
the context of sequencing by hybridization).

Now imagine an ant that follows a differ-
ent strategy: instead of visiting every node of 
the graph (as before), it now attempts to visit 
every edge of the graph exactly once. Sound 
familiar? This is exactly the kind of path that 
would solve the Bridges of Königsberg prob-
lem and is called an Eulerian cycle. As it visits 
all edges of the de Bruijn graph, which rep-
resent all possible k-mers, this new ant also 
spells out a candidate genome; for each edge 
that the ant traverses, one records the first 

Figure 3  Two strategies for genome assembly: from Hamiltonian cycles to Eulerian cycles. (a) An example small circular genome. (b) In traditional Sanger 
sequencing algorithms, reads were represented as nodes in a graph, and edges represented alignments between reads. Walking along a Hamiltonian cycle by 
following the edges in numerical order allows one to reconstruct the circular genome by combining alignments between successive reads. At the end of the 
cycle, the sequence wraps around to the start of the genome. The repeated part of the sequence is grayed out in the alignment diagram. (c) An alternative 
assembly technique first splits reads into all possible k-mers: with k = 3, ATGGCGT comprises ATG, TGG, GGC, GCG and CGT. Following a Hamiltonian 
cycle (indicated by red edges) allows one to reconstruct the genome by forming an alignment in which each successive k-mer (from successive nodes) is 
shifted by one position. This procedure recovers the genome but does not scale well to large graphs. (d) modern short-read assembly algorithms construct a 
de Bruijn graph by representing all k-mer prefixes and suffixes as nodes and then drawing edges that represent k-mers having a particular prefix and suffix. 
For example, the k-mer edge ATG has prefix AT and suffix TG. Finding an Eulerian cycle allows one to reconstruct the genome by forming an alignment in 
which each successive k-mer (from successive edges) is shifted by one position. This generates the same cyclic genome sequence without performing the 
computationally expensive task of finding a Hamiltonian cycle.
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states that a connected directed graph has an 
Eulerian cycle if and only if it is balanced. In 
particular, Euler’s theorem implies that our 
de Bruijn graph contains an Eulerian cycle as 
long as we have located all k-mers  present in 
the genome. Indeed, in this case, for any node, 
both its indegree and outdegree represent the 
number of times the (k–1)-mer assigned to that 
node occurs in the genome.

To see why Euler’s theorem must be true, 
first note that a graph that contains an Eulerian 
cycle is balanced because every time an ant 
traversing an Eulerian cycle passes through a 
particular vertex, it enters on one edge of the 
cycle and exits on the next edge. This pairs up 
all the edges touching each vertex, showing that 
half the edges touching the vertex lead into it 
and half lead out from it. It is a bit harder to see 
the converse—that every connected balanced 

nucleotide of the k-mer assigned to that edge.
Euler considered graphs for which there 

exists a path between every two nodes (called 
connected graphs). He proved that a connected 
graph with undirected edges contains an 
Eulerian cycle exactly when every node in the 
graph has an even number of edges touching 
it. For the Königsberg Bridge graph (Fig. 1b),  
this is not the case because each of the four 
nodes has an odd number of edges touching 
it and so the desired stroll through the city 
does not exist.

The case of directed graphs (that is, graphs 
with directed edges) is similar. For any node 
in a directed graph, define its indegree as the 
 number of edges leading into it and its  outdegree 
as the number of edges leaving it. A graph in 
which indegrees are equal to  outdegrees for 
all nodes is called ‘balanced’. Euler’s theorem 

(e.g., AT, TG, GG, GC, CG, GT, CA and AA) 
can appear only once as a node of the graph. 
Then, connect node x to node y with a directed 
edge if some k-mer (e.g., ATG) has prefix x (e.g., 
AT) and suffix y (e.g., TG), and label the edge 
with this k-mer (Fig. 3d; in Box 3, we describe 
how this approach was originally discussed in 
the context of sequencing by hybridization).

Now imagine an ant that follows a differ-
ent strategy: instead of visiting every node of 
the graph (as before), it now attempts to visit 
every edge of the graph exactly once. Sound 
familiar? This is exactly the kind of path that 
would solve the Bridges of Königsberg prob-
lem and is called an Eulerian cycle. As it visits 
all edges of the de Bruijn graph, which rep-
resent all possible k-mers, this new ant also 
spells out a candidate genome; for each edge 
that the ant traverses, one records the first 

Figure 3  Two strategies for genome assembly: from Hamiltonian cycles to Eulerian cycles. (a) An example small circular genome. (b) In traditional Sanger 
sequencing algorithms, reads were represented as nodes in a graph, and edges represented alignments between reads. Walking along a Hamiltonian cycle by 
following the edges in numerical order allows one to reconstruct the circular genome by combining alignments between successive reads. At the end of the 
cycle, the sequence wraps around to the start of the genome. The repeated part of the sequence is grayed out in the alignment diagram. (c) An alternative 
assembly technique first splits reads into all possible k-mers: with k = 3, ATGGCGT comprises ATG, TGG, GGC, GCG and CGT. Following a Hamiltonian 
cycle (indicated by red edges) allows one to reconstruct the genome by forming an alignment in which each successive k-mer (from successive nodes) is 
shifted by one position. This procedure recovers the genome but does not scale well to large graphs. (d) modern short-read assembly algorithms construct a 
de Bruijn graph by representing all k-mer prefixes and suffixes as nodes and then drawing edges that represent k-mers having a particular prefix and suffix. 
For example, the k-mer edge ATG has prefix AT and suffix TG. Finding an Eulerian cycle allows one to reconstruct the genome by forming an alignment in 
which each successive k-mer (from successive edges) is shifted by one position. This generates the same cyclic genome sequence without performing the 
computationally expensive task of finding a Hamiltonian cycle.
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states that a connected directed graph has an 
Eulerian cycle if and only if it is balanced. In 
particular, Euler’s theorem implies that our 
de Bruijn graph contains an Eulerian cycle as 
long as we have located all k-mers  present in 
the genome. Indeed, in this case, for any node, 
both its indegree and outdegree represent the 
number of times the (k–1)-mer assigned to that 
node occurs in the genome.

To see why Euler’s theorem must be true, 
first note that a graph that contains an Eulerian 
cycle is balanced because every time an ant 
traversing an Eulerian cycle passes through a 
particular vertex, it enters on one edge of the 
cycle and exits on the next edge. This pairs up 
all the edges touching each vertex, showing that 
half the edges touching the vertex lead into it 
and half lead out from it. It is a bit harder to see 
the converse—that every connected balanced 

nucleotide of the k-mer assigned to that edge.
Euler considered graphs for which there 

exists a path between every two nodes (called 
connected graphs). He proved that a connected 
graph with undirected edges contains an 
Eulerian cycle exactly when every node in the 
graph has an even number of edges touching 
it. For the Königsberg Bridge graph (Fig. 1b),  
this is not the case because each of the four 
nodes has an odd number of edges touching 
it and so the desired stroll through the city 
does not exist.

The case of directed graphs (that is, graphs 
with directed edges) is similar. For any node 
in a directed graph, define its indegree as the 
 number of edges leading into it and its  outdegree 
as the number of edges leaving it. A graph in 
which indegrees are equal to  outdegrees for 
all nodes is called ‘balanced’. Euler’s theorem 

(e.g., AT, TG, GG, GC, CG, GT, CA and AA) 
can appear only once as a node of the graph. 
Then, connect node x to node y with a directed 
edge if some k-mer (e.g., ATG) has prefix x (e.g., 
AT) and suffix y (e.g., TG), and label the edge 
with this k-mer (Fig. 3d; in Box 3, we describe 
how this approach was originally discussed in 
the context of sequencing by hybridization).

Now imagine an ant that follows a differ-
ent strategy: instead of visiting every node of 
the graph (as before), it now attempts to visit 
every edge of the graph exactly once. Sound 
familiar? This is exactly the kind of path that 
would solve the Bridges of Königsberg prob-
lem and is called an Eulerian cycle. As it visits 
all edges of the de Bruijn graph, which rep-
resent all possible k-mers, this new ant also 
spells out a candidate genome; for each edge 
that the ant traverses, one records the first 

Figure 3  Two strategies for genome assembly: from Hamiltonian cycles to Eulerian cycles. (a) An example small circular genome. (b) In traditional Sanger 
sequencing algorithms, reads were represented as nodes in a graph, and edges represented alignments between reads. Walking along a Hamiltonian cycle by 
following the edges in numerical order allows one to reconstruct the circular genome by combining alignments between successive reads. At the end of the 
cycle, the sequence wraps around to the start of the genome. The repeated part of the sequence is grayed out in the alignment diagram. (c) An alternative 
assembly technique first splits reads into all possible k-mers: with k = 3, ATGGCGT comprises ATG, TGG, GGC, GCG and CGT. Following a Hamiltonian 
cycle (indicated by red edges) allows one to reconstruct the genome by forming an alignment in which each successive k-mer (from successive nodes) is 
shifted by one position. This procedure recovers the genome but does not scale well to large graphs. (d) modern short-read assembly algorithms construct a 
de Bruijn graph by representing all k-mer prefixes and suffixes as nodes and then drawing edges that represent k-mers having a particular prefix and suffix. 
For example, the k-mer edge ATG has prefix AT and suffix TG. Finding an Eulerian cycle allows one to reconstruct the genome by forming an alignment in 
which each successive k-mer (from successive edges) is shifted by one position. This generates the same cyclic genome sequence without performing the 
computationally expensive task of finding a Hamiltonian cycle.
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states that a connected directed graph has an 
Eulerian cycle if and only if it is balanced. In 
particular, Euler’s theorem implies that our 
de Bruijn graph contains an Eulerian cycle as 
long as we have located all k-mers  present in 
the genome. Indeed, in this case, for any node, 
both its indegree and outdegree represent the 
number of times the (k–1)-mer assigned to that 
node occurs in the genome.

To see why Euler’s theorem must be true, 
first note that a graph that contains an Eulerian 
cycle is balanced because every time an ant 
traversing an Eulerian cycle passes through a 
particular vertex, it enters on one edge of the 
cycle and exits on the next edge. This pairs up 
all the edges touching each vertex, showing that 
half the edges touching the vertex lead into it 
and half lead out from it. It is a bit harder to see 
the converse—that every connected balanced 

nucleotide of the k-mer assigned to that edge.
Euler considered graphs for which there 

exists a path between every two nodes (called 
connected graphs). He proved that a connected 
graph with undirected edges contains an 
Eulerian cycle exactly when every node in the 
graph has an even number of edges touching 
it. For the Königsberg Bridge graph (Fig. 1b),  
this is not the case because each of the four 
nodes has an odd number of edges touching 
it and so the desired stroll through the city 
does not exist.

The case of directed graphs (that is, graphs 
with directed edges) is similar. For any node 
in a directed graph, define its indegree as the 
 number of edges leading into it and its  outdegree 
as the number of edges leaving it. A graph in 
which indegrees are equal to  outdegrees for 
all nodes is called ‘balanced’. Euler’s theorem 

(e.g., AT, TG, GG, GC, CG, GT, CA and AA) 
can appear only once as a node of the graph. 
Then, connect node x to node y with a directed 
edge if some k-mer (e.g., ATG) has prefix x (e.g., 
AT) and suffix y (e.g., TG), and label the edge 
with this k-mer (Fig. 3d; in Box 3, we describe 
how this approach was originally discussed in 
the context of sequencing by hybridization).

Now imagine an ant that follows a differ-
ent strategy: instead of visiting every node of 
the graph (as before), it now attempts to visit 
every edge of the graph exactly once. Sound 
familiar? This is exactly the kind of path that 
would solve the Bridges of Königsberg prob-
lem and is called an Eulerian cycle. As it visits 
all edges of the de Bruijn graph, which rep-
resent all possible k-mers, this new ant also 
spells out a candidate genome; for each edge 
that the ant traverses, one records the first 

Figure 3  Two strategies for genome assembly: from Hamiltonian cycles to Eulerian cycles. (a) An example small circular genome. (b) In traditional Sanger 
sequencing algorithms, reads were represented as nodes in a graph, and edges represented alignments between reads. Walking along a Hamiltonian cycle by 
following the edges in numerical order allows one to reconstruct the circular genome by combining alignments between successive reads. At the end of the 
cycle, the sequence wraps around to the start of the genome. The repeated part of the sequence is grayed out in the alignment diagram. (c) An alternative 
assembly technique first splits reads into all possible k-mers: with k = 3, ATGGCGT comprises ATG, TGG, GGC, GCG and CGT. Following a Hamiltonian 
cycle (indicated by red edges) allows one to reconstruct the genome by forming an alignment in which each successive k-mer (from successive nodes) is 
shifted by one position. This procedure recovers the genome but does not scale well to large graphs. (d) modern short-read assembly algorithms construct a 
de Bruijn graph by representing all k-mer prefixes and suffixes as nodes and then drawing edges that represent k-mers having a particular prefix and suffix. 
For example, the k-mer edge ATG has prefix AT and suffix TG. Finding an Eulerian cycle allows one to reconstruct the genome by forming an alignment in 
which each successive k-mer (from successive edges) is shifted by one position. This generates the same cyclic genome sequence without performing the 
computationally expensive task of finding a Hamiltonian cycle.
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states that a connected directed graph has an 
Eulerian cycle if and only if it is balanced. In 
particular, Euler’s theorem implies that our 
de Bruijn graph contains an Eulerian cycle as 
long as we have located all k-mers  present in 
the genome. Indeed, in this case, for any node, 
both its indegree and outdegree represent the 
number of times the (k–1)-mer assigned to that 
node occurs in the genome.

To see why Euler’s theorem must be true, 
first note that a graph that contains an Eulerian 
cycle is balanced because every time an ant 
traversing an Eulerian cycle passes through a 
particular vertex, it enters on one edge of the 
cycle and exits on the next edge. This pairs up 
all the edges touching each vertex, showing that 
half the edges touching the vertex lead into it 
and half lead out from it. It is a bit harder to see 
the converse—that every connected balanced 

nucleotide of the k-mer assigned to that edge.
Euler considered graphs for which there 

exists a path between every two nodes (called 
connected graphs). He proved that a connected 
graph with undirected edges contains an 
Eulerian cycle exactly when every node in the 
graph has an even number of edges touching 
it. For the Königsberg Bridge graph (Fig. 1b),  
this is not the case because each of the four 
nodes has an odd number of edges touching 
it and so the desired stroll through the city 
does not exist.

The case of directed graphs (that is, graphs 
with directed edges) is similar. For any node 
in a directed graph, define its indegree as the 
 number of edges leading into it and its  outdegree 
as the number of edges leaving it. A graph in 
which indegrees are equal to  outdegrees for 
all nodes is called ‘balanced’. Euler’s theorem 

(e.g., AT, TG, GG, GC, CG, GT, CA and AA) 
can appear only once as a node of the graph. 
Then, connect node x to node y with a directed 
edge if some k-mer (e.g., ATG) has prefix x (e.g., 
AT) and suffix y (e.g., TG), and label the edge 
with this k-mer (Fig. 3d; in Box 3, we describe 
how this approach was originally discussed in 
the context of sequencing by hybridization).

Now imagine an ant that follows a differ-
ent strategy: instead of visiting every node of 
the graph (as before), it now attempts to visit 
every edge of the graph exactly once. Sound 
familiar? This is exactly the kind of path that 
would solve the Bridges of Königsberg prob-
lem and is called an Eulerian cycle. As it visits 
all edges of the de Bruijn graph, which rep-
resent all possible k-mers, this new ant also 
spells out a candidate genome; for each edge 
that the ant traverses, one records the first 

Figure 3  Two strategies for genome assembly: from Hamiltonian cycles to Eulerian cycles. (a) An example small circular genome. (b) In traditional Sanger 
sequencing algorithms, reads were represented as nodes in a graph, and edges represented alignments between reads. Walking along a Hamiltonian cycle by 
following the edges in numerical order allows one to reconstruct the circular genome by combining alignments between successive reads. At the end of the 
cycle, the sequence wraps around to the start of the genome. The repeated part of the sequence is grayed out in the alignment diagram. (c) An alternative 
assembly technique first splits reads into all possible k-mers: with k = 3, ATGGCGT comprises ATG, TGG, GGC, GCG and CGT. Following a Hamiltonian 
cycle (indicated by red edges) allows one to reconstruct the genome by forming an alignment in which each successive k-mer (from successive nodes) is 
shifted by one position. This procedure recovers the genome but does not scale well to large graphs. (d) modern short-read assembly algorithms construct a 
de Bruijn graph by representing all k-mer prefixes and suffixes as nodes and then drawing edges that represent k-mers having a particular prefix and suffix. 
For example, the k-mer edge ATG has prefix AT and suffix TG. Finding an Eulerian cycle allows one to reconstruct the genome by forming an alignment in 
which each successive k-mer (from successive edges) is shifted by one position. This generates the same cyclic genome sequence without performing the 
computationally expensive task of finding a Hamiltonian cycle.
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states that a connected directed graph has an 
Eulerian cycle if and only if it is balanced. In 
particular, Euler’s theorem implies that our 
de Bruijn graph contains an Eulerian cycle as 
long as we have located all k-mers  present in 
the genome. Indeed, in this case, for any node, 
both its indegree and outdegree represent the 
number of times the (k–1)-mer assigned to that 
node occurs in the genome.

To see why Euler’s theorem must be true, 
first note that a graph that contains an Eulerian 
cycle is balanced because every time an ant 
traversing an Eulerian cycle passes through a 
particular vertex, it enters on one edge of the 
cycle and exits on the next edge. This pairs up 
all the edges touching each vertex, showing that 
half the edges touching the vertex lead into it 
and half lead out from it. It is a bit harder to see 
the converse—that every connected balanced 

nucleotide of the k-mer assigned to that edge.
Euler considered graphs for which there 

exists a path between every two nodes (called 
connected graphs). He proved that a connected 
graph with undirected edges contains an 
Eulerian cycle exactly when every node in the 
graph has an even number of edges touching 
it. For the Königsberg Bridge graph (Fig. 1b),  
this is not the case because each of the four 
nodes has an odd number of edges touching 
it and so the desired stroll through the city 
does not exist.

The case of directed graphs (that is, graphs 
with directed edges) is similar. For any node 
in a directed graph, define its indegree as the 
 number of edges leading into it and its  outdegree 
as the number of edges leaving it. A graph in 
which indegrees are equal to  outdegrees for 
all nodes is called ‘balanced’. Euler’s theorem 

(e.g., AT, TG, GG, GC, CG, GT, CA and AA) 
can appear only once as a node of the graph. 
Then, connect node x to node y with a directed 
edge if some k-mer (e.g., ATG) has prefix x (e.g., 
AT) and suffix y (e.g., TG), and label the edge 
with this k-mer (Fig. 3d; in Box 3, we describe 
how this approach was originally discussed in 
the context of sequencing by hybridization).

Now imagine an ant that follows a differ-
ent strategy: instead of visiting every node of 
the graph (as before), it now attempts to visit 
every edge of the graph exactly once. Sound 
familiar? This is exactly the kind of path that 
would solve the Bridges of Königsberg prob-
lem and is called an Eulerian cycle. As it visits 
all edges of the de Bruijn graph, which rep-
resent all possible k-mers, this new ant also 
spells out a candidate genome; for each edge 
that the ant traverses, one records the first 

Figure 3  Two strategies for genome assembly: from Hamiltonian cycles to Eulerian cycles. (a) An example small circular genome. (b) In traditional Sanger 
sequencing algorithms, reads were represented as nodes in a graph, and edges represented alignments between reads. Walking along a Hamiltonian cycle by 
following the edges in numerical order allows one to reconstruct the circular genome by combining alignments between successive reads. At the end of the 
cycle, the sequence wraps around to the start of the genome. The repeated part of the sequence is grayed out in the alignment diagram. (c) An alternative 
assembly technique first splits reads into all possible k-mers: with k = 3, ATGGCGT comprises ATG, TGG, GGC, GCG and CGT. Following a Hamiltonian 
cycle (indicated by red edges) allows one to reconstruct the genome by forming an alignment in which each successive k-mer (from successive nodes) is 
shifted by one position. This procedure recovers the genome but does not scale well to large graphs. (d) modern short-read assembly algorithms construct a 
de Bruijn graph by representing all k-mer prefixes and suffixes as nodes and then drawing edges that represent k-mers having a particular prefix and suffix. 
For example, the k-mer edge ATG has prefix AT and suffix TG. Finding an Eulerian cycle allows one to reconstruct the genome by forming an alignment in 
which each successive k-mer (from successive edges) is shifted by one position. This generates the same cyclic genome sequence without performing the 
computationally expensive task of finding a Hamiltonian cycle.
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states that a connected directed graph has an 
Eulerian cycle if and only if it is balanced. In 
particular, Euler’s theorem implies that our 
de Bruijn graph contains an Eulerian cycle as 
long as we have located all k-mers  present in 
the genome. Indeed, in this case, for any node, 
both its indegree and outdegree represent the 
number of times the (k–1)-mer assigned to that 
node occurs in the genome.

To see why Euler’s theorem must be true, 
first note that a graph that contains an Eulerian 
cycle is balanced because every time an ant 
traversing an Eulerian cycle passes through a 
particular vertex, it enters on one edge of the 
cycle and exits on the next edge. This pairs up 
all the edges touching each vertex, showing that 
half the edges touching the vertex lead into it 
and half lead out from it. It is a bit harder to see 
the converse—that every connected balanced 

nucleotide of the k-mer assigned to that edge.
Euler considered graphs for which there 

exists a path between every two nodes (called 
connected graphs). He proved that a connected 
graph with undirected edges contains an 
Eulerian cycle exactly when every node in the 
graph has an even number of edges touching 
it. For the Königsberg Bridge graph (Fig. 1b),  
this is not the case because each of the four 
nodes has an odd number of edges touching 
it and so the desired stroll through the city 
does not exist.

The case of directed graphs (that is, graphs 
with directed edges) is similar. For any node 
in a directed graph, define its indegree as the 
 number of edges leading into it and its  outdegree 
as the number of edges leaving it. A graph in 
which indegrees are equal to  outdegrees for 
all nodes is called ‘balanced’. Euler’s theorem 

(e.g., AT, TG, GG, GC, CG, GT, CA and AA) 
can appear only once as a node of the graph. 
Then, connect node x to node y with a directed 
edge if some k-mer (e.g., ATG) has prefix x (e.g., 
AT) and suffix y (e.g., TG), and label the edge 
with this k-mer (Fig. 3d; in Box 3, we describe 
how this approach was originally discussed in 
the context of sequencing by hybridization).

Now imagine an ant that follows a differ-
ent strategy: instead of visiting every node of 
the graph (as before), it now attempts to visit 
every edge of the graph exactly once. Sound 
familiar? This is exactly the kind of path that 
would solve the Bridges of Königsberg prob-
lem and is called an Eulerian cycle. As it visits 
all edges of the de Bruijn graph, which rep-
resent all possible k-mers, this new ant also 
spells out a candidate genome; for each edge 
that the ant traverses, one records the first 

Figure 3  Two strategies for genome assembly: from Hamiltonian cycles to Eulerian cycles. (a) An example small circular genome. (b) In traditional Sanger 
sequencing algorithms, reads were represented as nodes in a graph, and edges represented alignments between reads. Walking along a Hamiltonian cycle by 
following the edges in numerical order allows one to reconstruct the circular genome by combining alignments between successive reads. At the end of the 
cycle, the sequence wraps around to the start of the genome. The repeated part of the sequence is grayed out in the alignment diagram. (c) An alternative 
assembly technique first splits reads into all possible k-mers: with k = 3, ATGGCGT comprises ATG, TGG, GGC, GCG and CGT. Following a Hamiltonian 
cycle (indicated by red edges) allows one to reconstruct the genome by forming an alignment in which each successive k-mer (from successive nodes) is 
shifted by one position. This procedure recovers the genome but does not scale well to large graphs. (d) modern short-read assembly algorithms construct a 
de Bruijn graph by representing all k-mer prefixes and suffixes as nodes and then drawing edges that represent k-mers having a particular prefix and suffix. 
For example, the k-mer edge ATG has prefix AT and suffix TG. Finding an Eulerian cycle allows one to reconstruct the genome by forming an alignment in 
which each successive k-mer (from successive edges) is shifted by one position. This generates the same cyclic genome sequence without performing the 
computationally expensive task of finding a Hamiltonian cycle.
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states that a connected directed graph has an 
Eulerian cycle if and only if it is balanced. In 
particular, Euler’s theorem implies that our 
de Bruijn graph contains an Eulerian cycle as 
long as we have located all k-mers  present in 
the genome. Indeed, in this case, for any node, 
both its indegree and outdegree represent the 
number of times the (k–1)-mer assigned to that 
node occurs in the genome.

To see why Euler’s theorem must be true, 
first note that a graph that contains an Eulerian 
cycle is balanced because every time an ant 
traversing an Eulerian cycle passes through a 
particular vertex, it enters on one edge of the 
cycle and exits on the next edge. This pairs up 
all the edges touching each vertex, showing that 
half the edges touching the vertex lead into it 
and half lead out from it. It is a bit harder to see 
the converse—that every connected balanced 

nucleotide of the k-mer assigned to that edge.
Euler considered graphs for which there 

exists a path between every two nodes (called 
connected graphs). He proved that a connected 
graph with undirected edges contains an 
Eulerian cycle exactly when every node in the 
graph has an even number of edges touching 
it. For the Königsberg Bridge graph (Fig. 1b),  
this is not the case because each of the four 
nodes has an odd number of edges touching 
it and so the desired stroll through the city 
does not exist.

The case of directed graphs (that is, graphs 
with directed edges) is similar. For any node 
in a directed graph, define its indegree as the 
 number of edges leading into it and its  outdegree 
as the number of edges leaving it. A graph in 
which indegrees are equal to  outdegrees for 
all nodes is called ‘balanced’. Euler’s theorem 

(e.g., AT, TG, GG, GC, CG, GT, CA and AA) 
can appear only once as a node of the graph. 
Then, connect node x to node y with a directed 
edge if some k-mer (e.g., ATG) has prefix x (e.g., 
AT) and suffix y (e.g., TG), and label the edge 
with this k-mer (Fig. 3d; in Box 3, we describe 
how this approach was originally discussed in 
the context of sequencing by hybridization).

Now imagine an ant that follows a differ-
ent strategy: instead of visiting every node of 
the graph (as before), it now attempts to visit 
every edge of the graph exactly once. Sound 
familiar? This is exactly the kind of path that 
would solve the Bridges of Königsberg prob-
lem and is called an Eulerian cycle. As it visits 
all edges of the de Bruijn graph, which rep-
resent all possible k-mers, this new ant also 
spells out a candidate genome; for each edge 
that the ant traverses, one records the first 

Figure 3  Two strategies for genome assembly: from Hamiltonian cycles to Eulerian cycles. (a) An example small circular genome. (b) In traditional Sanger 
sequencing algorithms, reads were represented as nodes in a graph, and edges represented alignments between reads. Walking along a Hamiltonian cycle by 
following the edges in numerical order allows one to reconstruct the circular genome by combining alignments between successive reads. At the end of the 
cycle, the sequence wraps around to the start of the genome. The repeated part of the sequence is grayed out in the alignment diagram. (c) An alternative 
assembly technique first splits reads into all possible k-mers: with k = 3, ATGGCGT comprises ATG, TGG, GGC, GCG and CGT. Following a Hamiltonian 
cycle (indicated by red edges) allows one to reconstruct the genome by forming an alignment in which each successive k-mer (from successive nodes) is 
shifted by one position. This procedure recovers the genome but does not scale well to large graphs. (d) modern short-read assembly algorithms construct a 
de Bruijn graph by representing all k-mer prefixes and suffixes as nodes and then drawing edges that represent k-mers having a particular prefix and suffix. 
For example, the k-mer edge ATG has prefix AT and suffix TG. Finding an Eulerian cycle allows one to reconstruct the genome by forming an alignment in 
which each successive k-mer (from successive edges) is shifted by one position. This generates the same cyclic genome sequence without performing the 
computationally expensive task of finding a Hamiltonian cycle.
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states that a connected directed graph has an 
Eulerian cycle if and only if it is balanced. In 
particular, Euler’s theorem implies that our 
de Bruijn graph contains an Eulerian cycle as 
long as we have located all k-mers  present in 
the genome. Indeed, in this case, for any node, 
both its indegree and outdegree represent the 
number of times the (k–1)-mer assigned to that 
node occurs in the genome.

To see why Euler’s theorem must be true, 
first note that a graph that contains an Eulerian 
cycle is balanced because every time an ant 
traversing an Eulerian cycle passes through a 
particular vertex, it enters on one edge of the 
cycle and exits on the next edge. This pairs up 
all the edges touching each vertex, showing that 
half the edges touching the vertex lead into it 
and half lead out from it. It is a bit harder to see 
the converse—that every connected balanced 

nucleotide of the k-mer assigned to that edge.
Euler considered graphs for which there 

exists a path between every two nodes (called 
connected graphs). He proved that a connected 
graph with undirected edges contains an 
Eulerian cycle exactly when every node in the 
graph has an even number of edges touching 
it. For the Königsberg Bridge graph (Fig. 1b),  
this is not the case because each of the four 
nodes has an odd number of edges touching 
it and so the desired stroll through the city 
does not exist.

The case of directed graphs (that is, graphs 
with directed edges) is similar. For any node 
in a directed graph, define its indegree as the 
 number of edges leading into it and its  outdegree 
as the number of edges leaving it. A graph in 
which indegrees are equal to  outdegrees for 
all nodes is called ‘balanced’. Euler’s theorem 

(e.g., AT, TG, GG, GC, CG, GT, CA and AA) 
can appear only once as a node of the graph. 
Then, connect node x to node y with a directed 
edge if some k-mer (e.g., ATG) has prefix x (e.g., 
AT) and suffix y (e.g., TG), and label the edge 
with this k-mer (Fig. 3d; in Box 3, we describe 
how this approach was originally discussed in 
the context of sequencing by hybridization).

Now imagine an ant that follows a differ-
ent strategy: instead of visiting every node of 
the graph (as before), it now attempts to visit 
every edge of the graph exactly once. Sound 
familiar? This is exactly the kind of path that 
would solve the Bridges of Königsberg prob-
lem and is called an Eulerian cycle. As it visits 
all edges of the de Bruijn graph, which rep-
resent all possible k-mers, this new ant also 
spells out a candidate genome; for each edge 
that the ant traverses, one records the first 

Figure 3  Two strategies for genome assembly: from Hamiltonian cycles to Eulerian cycles. (a) An example small circular genome. (b) In traditional Sanger 
sequencing algorithms, reads were represented as nodes in a graph, and edges represented alignments between reads. Walking along a Hamiltonian cycle by 
following the edges in numerical order allows one to reconstruct the circular genome by combining alignments between successive reads. At the end of the 
cycle, the sequence wraps around to the start of the genome. The repeated part of the sequence is grayed out in the alignment diagram. (c) An alternative 
assembly technique first splits reads into all possible k-mers: with k = 3, ATGGCGT comprises ATG, TGG, GGC, GCG and CGT. Following a Hamiltonian 
cycle (indicated by red edges) allows one to reconstruct the genome by forming an alignment in which each successive k-mer (from successive nodes) is 
shifted by one position. This procedure recovers the genome but does not scale well to large graphs. (d) modern short-read assembly algorithms construct a 
de Bruijn graph by representing all k-mer prefixes and suffixes as nodes and then drawing edges that represent k-mers having a particular prefix and suffix. 
For example, the k-mer edge ATG has prefix AT and suffix TG. Finding an Eulerian cycle allows one to reconstruct the genome by forming an alignment in 
which each successive k-mer (from successive edges) is shifted by one position. This generates the same cyclic genome sequence without performing the 
computationally expensive task of finding a Hamiltonian cycle.
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states that a connected directed graph has an 
Eulerian cycle if and only if it is balanced. In 
particular, Euler’s theorem implies that our 
de Bruijn graph contains an Eulerian cycle as 
long as we have located all k-mers  present in 
the genome. Indeed, in this case, for any node, 
both its indegree and outdegree represent the 
number of times the (k–1)-mer assigned to that 
node occurs in the genome.

To see why Euler’s theorem must be true, 
first note that a graph that contains an Eulerian 
cycle is balanced because every time an ant 
traversing an Eulerian cycle passes through a 
particular vertex, it enters on one edge of the 
cycle and exits on the next edge. This pairs up 
all the edges touching each vertex, showing that 
half the edges touching the vertex lead into it 
and half lead out from it. It is a bit harder to see 
the converse—that every connected balanced 

nucleotide of the k-mer assigned to that edge.
Euler considered graphs for which there 

exists a path between every two nodes (called 
connected graphs). He proved that a connected 
graph with undirected edges contains an 
Eulerian cycle exactly when every node in the 
graph has an even number of edges touching 
it. For the Königsberg Bridge graph (Fig. 1b),  
this is not the case because each of the four 
nodes has an odd number of edges touching 
it and so the desired stroll through the city 
does not exist.

The case of directed graphs (that is, graphs 
with directed edges) is similar. For any node 
in a directed graph, define its indegree as the 
 number of edges leading into it and its  outdegree 
as the number of edges leaving it. A graph in 
which indegrees are equal to  outdegrees for 
all nodes is called ‘balanced’. Euler’s theorem 

(e.g., AT, TG, GG, GC, CG, GT, CA and AA) 
can appear only once as a node of the graph. 
Then, connect node x to node y with a directed 
edge if some k-mer (e.g., ATG) has prefix x (e.g., 
AT) and suffix y (e.g., TG), and label the edge 
with this k-mer (Fig. 3d; in Box 3, we describe 
how this approach was originally discussed in 
the context of sequencing by hybridization).

Now imagine an ant that follows a differ-
ent strategy: instead of visiting every node of 
the graph (as before), it now attempts to visit 
every edge of the graph exactly once. Sound 
familiar? This is exactly the kind of path that 
would solve the Bridges of Königsberg prob-
lem and is called an Eulerian cycle. As it visits 
all edges of the de Bruijn graph, which rep-
resent all possible k-mers, this new ant also 
spells out a candidate genome; for each edge 
that the ant traverses, one records the first 

Figure 3  Two strategies for genome assembly: from Hamiltonian cycles to Eulerian cycles. (a) An example small circular genome. (b) In traditional Sanger 
sequencing algorithms, reads were represented as nodes in a graph, and edges represented alignments between reads. Walking along a Hamiltonian cycle by 
following the edges in numerical order allows one to reconstruct the circular genome by combining alignments between successive reads. At the end of the 
cycle, the sequence wraps around to the start of the genome. The repeated part of the sequence is grayed out in the alignment diagram. (c) An alternative 
assembly technique first splits reads into all possible k-mers: with k = 3, ATGGCGT comprises ATG, TGG, GGC, GCG and CGT. Following a Hamiltonian 
cycle (indicated by red edges) allows one to reconstruct the genome by forming an alignment in which each successive k-mer (from successive nodes) is 
shifted by one position. This procedure recovers the genome but does not scale well to large graphs. (d) modern short-read assembly algorithms construct a 
de Bruijn graph by representing all k-mer prefixes and suffixes as nodes and then drawing edges that represent k-mers having a particular prefix and suffix. 
For example, the k-mer edge ATG has prefix AT and suffix TG. Finding an Eulerian cycle allows one to reconstruct the genome by forming an alignment in 
which each successive k-mer (from successive edges) is shifted by one position. This generates the same cyclic genome sequence without performing the 
computationally expensive task of finding a Hamiltonian cycle.
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states that a connected directed graph has an 
Eulerian cycle if and only if it is balanced. In 
particular, Euler’s theorem implies that our 
de Bruijn graph contains an Eulerian cycle as 
long as we have located all k-mers  present in 
the genome. Indeed, in this case, for any node, 
both its indegree and outdegree represent the 
number of times the (k–1)-mer assigned to that 
node occurs in the genome.

To see why Euler’s theorem must be true, 
first note that a graph that contains an Eulerian 
cycle is balanced because every time an ant 
traversing an Eulerian cycle passes through a 
particular vertex, it enters on one edge of the 
cycle and exits on the next edge. This pairs up 
all the edges touching each vertex, showing that 
half the edges touching the vertex lead into it 
and half lead out from it. It is a bit harder to see 
the converse—that every connected balanced 

nucleotide of the k-mer assigned to that edge.
Euler considered graphs for which there 

exists a path between every two nodes (called 
connected graphs). He proved that a connected 
graph with undirected edges contains an 
Eulerian cycle exactly when every node in the 
graph has an even number of edges touching 
it. For the Königsberg Bridge graph (Fig. 1b),  
this is not the case because each of the four 
nodes has an odd number of edges touching 
it and so the desired stroll through the city 
does not exist.

The case of directed graphs (that is, graphs 
with directed edges) is similar. For any node 
in a directed graph, define its indegree as the 
 number of edges leading into it and its  outdegree 
as the number of edges leaving it. A graph in 
which indegrees are equal to  outdegrees for 
all nodes is called ‘balanced’. Euler’s theorem 

(e.g., AT, TG, GG, GC, CG, GT, CA and AA) 
can appear only once as a node of the graph. 
Then, connect node x to node y with a directed 
edge if some k-mer (e.g., ATG) has prefix x (e.g., 
AT) and suffix y (e.g., TG), and label the edge 
with this k-mer (Fig. 3d; in Box 3, we describe 
how this approach was originally discussed in 
the context of sequencing by hybridization).

Now imagine an ant that follows a differ-
ent strategy: instead of visiting every node of 
the graph (as before), it now attempts to visit 
every edge of the graph exactly once. Sound 
familiar? This is exactly the kind of path that 
would solve the Bridges of Königsberg prob-
lem and is called an Eulerian cycle. As it visits 
all edges of the de Bruijn graph, which rep-
resent all possible k-mers, this new ant also 
spells out a candidate genome; for each edge 
that the ant traverses, one records the first 

Figure 3  Two strategies for genome assembly: from Hamiltonian cycles to Eulerian cycles. (a) An example small circular genome. (b) In traditional Sanger 
sequencing algorithms, reads were represented as nodes in a graph, and edges represented alignments between reads. Walking along a Hamiltonian cycle by 
following the edges in numerical order allows one to reconstruct the circular genome by combining alignments between successive reads. At the end of the 
cycle, the sequence wraps around to the start of the genome. The repeated part of the sequence is grayed out in the alignment diagram. (c) An alternative 
assembly technique first splits reads into all possible k-mers: with k = 3, ATGGCGT comprises ATG, TGG, GGC, GCG and CGT. Following a Hamiltonian 
cycle (indicated by red edges) allows one to reconstruct the genome by forming an alignment in which each successive k-mer (from successive nodes) is 
shifted by one position. This procedure recovers the genome but does not scale well to large graphs. (d) modern short-read assembly algorithms construct a 
de Bruijn graph by representing all k-mer prefixes and suffixes as nodes and then drawing edges that represent k-mers having a particular prefix and suffix. 
For example, the k-mer edge ATG has prefix AT and suffix TG. Finding an Eulerian cycle allows one to reconstruct the genome by forming an alignment in 
which each successive k-mer (from successive edges) is shifted by one position. This generates the same cyclic genome sequence without performing the 
computationally expensive task of finding a Hamiltonian cycle.
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states that a connected directed graph has an 
Eulerian cycle if and only if it is balanced. In 
particular, Euler’s theorem implies that our 
de Bruijn graph contains an Eulerian cycle as 
long as we have located all k-mers  present in 
the genome. Indeed, in this case, for any node, 
both its indegree and outdegree represent the 
number of times the (k–1)-mer assigned to that 
node occurs in the genome.

To see why Euler’s theorem must be true, 
first note that a graph that contains an Eulerian 
cycle is balanced because every time an ant 
traversing an Eulerian cycle passes through a 
particular vertex, it enters on one edge of the 
cycle and exits on the next edge. This pairs up 
all the edges touching each vertex, showing that 
half the edges touching the vertex lead into it 
and half lead out from it. It is a bit harder to see 
the converse—that every connected balanced 

nucleotide of the k-mer assigned to that edge.
Euler considered graphs for which there 

exists a path between every two nodes (called 
connected graphs). He proved that a connected 
graph with undirected edges contains an 
Eulerian cycle exactly when every node in the 
graph has an even number of edges touching 
it. For the Königsberg Bridge graph (Fig. 1b),  
this is not the case because each of the four 
nodes has an odd number of edges touching 
it and so the desired stroll through the city 
does not exist.

The case of directed graphs (that is, graphs 
with directed edges) is similar. For any node 
in a directed graph, define its indegree as the 
 number of edges leading into it and its  outdegree 
as the number of edges leaving it. A graph in 
which indegrees are equal to  outdegrees for 
all nodes is called ‘balanced’. Euler’s theorem 

(e.g., AT, TG, GG, GC, CG, GT, CA and AA) 
can appear only once as a node of the graph. 
Then, connect node x to node y with a directed 
edge if some k-mer (e.g., ATG) has prefix x (e.g., 
AT) and suffix y (e.g., TG), and label the edge 
with this k-mer (Fig. 3d; in Box 3, we describe 
how this approach was originally discussed in 
the context of sequencing by hybridization).

Now imagine an ant that follows a differ-
ent strategy: instead of visiting every node of 
the graph (as before), it now attempts to visit 
every edge of the graph exactly once. Sound 
familiar? This is exactly the kind of path that 
would solve the Bridges of Königsberg prob-
lem and is called an Eulerian cycle. As it visits 
all edges of the de Bruijn graph, which rep-
resent all possible k-mers, this new ant also 
spells out a candidate genome; for each edge 
that the ant traverses, one records the first 

Figure 3  Two strategies for genome assembly: from Hamiltonian cycles to Eulerian cycles. (a) An example small circular genome. (b) In traditional Sanger 
sequencing algorithms, reads were represented as nodes in a graph, and edges represented alignments between reads. Walking along a Hamiltonian cycle by 
following the edges in numerical order allows one to reconstruct the circular genome by combining alignments between successive reads. At the end of the 
cycle, the sequence wraps around to the start of the genome. The repeated part of the sequence is grayed out in the alignment diagram. (c) An alternative 
assembly technique first splits reads into all possible k-mers: with k = 3, ATGGCGT comprises ATG, TGG, GGC, GCG and CGT. Following a Hamiltonian 
cycle (indicated by red edges) allows one to reconstruct the genome by forming an alignment in which each successive k-mer (from successive nodes) is 
shifted by one position. This procedure recovers the genome but does not scale well to large graphs. (d) modern short-read assembly algorithms construct a 
de Bruijn graph by representing all k-mer prefixes and suffixes as nodes and then drawing edges that represent k-mers having a particular prefix and suffix. 
For example, the k-mer edge ATG has prefix AT and suffix TG. Finding an Eulerian cycle allows one to reconstruct the genome by forming an alignment in 
which each successive k-mer (from successive edges) is shifted by one position. This generates the same cyclic genome sequence without performing the 
computationally expensive task of finding a Hamiltonian cycle.
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states that a connected directed graph has an 
Eulerian cycle if and only if it is balanced. In 
particular, Euler’s theorem implies that our 
de Bruijn graph contains an Eulerian cycle as 
long as we have located all k-mers  present in 
the genome. Indeed, in this case, for any node, 
both its indegree and outdegree represent the 
number of times the (k–1)-mer assigned to that 
node occurs in the genome.

To see why Euler’s theorem must be true, 
first note that a graph that contains an Eulerian 
cycle is balanced because every time an ant 
traversing an Eulerian cycle passes through a 
particular vertex, it enters on one edge of the 
cycle and exits on the next edge. This pairs up 
all the edges touching each vertex, showing that 
half the edges touching the vertex lead into it 
and half lead out from it. It is a bit harder to see 
the converse—that every connected balanced 

nucleotide of the k-mer assigned to that edge.
Euler considered graphs for which there 

exists a path between every two nodes (called 
connected graphs). He proved that a connected 
graph with undirected edges contains an 
Eulerian cycle exactly when every node in the 
graph has an even number of edges touching 
it. For the Königsberg Bridge graph (Fig. 1b),  
this is not the case because each of the four 
nodes has an odd number of edges touching 
it and so the desired stroll through the city 
does not exist.

The case of directed graphs (that is, graphs 
with directed edges) is similar. For any node 
in a directed graph, define its indegree as the 
 number of edges leading into it and its  outdegree 
as the number of edges leaving it. A graph in 
which indegrees are equal to  outdegrees for 
all nodes is called ‘balanced’. Euler’s theorem 

(e.g., AT, TG, GG, GC, CG, GT, CA and AA) 
can appear only once as a node of the graph. 
Then, connect node x to node y with a directed 
edge if some k-mer (e.g., ATG) has prefix x (e.g., 
AT) and suffix y (e.g., TG), and label the edge 
with this k-mer (Fig. 3d; in Box 3, we describe 
how this approach was originally discussed in 
the context of sequencing by hybridization).

Now imagine an ant that follows a differ-
ent strategy: instead of visiting every node of 
the graph (as before), it now attempts to visit 
every edge of the graph exactly once. Sound 
familiar? This is exactly the kind of path that 
would solve the Bridges of Königsberg prob-
lem and is called an Eulerian cycle. As it visits 
all edges of the de Bruijn graph, which rep-
resent all possible k-mers, this new ant also 
spells out a candidate genome; for each edge 
that the ant traverses, one records the first 

Figure 3  Two strategies for genome assembly: from Hamiltonian cycles to Eulerian cycles. (a) An example small circular genome. (b) In traditional Sanger 
sequencing algorithms, reads were represented as nodes in a graph, and edges represented alignments between reads. Walking along a Hamiltonian cycle by 
following the edges in numerical order allows one to reconstruct the circular genome by combining alignments between successive reads. At the end of the 
cycle, the sequence wraps around to the start of the genome. The repeated part of the sequence is grayed out in the alignment diagram. (c) An alternative 
assembly technique first splits reads into all possible k-mers: with k = 3, ATGGCGT comprises ATG, TGG, GGC, GCG and CGT. Following a Hamiltonian 
cycle (indicated by red edges) allows one to reconstruct the genome by forming an alignment in which each successive k-mer (from successive nodes) is 
shifted by one position. This procedure recovers the genome but does not scale well to large graphs. (d) modern short-read assembly algorithms construct a 
de Bruijn graph by representing all k-mer prefixes and suffixes as nodes and then drawing edges that represent k-mers having a particular prefix and suffix. 
For example, the k-mer edge ATG has prefix AT and suffix TG. Finding an Eulerian cycle allows one to reconstruct the genome by forming an alignment in 
which each successive k-mer (from successive edges) is shifted by one position. This generates the same cyclic genome sequence without performing the 
computationally expensive task of finding a Hamiltonian cycle.
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states that a connected directed graph has an 
Eulerian cycle if and only if it is balanced. In 
particular, Euler’s theorem implies that our 
de Bruijn graph contains an Eulerian cycle as 
long as we have located all k-mers  present in 
the genome. Indeed, in this case, for any node, 
both its indegree and outdegree represent the 
number of times the (k–1)-mer assigned to that 
node occurs in the genome.

To see why Euler’s theorem must be true, 
first note that a graph that contains an Eulerian 
cycle is balanced because every time an ant 
traversing an Eulerian cycle passes through a 
particular vertex, it enters on one edge of the 
cycle and exits on the next edge. This pairs up 
all the edges touching each vertex, showing that 
half the edges touching the vertex lead into it 
and half lead out from it. It is a bit harder to see 
the converse—that every connected balanced 

nucleotide of the k-mer assigned to that edge.
Euler considered graphs for which there 

exists a path between every two nodes (called 
connected graphs). He proved that a connected 
graph with undirected edges contains an 
Eulerian cycle exactly when every node in the 
graph has an even number of edges touching 
it. For the Königsberg Bridge graph (Fig. 1b),  
this is not the case because each of the four 
nodes has an odd number of edges touching 
it and so the desired stroll through the city 
does not exist.

The case of directed graphs (that is, graphs 
with directed edges) is similar. For any node 
in a directed graph, define its indegree as the 
 number of edges leading into it and its  outdegree 
as the number of edges leaving it. A graph in 
which indegrees are equal to  outdegrees for 
all nodes is called ‘balanced’. Euler’s theorem 

(e.g., AT, TG, GG, GC, CG, GT, CA and AA) 
can appear only once as a node of the graph. 
Then, connect node x to node y with a directed 
edge if some k-mer (e.g., ATG) has prefix x (e.g., 
AT) and suffix y (e.g., TG), and label the edge 
with this k-mer (Fig. 3d; in Box 3, we describe 
how this approach was originally discussed in 
the context of sequencing by hybridization).

Now imagine an ant that follows a differ-
ent strategy: instead of visiting every node of 
the graph (as before), it now attempts to visit 
every edge of the graph exactly once. Sound 
familiar? This is exactly the kind of path that 
would solve the Bridges of Königsberg prob-
lem and is called an Eulerian cycle. As it visits 
all edges of the de Bruijn graph, which rep-
resent all possible k-mers, this new ant also 
spells out a candidate genome; for each edge 
that the ant traverses, one records the first 

Figure 3  Two strategies for genome assembly: from Hamiltonian cycles to Eulerian cycles. (a) An example small circular genome. (b) In traditional Sanger 
sequencing algorithms, reads were represented as nodes in a graph, and edges represented alignments between reads. Walking along a Hamiltonian cycle by 
following the edges in numerical order allows one to reconstruct the circular genome by combining alignments between successive reads. At the end of the 
cycle, the sequence wraps around to the start of the genome. The repeated part of the sequence is grayed out in the alignment diagram. (c) An alternative 
assembly technique first splits reads into all possible k-mers: with k = 3, ATGGCGT comprises ATG, TGG, GGC, GCG and CGT. Following a Hamiltonian 
cycle (indicated by red edges) allows one to reconstruct the genome by forming an alignment in which each successive k-mer (from successive nodes) is 
shifted by one position. This procedure recovers the genome but does not scale well to large graphs. (d) modern short-read assembly algorithms construct a 
de Bruijn graph by representing all k-mer prefixes and suffixes as nodes and then drawing edges that represent k-mers having a particular prefix and suffix. 
For example, the k-mer edge ATG has prefix AT and suffix TG. Finding an Eulerian cycle allows one to reconstruct the genome by forming an alignment in 
which each successive k-mer (from successive edges) is shifted by one position. This generates the same cyclic genome sequence without performing the 
computationally expensive task of finding a Hamiltonian cycle.
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states that a connected directed graph has an 
Eulerian cycle if and only if it is balanced. In 
particular, Euler’s theorem implies that our 
de Bruijn graph contains an Eulerian cycle as 
long as we have located all k-mers  present in 
the genome. Indeed, in this case, for any node, 
both its indegree and outdegree represent the 
number of times the (k–1)-mer assigned to that 
node occurs in the genome.

To see why Euler’s theorem must be true, 
first note that a graph that contains an Eulerian 
cycle is balanced because every time an ant 
traversing an Eulerian cycle passes through a 
particular vertex, it enters on one edge of the 
cycle and exits on the next edge. This pairs up 
all the edges touching each vertex, showing that 
half the edges touching the vertex lead into it 
and half lead out from it. It is a bit harder to see 
the converse—that every connected balanced 

nucleotide of the k-mer assigned to that edge.
Euler considered graphs for which there 

exists a path between every two nodes (called 
connected graphs). He proved that a connected 
graph with undirected edges contains an 
Eulerian cycle exactly when every node in the 
graph has an even number of edges touching 
it. For the Königsberg Bridge graph (Fig. 1b),  
this is not the case because each of the four 
nodes has an odd number of edges touching 
it and so the desired stroll through the city 
does not exist.

The case of directed graphs (that is, graphs 
with directed edges) is similar. For any node 
in a directed graph, define its indegree as the 
 number of edges leading into it and its  outdegree 
as the number of edges leaving it. A graph in 
which indegrees are equal to  outdegrees for 
all nodes is called ‘balanced’. Euler’s theorem 

(e.g., AT, TG, GG, GC, CG, GT, CA and AA) 
can appear only once as a node of the graph. 
Then, connect node x to node y with a directed 
edge if some k-mer (e.g., ATG) has prefix x (e.g., 
AT) and suffix y (e.g., TG), and label the edge 
with this k-mer (Fig. 3d; in Box 3, we describe 
how this approach was originally discussed in 
the context of sequencing by hybridization).

Now imagine an ant that follows a differ-
ent strategy: instead of visiting every node of 
the graph (as before), it now attempts to visit 
every edge of the graph exactly once. Sound 
familiar? This is exactly the kind of path that 
would solve the Bridges of Königsberg prob-
lem and is called an Eulerian cycle. As it visits 
all edges of the de Bruijn graph, which rep-
resent all possible k-mers, this new ant also 
spells out a candidate genome; for each edge 
that the ant traverses, one records the first 

Figure 3  Two strategies for genome assembly: from Hamiltonian cycles to Eulerian cycles. (a) An example small circular genome. (b) In traditional Sanger 
sequencing algorithms, reads were represented as nodes in a graph, and edges represented alignments between reads. Walking along a Hamiltonian cycle by 
following the edges in numerical order allows one to reconstruct the circular genome by combining alignments between successive reads. At the end of the 
cycle, the sequence wraps around to the start of the genome. The repeated part of the sequence is grayed out in the alignment diagram. (c) An alternative 
assembly technique first splits reads into all possible k-mers: with k = 3, ATGGCGT comprises ATG, TGG, GGC, GCG and CGT. Following a Hamiltonian 
cycle (indicated by red edges) allows one to reconstruct the genome by forming an alignment in which each successive k-mer (from successive nodes) is 
shifted by one position. This procedure recovers the genome but does not scale well to large graphs. (d) modern short-read assembly algorithms construct a 
de Bruijn graph by representing all k-mer prefixes and suffixes as nodes and then drawing edges that represent k-mers having a particular prefix and suffix. 
For example, the k-mer edge ATG has prefix AT and suffix TG. Finding an Eulerian cycle allows one to reconstruct the genome by forming an alignment in 
which each successive k-mer (from successive edges) is shifted by one position. This generates the same cyclic genome sequence without performing the 
computationally expensive task of finding a Hamiltonian cycle.
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states that a connected directed graph has an 
Eulerian cycle if and only if it is balanced. In 
particular, Euler’s theorem implies that our 
de Bruijn graph contains an Eulerian cycle as 
long as we have located all k-mers  present in 
the genome. Indeed, in this case, for any node, 
both its indegree and outdegree represent the 
number of times the (k–1)-mer assigned to that 
node occurs in the genome.

To see why Euler’s theorem must be true, 
first note that a graph that contains an Eulerian 
cycle is balanced because every time an ant 
traversing an Eulerian cycle passes through a 
particular vertex, it enters on one edge of the 
cycle and exits on the next edge. This pairs up 
all the edges touching each vertex, showing that 
half the edges touching the vertex lead into it 
and half lead out from it. It is a bit harder to see 
the converse—that every connected balanced 

nucleotide of the k-mer assigned to that edge.
Euler considered graphs for which there 

exists a path between every two nodes (called 
connected graphs). He proved that a connected 
graph with undirected edges contains an 
Eulerian cycle exactly when every node in the 
graph has an even number of edges touching 
it. For the Königsberg Bridge graph (Fig. 1b),  
this is not the case because each of the four 
nodes has an odd number of edges touching 
it and so the desired stroll through the city 
does not exist.

The case of directed graphs (that is, graphs 
with directed edges) is similar. For any node 
in a directed graph, define its indegree as the 
 number of edges leading into it and its  outdegree 
as the number of edges leaving it. A graph in 
which indegrees are equal to  outdegrees for 
all nodes is called ‘balanced’. Euler’s theorem 

(e.g., AT, TG, GG, GC, CG, GT, CA and AA) 
can appear only once as a node of the graph. 
Then, connect node x to node y with a directed 
edge if some k-mer (e.g., ATG) has prefix x (e.g., 
AT) and suffix y (e.g., TG), and label the edge 
with this k-mer (Fig. 3d; in Box 3, we describe 
how this approach was originally discussed in 
the context of sequencing by hybridization).

Now imagine an ant that follows a differ-
ent strategy: instead of visiting every node of 
the graph (as before), it now attempts to visit 
every edge of the graph exactly once. Sound 
familiar? This is exactly the kind of path that 
would solve the Bridges of Königsberg prob-
lem and is called an Eulerian cycle. As it visits 
all edges of the de Bruijn graph, which rep-
resent all possible k-mers, this new ant also 
spells out a candidate genome; for each edge 
that the ant traverses, one records the first 

Figure 3  Two strategies for genome assembly: from Hamiltonian cycles to Eulerian cycles. (a) An example small circular genome. (b) In traditional Sanger 
sequencing algorithms, reads were represented as nodes in a graph, and edges represented alignments between reads. Walking along a Hamiltonian cycle by 
following the edges in numerical order allows one to reconstruct the circular genome by combining alignments between successive reads. At the end of the 
cycle, the sequence wraps around to the start of the genome. The repeated part of the sequence is grayed out in the alignment diagram. (c) An alternative 
assembly technique first splits reads into all possible k-mers: with k = 3, ATGGCGT comprises ATG, TGG, GGC, GCG and CGT. Following a Hamiltonian 
cycle (indicated by red edges) allows one to reconstruct the genome by forming an alignment in which each successive k-mer (from successive nodes) is 
shifted by one position. This procedure recovers the genome but does not scale well to large graphs. (d) modern short-read assembly algorithms construct a 
de Bruijn graph by representing all k-mer prefixes and suffixes as nodes and then drawing edges that represent k-mers having a particular prefix and suffix. 
For example, the k-mer edge ATG has prefix AT and suffix TG. Finding an Eulerian cycle allows one to reconstruct the genome by forming an alignment in 
which each successive k-mer (from successive edges) is shifted by one position. This generates the same cyclic genome sequence without performing the 
computationally expensive task of finding a Hamiltonian cycle.
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states that a connected directed graph has an 
Eulerian cycle if and only if it is balanced. In 
particular, Euler’s theorem implies that our 
de Bruijn graph contains an Eulerian cycle as 
long as we have located all k-mers  present in 
the genome. Indeed, in this case, for any node, 
both its indegree and outdegree represent the 
number of times the (k–1)-mer assigned to that 
node occurs in the genome.

To see why Euler’s theorem must be true, 
first note that a graph that contains an Eulerian 
cycle is balanced because every time an ant 
traversing an Eulerian cycle passes through a 
particular vertex, it enters on one edge of the 
cycle and exits on the next edge. This pairs up 
all the edges touching each vertex, showing that 
half the edges touching the vertex lead into it 
and half lead out from it. It is a bit harder to see 
the converse—that every connected balanced 

nucleotide of the k-mer assigned to that edge.
Euler considered graphs for which there 

exists a path between every two nodes (called 
connected graphs). He proved that a connected 
graph with undirected edges contains an 
Eulerian cycle exactly when every node in the 
graph has an even number of edges touching 
it. For the Königsberg Bridge graph (Fig. 1b),  
this is not the case because each of the four 
nodes has an odd number of edges touching 
it and so the desired stroll through the city 
does not exist.

The case of directed graphs (that is, graphs 
with directed edges) is similar. For any node 
in a directed graph, define its indegree as the 
 number of edges leading into it and its  outdegree 
as the number of edges leaving it. A graph in 
which indegrees are equal to  outdegrees for 
all nodes is called ‘balanced’. Euler’s theorem 

(e.g., AT, TG, GG, GC, CG, GT, CA and AA) 
can appear only once as a node of the graph. 
Then, connect node x to node y with a directed 
edge if some k-mer (e.g., ATG) has prefix x (e.g., 
AT) and suffix y (e.g., TG), and label the edge 
with this k-mer (Fig. 3d; in Box 3, we describe 
how this approach was originally discussed in 
the context of sequencing by hybridization).

Now imagine an ant that follows a differ-
ent strategy: instead of visiting every node of 
the graph (as before), it now attempts to visit 
every edge of the graph exactly once. Sound 
familiar? This is exactly the kind of path that 
would solve the Bridges of Königsberg prob-
lem and is called an Eulerian cycle. As it visits 
all edges of the de Bruijn graph, which rep-
resent all possible k-mers, this new ant also 
spells out a candidate genome; for each edge 
that the ant traverses, one records the first 

Figure 3  Two strategies for genome assembly: from Hamiltonian cycles to Eulerian cycles. (a) An example small circular genome. (b) In traditional Sanger 
sequencing algorithms, reads were represented as nodes in a graph, and edges represented alignments between reads. Walking along a Hamiltonian cycle by 
following the edges in numerical order allows one to reconstruct the circular genome by combining alignments between successive reads. At the end of the 
cycle, the sequence wraps around to the start of the genome. The repeated part of the sequence is grayed out in the alignment diagram. (c) An alternative 
assembly technique first splits reads into all possible k-mers: with k = 3, ATGGCGT comprises ATG, TGG, GGC, GCG and CGT. Following a Hamiltonian 
cycle (indicated by red edges) allows one to reconstruct the genome by forming an alignment in which each successive k-mer (from successive nodes) is 
shifted by one position. This procedure recovers the genome but does not scale well to large graphs. (d) modern short-read assembly algorithms construct a 
de Bruijn graph by representing all k-mer prefixes and suffixes as nodes and then drawing edges that represent k-mers having a particular prefix and suffix. 
For example, the k-mer edge ATG has prefix AT and suffix TG. Finding an Eulerian cycle allows one to reconstruct the genome by forming an alignment in 
which each successive k-mer (from successive edges) is shifted by one position. This generates the same cyclic genome sequence without performing the 
computationally expensive task of finding a Hamiltonian cycle.
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states that a connected directed graph has an 
Eulerian cycle if and only if it is balanced. In 
particular, Euler’s theorem implies that our 
de Bruijn graph contains an Eulerian cycle as 
long as we have located all k-mers  present in 
the genome. Indeed, in this case, for any node, 
both its indegree and outdegree represent the 
number of times the (k–1)-mer assigned to that 
node occurs in the genome.

To see why Euler’s theorem must be true, 
first note that a graph that contains an Eulerian 
cycle is balanced because every time an ant 
traversing an Eulerian cycle passes through a 
particular vertex, it enters on one edge of the 
cycle and exits on the next edge. This pairs up 
all the edges touching each vertex, showing that 
half the edges touching the vertex lead into it 
and half lead out from it. It is a bit harder to see 
the converse—that every connected balanced 

nucleotide of the k-mer assigned to that edge.
Euler considered graphs for which there 

exists a path between every two nodes (called 
connected graphs). He proved that a connected 
graph with undirected edges contains an 
Eulerian cycle exactly when every node in the 
graph has an even number of edges touching 
it. For the Königsberg Bridge graph (Fig. 1b),  
this is not the case because each of the four 
nodes has an odd number of edges touching 
it and so the desired stroll through the city 
does not exist.

The case of directed graphs (that is, graphs 
with directed edges) is similar. For any node 
in a directed graph, define its indegree as the 
 number of edges leading into it and its  outdegree 
as the number of edges leaving it. A graph in 
which indegrees are equal to  outdegrees for 
all nodes is called ‘balanced’. Euler’s theorem 

(e.g., AT, TG, GG, GC, CG, GT, CA and AA) 
can appear only once as a node of the graph. 
Then, connect node x to node y with a directed 
edge if some k-mer (e.g., ATG) has prefix x (e.g., 
AT) and suffix y (e.g., TG), and label the edge 
with this k-mer (Fig. 3d; in Box 3, we describe 
how this approach was originally discussed in 
the context of sequencing by hybridization).

Now imagine an ant that follows a differ-
ent strategy: instead of visiting every node of 
the graph (as before), it now attempts to visit 
every edge of the graph exactly once. Sound 
familiar? This is exactly the kind of path that 
would solve the Bridges of Königsberg prob-
lem and is called an Eulerian cycle. As it visits 
all edges of the de Bruijn graph, which rep-
resent all possible k-mers, this new ant also 
spells out a candidate genome; for each edge 
that the ant traverses, one records the first 

Figure 3  Two strategies for genome assembly: from Hamiltonian cycles to Eulerian cycles. (a) An example small circular genome. (b) In traditional Sanger 
sequencing algorithms, reads were represented as nodes in a graph, and edges represented alignments between reads. Walking along a Hamiltonian cycle by 
following the edges in numerical order allows one to reconstruct the circular genome by combining alignments between successive reads. At the end of the 
cycle, the sequence wraps around to the start of the genome. The repeated part of the sequence is grayed out in the alignment diagram. (c) An alternative 
assembly technique first splits reads into all possible k-mers: with k = 3, ATGGCGT comprises ATG, TGG, GGC, GCG and CGT. Following a Hamiltonian 
cycle (indicated by red edges) allows one to reconstruct the genome by forming an alignment in which each successive k-mer (from successive nodes) is 
shifted by one position. This procedure recovers the genome but does not scale well to large graphs. (d) modern short-read assembly algorithms construct a 
de Bruijn graph by representing all k-mer prefixes and suffixes as nodes and then drawing edges that represent k-mers having a particular prefix and suffix. 
For example, the k-mer edge ATG has prefix AT and suffix TG. Finding an Eulerian cycle allows one to reconstruct the genome by forming an alignment in 
which each successive k-mer (from successive edges) is shifted by one position. This generates the same cyclic genome sequence without performing the 
computationally expensive task of finding a Hamiltonian cycle.
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Sequence De Bruijn Graph (from reads to graph)

read 1:
CG AG A TT AA

read 2:

construct a de Bruijn graph for each read with k − 1 = 3

split the read into overlapping k − 1mers

and construct the de Bruijn graph

count 1 for the read at each node
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Sequence De Bruijn Graph (from reads to graph)
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Sequence De Bruijn Graph (from reads to graph)
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Sequence De Bruijn Graph (from reads to graph)
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Sequence De Bruijn Graph (from reads to graph)
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construct a de Bruijn graph for each read with k − 1 = 3

split the read into overlapping k − 1mers

and construct the de Bruijn graph

count 1 for the read at each node
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Sequence De Bruijn Graph (merging identical nodes)

(1)(1)(1)(1) (1)(1)(1)

CGAC ACC CCA AA AAA AAT ATC

(1) (1)(1) (1)(1) (1)(1)

AATAAATAACTAACTGACGGA

take all ’read graphs’

. . . and merge identical nodes

. . . gaining a large de Bruijn
graph

sum up the read counts at the
merged node

do repeat this for all other
reads
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Sequence De Bruijn Graph (merging identical nodes)
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Sequence De Bruijn Graph (merging identical nodes)
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Sequence De Bruijn Graph (reducing the graph to contigs)

(9)(3) (7) (9) (10) (8) (16) (16) (11)

(1) (1) (1)

(8)

(2) (1) (2) (2)

(8) (8) (12)

(16) (9) (12) (8) (5)

(8)(8)(7)(7)(7)(6)(5)(9) (8)

C

AAGT AGTC GTCG TCGA CGAG GAGG AGGC GGCT

CGAC AG CG CA G

GCTT CTTT TTTA TTAG

TAGA

AGTCT CATTCTCCCG T

AGAG GAGA AGAC GACA ACAA

CGAT CCGA TCCG ATCC GATC AGATTGAG ATGA GATG

sequencing errors cause tips and bulges with low read counts and can
be identified using thresholds

compactify the graph by merging the branch labels (rf. de Bruijn
graph definition) on non-branching paths

delete the obsolete nodes and re-link the branching nodes

remove the tips and bulges with low read counts (sequencing errors)

re-compactify the graph

all the labels on the non-branching paths are our reconstructed contigs
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Sequence De Bruijn Graph (reducing the graph to contigs)
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Sequence De Bruijn Graph (reducing the graph to contigs)
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Sequence De Bruijn Graph (reducing the graph to contigs)
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Sequence De Bruijn Graph (reducing the graph to contigs)
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Sequence De Bruijn Graph (reducing the graph to contigs)
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Sequence De Bruijn Graph (reducing the graph to contigs)
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De Bruijn Graphs for Assembly with Sequencing Errors

Supplementary Figures 
 

Why are de Bruijn graphs useful for genome assembly? 
 

Phillip E. C. Compeau, Pavel A. Pevzner & Glenn Tesler 
 

 
 

 
 

Supplementary Figure 1. De Bruijn graph from reads with sequencing errors. (a) A de 
Bruijn graph E on our set of reads with k = 4.  Finding an Eulerian cycle is already a 
straightforward task, but for this value of k, it is trivial.  (b) If TGGAGTG is incorrectly 
sequenced as a sixth read (in addition to the correct TGGCGTG read), then the result is a bulge in 
the de Brujin graph, which complicates assembly.  (c) An illustration of a de Bruijn graph E with 
many bulges.  The process of bulge removal should leave only the red edges remaining, yielding 
an Eulerian path in the resulting graph. 

 

GGCATG TGG GCG CGT GTG TGC GCA CAA AAT
ATGG TGGC GGCG GCGT CGTG GTGC TGCA GCAA CAAT

AATG

GGCATG TGG GCG CGT GTG TGC GCA CAA AAT
ATGG TGGC GGCG GCGT CGTG GTGC TGCA GCAA CAAT

GGA GAG AGT

TGGA

GGAG GAGT

AGTG

a

b

c

Nature Biotechnology: doi:10.1038/nbt.2023

The number of reads
participating in bulges
and tips tell us which
are the frequent, and
thus likely true ones.

Bulges and tips with
few reads are removed.

Heiko A. Schmidt Bioinformatik für Biologen



De Bruijn Graphs for Assembly with Sequencing Errors

Supplementary Figures 
 

Why are de Bruijn graphs useful for genome assembly? 
 

Phillip E. C. Compeau, Pavel A. Pevzner & Glenn Tesler 
 

 
 

 
 

Supplementary Figure 1. De Bruijn graph from reads with sequencing errors. (a) A de 
Bruijn graph E on our set of reads with k = 4.  Finding an Eulerian cycle is already a 
straightforward task, but for this value of k, it is trivial.  (b) If TGGAGTG is incorrectly 
sequenced as a sixth read (in addition to the correct TGGCGTG read), then the result is a bulge in 
the de Brujin graph, which complicates assembly.  (c) An illustration of a de Bruijn graph E with 
many bulges.  The process of bulge removal should leave only the red edges remaining, yielding 
an Eulerian path in the resulting graph. 

 

GGCATG TGG GCG CGT GTG TGC GCA CAA AAT
ATGG TGGC GGCG GCGT CGTG GTGC TGCA GCAA CAAT

AATG

GGCATG TGG GCG CGT GTG TGC GCA CAA AAT
ATGG TGGC GGCG GCGT CGTG GTGC TGCA GCAA CAAT

GGA GAG AGT

TGGA

GGAG GAGT

AGTG

a

b

c

Nature Biotechnology: doi:10.1038/nbt.2023

The number of reads
participating in bulges
and tips tell us which
are the frequent, and
thus likely true ones.

Bulges and tips with
few reads are removed.

Heiko A. Schmidt Bioinformatik für Biologen



De Bruijn Graphs for Assembly with Repeats

Source: Chaisson et al. (2009)

In the case of repeats, Euler
paths are not possible, because
the edges of the repeated
region have to be used
repeatedly.

Typically the order in which
edges from a repeat have to be
followed cannot be determined.
Then the paths have to be kept
as separate contigs.

Exception: if we have reads or
paired-end information, which
reach longer than the repeat,
this helps to order the contigs.
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Bidirected de Bruijn Graphs (Medvedev et al. 2007)

seq1: GGACTAAAT

Problem: How do we
know which strand our
read is from? We don’t!

With bidirected de
Bruijn Graphs one can
cover k-mers and their
complements.

Note:
At no time two nodes
with identical strings can
exist in one (sub)graph,
and both strings have to
be treated equally.
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Bidirected de Bruijn Graphs (Medvedev et al. 2007)

seq1

(1)(1) (1) (1) (1) (1)(1)
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TTA
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convert to bidirectional

De Bruijn subgraphs
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Bidirected de Bruijn Graphs (Medvedev et al. 2007)
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Bidirected de Bruijn Graphs (Medvedev et al. 2007)

merge identical nodes

and update read counts
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Bidirected de Bruijn Graphs (Medvedev et al. 2007)
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Some measures on genome sequencing and assembly

Coverage

Coverage describes the average number of times a nucleotide in the
template DNA has been sequenced which is equivalent to the number of
reads that cover each nucleotide on average.

coverage =

∑
i∈{all reads}

length of read i

length of template or genome

Rule of thumb: the higher the better!
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Some measures on genome sequencing and assembly

The quality of an assembly is hard to measure. Typically several values are
used like

maximum contig/scaffold length

average contig/scaffold length

combined total length

the N50 or the NG50 value
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N50 and NG50

N50 value

All contigs/scaffold are ordered descending in size. Starting from the
largest contig/scaffold add their lengths. The N50 value is the length of
the first contig, for which this sum of contig lengths covers ≥ 50% of the
total length of contigs/scaffolds, i.e. the entire assembly.

Rule of thumb: the longer the better!

NG50 value

All contigs/scaffold are ordered descending in size. Starting from the
largest contig/scaffold add their lengths. The NG50 value is the length of
the first contig, for which this sum of contig lengths covers ≥ 50% of the
total length of the sequenced genome.

Rule of thumb: the longer the better!

Sometimes other percentages than 50% are used leading to, e.g. N70 etc.
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Reference based assembly

The whole procedure gets much easier if we have a reference genome
available.

mapping using search tools like BLAST or BLAT

dynamic programming (e.g. Smith-Waterman) with pre-filtering to
keep the candidate regions small, using

hash-based k-mer index
spaced-seeds index

Approaches using the Burrows-Wheeler-Transform (BWT) of the
reference sequence,

and the mapped reads are then summarized to contigs using consensus
approaches.
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Hash-based approaches

Hash-based approaches typically require matching seed sequences
(one or several) to identify candidate regions to be checked (similar to
Baeza-Yeates-Perleberg)

often contiguous seeds are used (e.g. perfectly matching words of
length k)

Another way is to use spaced seeds, i.e. that only certain letters in a
longer word have to match.

. .

0 1 1 11 11 0 0 1 0 1 0 0 10 0

A C AT AA C T T. . . . . .

A

T TCATTCATCA AT ACAG

...... TCG TCTCATCA AT ACA

spaced seed (weight=9, len=17)

seed encoding

query sequence

reference sequence

It has been shown that the use of spaced seeds is much more sensitive,
missing less hits. Especially, when using sets of spaced seeds.
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Hash-based mapping

Position N

Position 2

Index seed pairs

Position 1

Seed index
(tens of gigabytes)

Hits identify positions
in genome where
spaced seed pair
is found

Look up each pair
of seeds in index

Six seed
pairs per
read/
fragment

Confirm hits
by checking
“****” positions

•
•
•
•
•
•

ACTC  CCGT  ACTC  TAAT

Report alignment to user

Reference genome
(> 3 gigabases)

Short read

Extract seeds

ACTCCCGTACTCTAAT

1
2

3
4

5
6

CTGC CGTA AACT AATG

ACTG CCGT AAAC TAAT

ACTG **** AAAC ****

ACTG **** AAAC ****
**** CCGT **** TAAT

ACTG **** **** TAAT

**** **** AAAC TAAT

ACTG CCGT **** ****
**** CCGT AAAC ****

**** CCGT **** TAAT

ACTG **** **** TAAT

**** CCGT AAAC ****

Chr1
Chr2
Chr3
Chr4

Source: Trapnell+Salzberg (2009)

mapping with candidate filtering based on
(spaced) seed matches is easy to
implement

however, to generate a typical seed index is
memory-intense (about 50GB for the
human genome of 3 Gbp)

the example uses six spaced seeds
(1111111100000000, 0000000011111111,
0000111100001111, 1111000011110000,
0000111111110000, 1111000000001111)

from all candidates the actual best hit
position of the read has to be found by
alignment and reported
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Burrows-Wheeler-Transform (BWT) - encoding

Methods using the Burrows-Wheeler-Transform (BWT) for mapping generate the
BWT from the text, e.g. the genome, adding an start (^) and end character ($):

(Note, in the example we assume that ^ and $ sort after the letters.)

N A $

use text with start+end:

^ B A NA

Originally, the Burrows-Wheeler-Transform (BWT) has been introduced in the
field of data compression, because (a) the BTW compresses better than the
original text and (b) one can decode the original text from the BWT.
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Burrows-Wheeler-Transform (BWT) - decoding
From the BTW the original text can easily decoded:

N
B

^
N

A
A

A
$

the BTW

start from

The original text can be found in the line starting with ^ and ending with $.
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Burrows-Wheeler-Transform (BWT) - some observations

2 53 8764

NANAB^ A $
1

a letter in the 1st column is easy to find,
because they are sorted

the letter in the last column preceeds the
one in the 1st column (thus, searching for
words starts at the last letter)

the order of occurrence of a single letter in
the last and the 1st column is the same
(the 2nd A in the one is the 2nd A in the
other)
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Burrows-Wheeler-Transform (BWT) - some observations

$

2

3

4

5

6

7

8$

^

N

N

B

A

A

A

^ B A N A N

AB A N A N1

A ^ B A N

AA N $ ^ B

AA N A N $

$ ^ B A N A

AN $ ^ B A

$AN A N ^

1

2

3

4

5

6

8

7

B

N

N

^

A

A

$

A

2 53 8764

NANAB^ A $
1

a letter in the 1st column is easy to find,
because they are sorted

the letter in the last column preceeds the
one in the 1st column (thus, searching for
words starts at the last letter)

the order of occurrence of a single letter in
the last and the 1st column is the same
(the 2nd A in the one is the 2nd A in the
other)

Heiko A. Schmidt Bioinformatik für Biologen



Burrows-Wheeler-Transform (BWT) - searching
Searching from the last letter to the first of the search string (q=ANA):
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$A ^ B A N

AA N $ ^ B

AA N A N $

$ ^ B A N A

AN $ ^ B A

$AN A N ^

1

2

3

4

5

6

8

7

B

N

N

^

A

A

$

A

1

2

3

4

5

6

7

8$

^

N

N

B

A

position

A N A N

AB A N A N

$A ^ B A N

AA N $ ^ B

AA N A N $

$ ^ B A N A

AN $ ^ B A

$AN A N ^

1

2

3

4

5

6

7

8$

^

N

N

B

A

A

A

1

2

3

4

5

6

8

7

B

N

N

^

A

A

$

A^

q= ANAto next

B

$

A ANq=

^ B A N A N

AB A N A N

^ B A N

AN $ ^ B

AA N A N $

$ ^ B A N A

AN $ ^ B A

$AN A N ^

A

A
1

2

3

4

5

6

7

8$

^

B

A

A

A

N

N

1

2

3

4

5

6

8

7

B

N

N

^

A

A

$

A

check 2nd
last letter

6

AA N A N $

$ ^ B A N A

AN $ ^ B A

$AN A N ^

1

2

3

4

5

6

7

8$

^

N

N

B

A

A

A

1

2

3

4

5

B

8

7

B

N

N

^

A

A

$

A

AB^A $

NANAB A

NAN

to next
position

AB^

ANAq=

N

AA N $ ^
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Burrows-Wheeler-Transform (BWT) - searching
Searching from the last letter to the first of the search string (q=ANA):

2

N A N

$A ^ B A N

AA N $ ^ B

AA N A N $

$ ^ B A N A

AN $ ^ B A

$AN A N ^

1

2

3

4

5

6

8

7

B

N

N

^

A

A

$

A

1

^ A N

A

A

A

B

N

N

^

$8

7

A N

AB A

query: q=

B

AA

6

5

4

3

N

A

A

q=
letter
find last AA N

^ B A N A N

AB A N A N

$A ^ B A N

AA N $ ^ B

AA N A N $

$ ^ B A N A

AN $ ^ B A

$AN A N ^

1

2

3

4

5

6

8

7

B

N

N

^

A

A

$

A

1

2

3

4

5

6

7

8$

^

N

N

B

A

position

A N A N

AB A N A N

$A ^ B A N

AA N $ ^ B

AA N A N $

$ ^ B A N A

AN $ ^ B A

$AN A N ^

1

2

3

4

5

6

7

8$

^

N

N

B

A

A

A

1

2

3

4

5

6

8

7

B

N

N

^

A

A

$

A^

q= ANAto next

B

$

A ANq=

^ B A N A N

AB A N A N

^ B A N

AN $ ^ B

AA N A N $

$ ^ B A N A

AN $ ^ B A

$AN A N ^

A

A
1

2

3

4

5

6

7

8$

^

B

A

A

A

N

N

1

2

3

4

5

6

8

7

B

N

N

^

A

A

$

A

check 2nd
last letter

6

AA N A N $

$ ^ B A N A

AN $ ^ B A

$AN A N ^

1

2

3

4

5

6

7

8$

^

N

N

B

A

A

A

1

2

3

4

5

B

8

7

B

N

N

^

A

A

$

A

AB^A $

NANAB A

NAN

to next
position

AB^

ANAq=

N

AA N $ ^

$ B A

$AN ^N

N A

A

1

2

3

4

5

6

8

7

B

N

N

^

A

A

$

A

1

2

3

4

5

6

7

8$

^

N

N

B

A

A

A

NA
twice!
found q= A

^ B A N A N

AB A N A N

$A ^ B A N

AA N $ ^ B

AA N A N $

$ ^ B A N A

^
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Burrows-Wheeler-Transform (BWT) - approximate
matches

this way exact matches can be found easily

to find approximate matches,

everytime a mismatch is detected,

a backtrace is done, introducing changes at any position

at the beginning only one change and later more if still no match is
found
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BWT-based mapping
Reference genome

(> 3 gigabases)

Bowtie index
(~2 gigabytes)

Concatenate into
single string

Burrows-Wheeler
transform and indexing

ACTCCCGTACTCTAAT
•
•
•

AAT

AT

T

ACTCCCGTACTCTAAT

Convert each
hit back to
genome location

Report alignment to user

Chr1
Chr2
Chr3
Chr4

Short read

ACTCCCGTACTCTAAT

Look up
‘suffixes’
of read

Hits identify
positions in

genome where
read is found

Source: Trapnell+Salzberg (2009)

BWT-based is harder to implement than
seed based approaches

however, it is less memory intense (only
(about 1-2GB for the human genome of 3
Gbp) and much faster

on the other hand, seed based approaches
have been shown to be much more
sensitive, and thus able to match more
reads correctly
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