
Excursion: Beginning of Graph Theory

Leonhard Euler (1707-1783)

Popular 18th century problem:
Is there a walk through
Königsberg using each bridge
exactly once?
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Euler Paths and Tours

Given an undirected connected graph G = (V ,E ) with nodes V and
edges E , we define:

Euler Path or Trail

is a path visiting each edge (of a graph) exactly once.

Euler Tour or Circuit or Cycle

is a path visiting each edge (of a graph) exactly once and ending at the
starting point.
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Euler Paths and Tours: Solution?

Leonhard Euler (1735) showed that the existence of
such paths or tours depend on the degree of the
nodes.

Euler Path

exists if there are exactly 0 or 2 nodes with uneven
degree (i.e. number of attached edges).

Euler Tour

exists iff the graph is connected and has no nodes of
odd degree.
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Euler Paths and Tours on directed graphs

In directed graphs, that means, that edges have only one direction in
which they can be crossed. . .

Euler Tour

exists iff the in-degree of each node is equal to its out-degree and if the
graph is a strongly connected component, i.e. every node is reachable
from every other node via a directed path.

Euler Path

exists iff there at most one node with in-degree - out-degree = 1 exists at
most one node with out-degree - in-degree = 1.

Note, in graph theory the terms node and vertex (pl. vertices) are used
interchangeably, as are directed edge and arc.
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Variation: Hamiltonian Paths and Tours

Hamiltonian Path (or traceable path)

is a path that visits every node (of a graph) exactly
once.

Hamiltonian Tour

is a Hamiltonian path ending at its starting point.

Problems:

determining whether such a path/tour exists is
NP-complete.

Hamiltonian Tours are a special case of the
Traveling Salesman Problem.

William Rowan Hamilton
(1805-1865)
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Nicolaas de Bruijn

In 1946 Nicolaas de Bruijn got interested in the
superstring problem:

Find the shortest circular superstring that
contains all possible k-mers as substrings.

There are nk k-mers for an alphabet of size
n = |Σ|.
For example, the number DNA-triplets:
nk = 43 = 64.

Nicolaas de Bruijn (1918-2012)
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De Bruijn Graphs

De Bruijn Graph

nodes: for all possible (k − 1)-mers

edges: directed links between nodes a and b if the k − 2-long prefix of
b is the suffix of a.

Note: A Eulerian Tour exists because every node have one in-edge
and one out-edge for each character in Σ.
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De Bruijn Graph Example

De Bruijn Graph for k = 4 and Σ = {0, 1}:
The nodes are labeled
with 000, 001, 010, 011,
100, 101, 110, 111.

The edges are labeled
linking the overlapping
node labels, e.g. 100→
001 with 1001.

An Eulerian Tour exists,
each node has in-degree
and out-degree 2.

The Eulerian Tour
(marked by blue
numbers) spells out the
circular superstring:
0000110010111101.
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De Bruijn Graphs in Sequence Assembly
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states that a connected directed graph has an 
Eulerian cycle if and only if it is balanced. In 
particular, Euler’s theorem implies that our 
de Bruijn graph contains an Eulerian cycle as 
long as we have located all k-mers present in 
the genome. Indeed, in this case, for any node, 
both its indegree and outdegree represent the 
number of times the (k–1)-mer assigned to that 
node occurs in the genome.

To see why Euler’s theorem must be true, 
first note that a graph that contains an Eulerian 
cycle is balanced because every time an ant 
traversing an Eulerian cycle passes through a 
particular vertex, it enters on one edge of the 
cycle and exits on the next edge. This pairs up 
all the edges touching each vertex, showing that 
half the edges touching the vertex lead into it 
and half lead out from it. It is a bit harder to see 
the converse—that every connected balanced 

nucleotide of the k-mer assigned to that edge.
Euler considered graphs for which there 

exists a path between every two nodes (called 
connected graphs). He proved that a connected 
graph with undirected edges contains an 
Eulerian cycle exactly when every node in the 
graph has an even number of edges touching 
it. For the Königsberg Bridge graph (Fig. 1b),  
this is not the case because each of the four 
nodes has an odd number of edges touching 
it and so the desired stroll through the city 
does not exist.

The case of directed graphs (that is, graphs 
with directed edges) is similar. For any node 
in a directed graph, define its indegree as the 
number of edges leading into it and its outdegree 
as the number of edges leaving it. A graph in 
which indegrees are equal to outdegrees for 
all nodes is called ‘balanced’. Euler’s theorem 

(e.g., AT, TG, GG, GC, CG, GT, CA and AA) 
can appear only once as a node of the graph. 
Then, connect node x to node y with a directed 
edge if some k-mer (e.g., ATG) has prefix x (e.g., 
AT) and suffix y (e.g., TG), and label the edge 
with this k-mer (Fig. 3d; in Box 3, we describe 
how this approach was originally discussed in 
the context of sequencing by hybridization).

Now imagine an ant that follows a differ-
ent strategy: instead of visiting every node of 
the graph (as before), it now attempts to visit 
every edge of the graph exactly once. Sound 
familiar? This is exactly the kind of path that 
would solve the Bridges of Königsberg prob-
lem and is called an Eulerian cycle. As it visits 
all edges of the de Bruijn graph, which rep-
resent all possible k-mers, this new ant also 
spells out a candidate genome; for each edge 
that the ant traverses, one records the first 

Figure 3  Two strategies for genome assembly: from Hamiltonian cycles to Eulerian cycles. (a) An example small circular genome. (b) In traditional Sanger 
sequencing algorithms, reads were represented as nodes in a graph, and edges represented alignments between reads. Walking along a Hamiltonian cycle by 
following the edges in numerical order allows one to reconstruct the circular genome by combining alignments between successive reads. At the end of the 
cycle, the sequence wraps around to the start of the genome. The repeated part of the sequence is grayed out in the alignment diagram. (c) An alternative 
assembly technique first splits reads into all possible k-mers: with k = 3, ATGGCGT comprises ATG, TGG, GGC, GCG and CGT. Following a Hamiltonian 
cycle (indicated by red edges) allows one to reconstruct the genome by forming an alignment in which each successive k-mer (from successive nodes) is 
shifted by one position. This procedure recovers the genome but does not scale well to large graphs. (d) Modern short-read assembly algorithms construct a 
de Bruijn graph by representing all k-mer prefixes and suffixes as nodes and then drawing edges that represent k-mers having a particular prefix and suffix. 
For example, the k-mer edge ATG has prefix AT and suffix TG. Finding an Eulerian cycle allows one to reconstruct the genome by forming an alignment in 
which each successive k-mer (from successive edges) is shifted by one position. This generates the same cyclic genome sequence without performing the 
computationally expensive task of finding a Hamiltonian cycle.
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states that a connected directed graph has an 
Eulerian cycle if and only if it is balanced. In 
particular, Euler’s theorem implies that our 
de Bruijn graph contains an Eulerian cycle as 
long as we have located all k-mers present in 
the genome. Indeed, in this case, for any node, 
both its indegree and outdegree represent the 
number of times the (k–1)-mer assigned to that 
node occurs in the genome.

To see why Euler’s theorem must be true, 
first note that a graph that contains an Eulerian 
cycle is balanced because every time an ant 
traversing an Eulerian cycle passes through a 
particular vertex, it enters on one edge of the 
cycle and exits on the next edge. This pairs up 
all the edges touching each vertex, showing that 
half the edges touching the vertex lead into it 
and half lead out from it. It is a bit harder to see 
the converse—that every connected balanced 

nucleotide of the k-mer assigned to that edge.
Euler considered graphs for which there 

exists a path between every two nodes (called 
connected graphs). He proved that a connected 
graph with undirected edges contains an 
Eulerian cycle exactly when every node in the 
graph has an even number of edges touching 
it. For the Königsberg Bridge graph (Fig. 1b),  
this is not the case because each of the four 
nodes has an odd number of edges touching 
it and so the desired stroll through the city 
does not exist.

The case of directed graphs (that is, graphs 
with directed edges) is similar. For any node 
in a directed graph, define its indegree as the 
number of edges leading into it and its outdegree 
as the number of edges leaving it. A graph in 
which indegrees are equal to outdegrees for 
all nodes is called ‘balanced’. Euler’s theorem 

(e.g., AT, TG, GG, GC, CG, GT, CA and AA) 
can appear only once as a node of the graph. 
Then, connect node x to node y with a directed 
edge if some k-mer (e.g., ATG) has prefix x (e.g., 
AT) and suffix y (e.g., TG), and label the edge 
with this k-mer (Fig. 3d; in Box 3, we describe 
how this approach was originally discussed in 
the context of sequencing by hybridization).

Now imagine an ant that follows a differ-
ent strategy: instead of visiting every node of 
the graph (as before), it now attempts to visit 
every edge of the graph exactly once. Sound 
familiar? This is exactly the kind of path that 
would solve the Bridges of Königsberg prob-
lem and is called an Eulerian cycle. As it visits 
all edges of the de Bruijn graph, which rep-
resent all possible k-mers, this new ant also 
spells out a candidate genome; for each edge 
that the ant traverses, one records the first 

Figure 3  Two strategies for genome assembly: from Hamiltonian cycles to Eulerian cycles. (a) An example small circular genome. (b) In traditional Sanger 
sequencing algorithms, reads were represented as nodes in a graph, and edges represented alignments between reads. Walking along a Hamiltonian cycle by 
following the edges in numerical order allows one to reconstruct the circular genome by combining alignments between successive reads. At the end of the 
cycle, the sequence wraps around to the start of the genome. The repeated part of the sequence is grayed out in the alignment diagram. (c) An alternative 
assembly technique first splits reads into all possible k-mers: with k = 3, ATGGCGT comprises ATG, TGG, GGC, GCG and CGT. Following a Hamiltonian 
cycle (indicated by red edges) allows one to reconstruct the genome by forming an alignment in which each successive k-mer (from successive nodes) is 
shifted by one position. This procedure recovers the genome but does not scale well to large graphs. (d) Modern short-read assembly algorithms construct a 
de Bruijn graph by representing all k-mer prefixes and suffixes as nodes and then drawing edges that represent k-mers having a particular prefix and suffix. 
For example, the k-mer edge ATG has prefix AT and suffix TG. Finding an Eulerian cycle allows one to reconstruct the genome by forming an alignment in 
which each successive k-mer (from successive edges) is shifted by one position. This generates the same cyclic genome sequence without performing the 
computationally expensive task of finding a Hamiltonian cycle.
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states that a connected directed graph has an 
Eulerian cycle if and only if it is balanced. In 
particular, Euler’s theorem implies that our 
de Bruijn graph contains an Eulerian cycle as 
long as we have located all k-mers present in 
the genome. Indeed, in this case, for any node, 
both its indegree and outdegree represent the 
number of times the (k–1)-mer assigned to that 
node occurs in the genome.

To see why Euler’s theorem must be true, 
first note that a graph that contains an Eulerian 
cycle is balanced because every time an ant 
traversing an Eulerian cycle passes through a 
particular vertex, it enters on one edge of the 
cycle and exits on the next edge. This pairs up 
all the edges touching each vertex, showing that 
half the edges touching the vertex lead into it 
and half lead out from it. It is a bit harder to see 
the converse—that every connected balanced 

nucleotide of the k-mer assigned to that edge.
Euler considered graphs for which there 

exists a path between every two nodes (called 
connected graphs). He proved that a connected 
graph with undirected edges contains an 
Eulerian cycle exactly when every node in the 
graph has an even number of edges touching 
it. For the Königsberg Bridge graph (Fig. 1b),  
this is not the case because each of the four 
nodes has an odd number of edges touching 
it and so the desired stroll through the city 
does not exist.

The case of directed graphs (that is, graphs 
with directed edges) is similar. For any node 
in a directed graph, define its indegree as the 
number of edges leading into it and its outdegree 
as the number of edges leaving it. A graph in 
which indegrees are equal to outdegrees for 
all nodes is called ‘balanced’. Euler’s theorem 

(e.g., AT, TG, GG, GC, CG, GT, CA and AA) 
can appear only once as a node of the graph. 
Then, connect node x to node y with a directed 
edge if some k-mer (e.g., ATG) has prefix x (e.g., 
AT) and suffix y (e.g., TG), and label the edge 
with this k-mer (Fig. 3d; in Box 3, we describe 
how this approach was originally discussed in 
the context of sequencing by hybridization).

Now imagine an ant that follows a differ-
ent strategy: instead of visiting every node of 
the graph (as before), it now attempts to visit 
every edge of the graph exactly once. Sound 
familiar? This is exactly the kind of path that 
would solve the Bridges of Königsberg prob-
lem and is called an Eulerian cycle. As it visits 
all edges of the de Bruijn graph, which rep-
resent all possible k-mers, this new ant also 
spells out a candidate genome; for each edge 
that the ant traverses, one records the first 

Figure 3  Two strategies for genome assembly: from Hamiltonian cycles to Eulerian cycles. (a) An example small circular genome. (b) In traditional Sanger 
sequencing algorithms, reads were represented as nodes in a graph, and edges represented alignments between reads. Walking along a Hamiltonian cycle by 
following the edges in numerical order allows one to reconstruct the circular genome by combining alignments between successive reads. At the end of the 
cycle, the sequence wraps around to the start of the genome. The repeated part of the sequence is grayed out in the alignment diagram. (c) An alternative 
assembly technique first splits reads into all possible k-mers: with k = 3, ATGGCGT comprises ATG, TGG, GGC, GCG and CGT. Following a Hamiltonian 
cycle (indicated by red edges) allows one to reconstruct the genome by forming an alignment in which each successive k-mer (from successive nodes) is 
shifted by one position. This procedure recovers the genome but does not scale well to large graphs. (d) Modern short-read assembly algorithms construct a 
de Bruijn graph by representing all k-mer prefixes and suffixes as nodes and then drawing edges that represent k-mers having a particular prefix and suffix. 
For example, the k-mer edge ATG has prefix AT and suffix TG. Finding an Eulerian cycle allows one to reconstruct the genome by forming an alignment in 
which each successive k-mer (from successive edges) is shifted by one position. This generates the same cyclic genome sequence without performing the 
computationally expensive task of finding a Hamiltonian cycle.
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states that a connected directed graph has an 
Eulerian cycle if and only if it is balanced. In 
particular, Euler’s theorem implies that our 
de Bruijn graph contains an Eulerian cycle as 
long as we have located all k-mers present in 
the genome. Indeed, in this case, for any node, 
both its indegree and outdegree represent the 
number of times the (k–1)-mer assigned to that 
node occurs in the genome.

To see why Euler’s theorem must be true, 
first note that a graph that contains an Eulerian 
cycle is balanced because every time an ant 
traversing an Eulerian cycle passes through a 
particular vertex, it enters on one edge of the 
cycle and exits on the next edge. This pairs up 
all the edges touching each vertex, showing that 
half the edges touching the vertex lead into it 
and half lead out from it. It is a bit harder to see 
the converse—that every connected balanced 

nucleotide of the k-mer assigned to that edge.
Euler considered graphs for which there 

exists a path between every two nodes (called 
connected graphs). He proved that a connected 
graph with undirected edges contains an 
Eulerian cycle exactly when every node in the 
graph has an even number of edges touching 
it. For the Königsberg Bridge graph (Fig. 1b),  
this is not the case because each of the four 
nodes has an odd number of edges touching 
it and so the desired stroll through the city 
does not exist.

The case of directed graphs (that is, graphs 
with directed edges) is similar. For any node 
in a directed graph, define its indegree as the 
number of edges leading into it and its outdegree 
as the number of edges leaving it. A graph in 
which indegrees are equal to outdegrees for 
all nodes is called ‘balanced’. Euler’s theorem 

(e.g., AT, TG, GG, GC, CG, GT, CA and AA) 
can appear only once as a node of the graph. 
Then, connect node x to node y with a directed 
edge if some k-mer (e.g., ATG) has prefix x (e.g., 
AT) and suffix y (e.g., TG), and label the edge 
with this k-mer (Fig. 3d; in Box 3, we describe 
how this approach was originally discussed in 
the context of sequencing by hybridization).

Now imagine an ant that follows a differ-
ent strategy: instead of visiting every node of 
the graph (as before), it now attempts to visit 
every edge of the graph exactly once. Sound 
familiar? This is exactly the kind of path that 
would solve the Bridges of Königsberg prob-
lem and is called an Eulerian cycle. As it visits 
all edges of the de Bruijn graph, which rep-
resent all possible k-mers, this new ant also 
spells out a candidate genome; for each edge 
that the ant traverses, one records the first 

Figure 3  Two strategies for genome assembly: from Hamiltonian cycles to Eulerian cycles. (a) An example small circular genome. (b) In traditional Sanger 
sequencing algorithms, reads were represented as nodes in a graph, and edges represented alignments between reads. Walking along a Hamiltonian cycle by 
following the edges in numerical order allows one to reconstruct the circular genome by combining alignments between successive reads. At the end of the 
cycle, the sequence wraps around to the start of the genome. The repeated part of the sequence is grayed out in the alignment diagram. (c) An alternative 
assembly technique first splits reads into all possible k-mers: with k = 3, ATGGCGT comprises ATG, TGG, GGC, GCG and CGT. Following a Hamiltonian 
cycle (indicated by red edges) allows one to reconstruct the genome by forming an alignment in which each successive k-mer (from successive nodes) is 
shifted by one position. This procedure recovers the genome but does not scale well to large graphs. (d) Modern short-read assembly algorithms construct a 
de Bruijn graph by representing all k-mer prefixes and suffixes as nodes and then drawing edges that represent k-mers having a particular prefix and suffix. 
For example, the k-mer edge ATG has prefix AT and suffix TG. Finding an Eulerian cycle allows one to reconstruct the genome by forming an alignment in 
which each successive k-mer (from successive edges) is shifted by one position. This generates the same cyclic genome sequence without performing the 
computationally expensive task of finding a Hamiltonian cycle.
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states that a connected directed graph has an 
Eulerian cycle if and only if it is balanced. In 
particular, Euler’s theorem implies that our 
de Bruijn graph contains an Eulerian cycle as 
long as we have located all k-mers present in 
the genome. Indeed, in this case, for any node, 
both its indegree and outdegree represent the 
number of times the (k–1)-mer assigned to that 
node occurs in the genome.

To see why Euler’s theorem must be true, 
first note that a graph that contains an Eulerian 
cycle is balanced because every time an ant 
traversing an Eulerian cycle passes through a 
particular vertex, it enters on one edge of the 
cycle and exits on the next edge. This pairs up 
all the edges touching each vertex, showing that 
half the edges touching the vertex lead into it 
and half lead out from it. It is a bit harder to see 
the converse—that every connected balanced 

nucleotide of the k-mer assigned to that edge.
Euler considered graphs for which there 

exists a path between every two nodes (called 
connected graphs). He proved that a connected 
graph with undirected edges contains an 
Eulerian cycle exactly when every node in the 
graph has an even number of edges touching 
it. For the Königsberg Bridge graph (Fig. 1b),  
this is not the case because each of the four 
nodes has an odd number of edges touching 
it and so the desired stroll through the city 
does not exist.

The case of directed graphs (that is, graphs 
with directed edges) is similar. For any node 
in a directed graph, define its indegree as the 
number of edges leading into it and its outdegree 
as the number of edges leaving it. A graph in 
which indegrees are equal to outdegrees for 
all nodes is called ‘balanced’. Euler’s theorem 

(e.g., AT, TG, GG, GC, CG, GT, CA and AA) 
can appear only once as a node of the graph. 
Then, connect node x to node y with a directed 
edge if some k-mer (e.g., ATG) has prefix x (e.g., 
AT) and suffix y (e.g., TG), and label the edge 
with this k-mer (Fig. 3d; in Box 3, we describe 
how this approach was originally discussed in 
the context of sequencing by hybridization).

Now imagine an ant that follows a differ-
ent strategy: instead of visiting every node of 
the graph (as before), it now attempts to visit 
every edge of the graph exactly once. Sound 
familiar? This is exactly the kind of path that 
would solve the Bridges of Königsberg prob-
lem and is called an Eulerian cycle. As it visits 
all edges of the de Bruijn graph, which rep-
resent all possible k-mers, this new ant also 
spells out a candidate genome; for each edge 
that the ant traverses, one records the first 

Figure 3  Two strategies for genome assembly: from Hamiltonian cycles to Eulerian cycles. (a) An example small circular genome. (b) In traditional Sanger 
sequencing algorithms, reads were represented as nodes in a graph, and edges represented alignments between reads. Walking along a Hamiltonian cycle by 
following the edges in numerical order allows one to reconstruct the circular genome by combining alignments between successive reads. At the end of the 
cycle, the sequence wraps around to the start of the genome. The repeated part of the sequence is grayed out in the alignment diagram. (c) An alternative 
assembly technique first splits reads into all possible k-mers: with k = 3, ATGGCGT comprises ATG, TGG, GGC, GCG and CGT. Following a Hamiltonian 
cycle (indicated by red edges) allows one to reconstruct the genome by forming an alignment in which each successive k-mer (from successive nodes) is 
shifted by one position. This procedure recovers the genome but does not scale well to large graphs. (d) Modern short-read assembly algorithms construct a 
de Bruijn graph by representing all k-mer prefixes and suffixes as nodes and then drawing edges that represent k-mers having a particular prefix and suffix. 
For example, the k-mer edge ATG has prefix AT and suffix TG. Finding an Eulerian cycle allows one to reconstruct the genome by forming an alignment in 
which each successive k-mer (from successive edges) is shifted by one position. This generates the same cyclic genome sequence without performing the 
computationally expensive task of finding a Hamiltonian cycle.
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Sequence De Bruijn Graph (from reads to graph)

read 1:

(1)(1) (1)(1) (1)(1) (1)

GGA GAC ACT CTA TAA AAA AAT

A

A

A

A A

AA A

T

C

C

C

A

A

A

G

G

T

T

T

G

CG AG A TT AA

read 2:

(1) (1)(1)(1) (1)(1)(1)

GAC AAA AAT ATCCA C ACC C AA

A

A

A

A

A

A

A

A

A

T

T C

C

C

C

C

A

AG

C

C

CA C C A A A TG

construct a de Bruijn graph for each read with k − 1 = 3

split the read into overlapping k − 1mers

and construct the de Bruijn graph

count 1 for the read at each node
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Sequence De Bruijn Graph (merging identical nodes)

(1) (1) (1)

(1)(2)(2)

(1)(1)(1)

(2)(1)

and update read counts

merge identical nodes

AAT ATCGACGGA

A CC ACC AC

CTA

AAA

A

ACT TAA

(1)(1)(1)(1) (1)(1)(1)

CGAC ACC CCA AA AAA AAT ATC

(1) (1)(1) (1)(1) (1)(1)

AATAAATAACTAACTGACGGA

take all ’read graphs’

. . . and merge identical nodes

. . . gaining a large de Bruijn
graph

sum up the read counts at the
merged node

do repeat this for all other
reads
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Sequence De Bruijn Graph (reducing the graph to contigs)

bulge caused by  seq. error

tip caused by  seq. error

(9)(3) (7) (9) (10) (8) (16) (16) (11)

(1) (1) (1)

(8)

(2) (1) (2) (2)

(8) (8) (12)

(16) (9) (12) (8) (5)

(8)(8)(7)(7)(7)(6)(5)(9) (8)

C

AAGT AGTC GTCG TCGA CGAG GAGG AGGC GGCT

CGAC AG CG CA G

GCTT CTTT TTTA TTAG

TAGA

TTCTCCCG T

AGAG GAGA AGAC GACA ACAA

CGAT CCGA TCCG ATCC GATC AGATTGAG ATGA GATG

CT CTA AG

sequencing errors cause tips and bulges with low read counts and can
be identified using thresholds

compactify the graph by merging the branch labels (rf. de Bruijn
graph definition) on non-branching paths

delete the obsolete nodes and re-link the branching nodes

remove the tips and bulges with low read counts (sequencing errors)

re-compactify the graph

all the labels on the non-branching paths are our reconstructed contigs
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Sequence De Bruijn Graph (reducing the graph to contigs)

TGAG

GAGG GGCT TAGA GAGATCGA

GAGGCT

TAGATCCGATGAG

GAGACAA

AGATCTCGG

GCCAGC

TCGAGGAAGTCGA TAGAGA

TGAGG

GGCTTTAGA

TGAGA

sequencing errors cause tips and bulges with low read counts and can
be identified using thresholds

compactify the graph by merging the branch labels (rf. de Bruijn
graph definition) on non-branching paths

delete the obsolete nodes and re-link the branching nodes

remove the tips and bulges with low read counts (sequencing errors)

re-compactify the graph

all the labels on the non-branching paths are our reconstructed contigs
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Sequence De Bruijn Graph (reducing the graph to contigs)

GAGATAGAGAGG

TGAG

GAGGCTTTAGAAAGTCGAGG

TGAGG

TAGATCCGATGAG

GAGACAATAGAGA

TGAGA

sequencing errors cause tips and bulges with low read counts and can
be identified using thresholds

compactify the graph by merging the branch labels (rf. de Bruijn
graph definition) on non-branching paths

delete the obsolete nodes and re-link the branching nodes

remove the tips and bulges with low read counts (sequencing errors)

re-compactify the graph

all the labels on the non-branching paths are our reconstructed contigs
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De Bruijn Graphs for Assembly with Sequencing Errors

Supplementary Figures 
 

Why are de Bruijn graphs useful for genome assembly? 
 

Phillip E. C. Compeau, Pavel A. Pevzner & Glenn Tesler 
 

 
 

 
 

Supplementary Figure 1. De Bruijn graph from reads with sequencing errors. (a) A de 
Bruijn graph E on our set of reads with k = 4.  Finding an Eulerian cycle is already a 
straightforward task, but for this value of k, it is trivial.  (b) If TGGAGTG is incorrectly 
sequenced as a sixth read (in addition to the correct TGGCGTG read), then the result is a bulge in 
the de Brujin graph, which complicates assembly.  (c) An illustration of a de Bruijn graph E with 
many bulges.  The process of bulge removal should leave only the red edges remaining, yielding 
an Eulerian path in the resulting graph. 

 

GGCATG TGG GCG CGT GTG TGC GCA CAA AAT
ATGG TGGC GGCG GCGT CGTG GTGC TGCA GCAA CAAT

AATG

GGCATG TGG GCG CGT GTG TGC GCA CAA AAT
ATGG TGGC GGCG GCGT CGTG GTGC TGCA GCAA CAAT

GGA GAG AGT

TGGA

GGAG GAGT

AGTG

a

b

c

Nature Biotechnology: doi:10.1038/nbt.2023

The number of reads
participating in bulges
and tips tell us which
are the frequent, and
thus likely true ones.

Bulges and tips with
few reads are removed.
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De Bruijn Graphs for Assembly with Repeats

Source: Chaisson et al. (2009)

In the case of repeats, Euler
paths are not possible, because
the edges of the repeated
region have to be used
repeatedly.

Typically the order in which
edges from a repeat have to be
followed cannot be determined.
Then the paths have to be kept
as separate contigs.

Exception: if we have reads or
paired-end information, which
reach longer than the repeat,
this helps to order the contigs.
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Bidirected de Bruijn Graphs (Medvedev et al. 2007)

(1)

(1)

(1) (1) (1)

(2) (2)(1) (2)

(1) (1)

TCCGGA

TAGCTAAGT

GGT

TTAACT TAA

GTCGAC

CCATGGACC

GATATCATTAATTTTAAA

TTGCAA

merge identical nodes

and update read counts

seq2

(1) (1)(1)(1) (1)(1)(1)

GTCGAC ACCGGT CCATGG CAATTG AAATTT AATATT ATCGAT

seq2: GATTTGGTC

seq1

(1)(1) (1) (1) (1) (1)(1)

AAA

TTA

TAA

TAG

CTA

AGT

ACT

GTC

GAC

TTT

AAT

ATTTCC

GGA

convert to bidirectional

De Bruijn subgraphs

seq1: GGACTAAAT

Problem: How do we
know which strand our
read is from? We don’t!

With bidirected de
Bruijn Graphs one can
cover k-mers and their
complements.

Note:
At no time two nodes
with identical strings can
exist in one (sub)graph,
and both strings have to
be treated equally.
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Some measures on genome sequencing and assembly

Coverage

Coverage describes the average number of times a nucleotide in the
template DNA has been sequenced which is equivalent to the number of
reads that cover each nucleotide on average.

coverage =

∑
i∈{all reads}

length of read i

length of template or genome

Rule of thumb: the higher the better!
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Some measures on genome sequencing and assembly

The quality of an assembly is hard to measure. Typically several values are
used like

maximum contig/scaffold length

average contig/scaffold length

combined total length

the N50 or the NG50 value
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N50 and NG50

N50 value

All contigs/scaffold are ordered descending in size. Starting from the
largest contig/scaffold add their lengths. The N50 value is the length of
the first contig, for which this sum of contig lengths covers ≥ 50% of the
total length of contigs/scaffolds, i.e. the entire assembly.

Rule of thumb: the longer the better!

NG50 value

All contigs/scaffold are ordered descending in size. Starting from the
largest contig/scaffold add their lengths. The NG50 value is the length of
the first contig, for which this sum of contig lengths covers ≥ 50% of the
total length of the sequenced genome.

Rule of thumb: the longer the better!

Sometimes other percentages than 50% are used leading to, e.g. N70 etc.
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Reference based assembly

The whole procedure gets much easier if we have a reference genome
available.

mapping using search tools like BLAST or BLAT

dynamic programming (e.g. Smith-Waterman) with pre-filtering to
keep the candidate regions small, using

hash-based k-mer index
spaced-seeds index

Approaches using the Burrows-Wheeler-Transform (BWT) of the
reference sequence,

and the mapped reads are then summarized to contigs using consensus
approaches.
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Hash-based approaches

Hash-based approaches typically require matching seed sequences
(one or several) to identify candidate regions to be checked

often contiguous seeds are used (e.g. perfectly matching words of
length k)

T T

1 1 11 11 1 1 1

G A CT AC C

A

T TCATTCATCA AT ACAG

...... TCG TCTCATCA AT ACA

seed sequence (len=9)

seed encoding

query sequence

reference sequence

Another way is to use spaced seeds, i.e. that only certain letters in a
longer word have to match.

. .

0 1 1 11 11 0 0 1 0 1 0 0 10 0

A C AT AA C T T. . . . . .

A

T TCATTCATCA AT ACAG

...... TCG TCTCATCA AT ACA

spaced seed (weight=9, len=17)

seed encoding

query sequence

reference sequence

It has been shown that the use of spaced seeds is much more sensitive,
missing less hits. Especially, when using sets of spaced seeds.
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Hash-based mapping

Position N

Position 2

Index seed pairs

Position 1

Seed index
(tens of gigabytes)

Hits identify positions
in genome where
spaced seed pair
is found

Look up each pair
of seeds in index

Six seed
pairs per
read/
fragment

Confirm hits
by checking
“****” positions

•
•
•
•
•
•

ACTC  CCGT  ACTC  TAAT

Report alignment to user

Reference genome
(> 3 gigabases)

Short read

Extract seeds

ACTCCCGTACTCTAAT

1
2

3
4

5
6

CTGC CGTA AACT AATG

ACTG CCGT AAAC TAAT

ACTG **** AAAC ****

ACTG **** AAAC ****
**** CCGT **** TAAT

ACTG **** **** TAAT

**** **** AAAC TAAT

ACTG CCGT **** ****
**** CCGT AAAC ****

**** CCGT **** TAAT

ACTG **** **** TAAT

**** CCGT AAAC ****

Chr1
Chr2
Chr3
Chr4

Source: Trapnell+Salzberg (2009)

mapping with candidate filtering based on
(spaced) seed matches is easy to
implement

however, to generate a typical seed index is
memory-intense (about 50GB for the
human genome of 3 Gbp)

the example uses six spaced seeds
(1111111100000000, 0000000011111111,
0000111100001111, 1111000011110000,
0000111111110000, 1111000000001111)

from all candidates the actual best hit
position of the read has to be found by
alignment and reported
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Burrows-Wheeler-Transform (BWT) - encoding

Methods using the Burrows-Wheeler-Transform (BWT) for mapping generate the
BWT from the text, e.g. the genome, adding an start (^) and end character ($):

(Note, in the example we assume that $ sorts before the letters.)

N AN A$BA

BWT is the last column:

A

B A N A N A$
A $ B A N A N

AA N $ B A N

AB A N N $
$AA N A N B

AN $ B A N A
AN A N $ B A

sort lexicographically:

NA$ ANB A
A N AA $ NB
A N A$AN B

A N$ ANA B
B$ANAN A
$NA A N A B

AB A $N NA

generate all rotations:use text with end ($):

N $AB A N A

Originally, the Burrows-Wheeler-Transform (BWT) has been introduced in the
field of data compression, because (a) the BTW compresses better than the
original text and (b) one can decode the original text from the BWT.
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Burrows-Wheeler-Transform (BWT) - decoding
From the BTW the original text can easily decoded:

N A N
AA N $ B A N

AB A N A N $
$AA N A N B

AN $ B A

B$ A

AB$NAN A
AN

B A N A N A$
A

has its width again
...until the matrix

N

B$NAN A
NAB$N A

NANAB A
NANA A $

AB$NA A
AAB$A

$ NANAB

add BTW
and sort

A N A$
A $ B A N

AA N $ B
AA A N

B A N A N
AN $ B A

AN A N $

N

B

add BTW
and sort

$ B A N
A $ B A

AA N $
A N A N
B A N A
AN $ B

AN A N

add BTW
and sort

A
$

N
$
N
A
A
B
A

B

A

N
N

A

A
A

B

N
$

N

A

sort
and

A

$
A
A
A
B
N
N

A
N
N
B
$
A
A

...

...

...

...

...

...

...A

N

$
N

B

A

rotate
(BTW front)

A
A
A
$ ...

...

N
N

...

B ...
...

A
A

B

N
$

N

A ...
...

sort

A

N

...

...

...

...

...

...

...
N
B
A
A

$

A
A
$
B
N
N
A

rotate
(BTW front)

...

...

A
B
N
N

N
A

N
...

...

A ...

...
B
$
A
A

...

$
A

+last column
we know 1st

$

N
N
B
A
A
A

sort

A
A

N
A

N

$
B

the BTW
start from

The original text can be found in the line ending with $.
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Burrows-Wheeler-Transform (BWT) - some observations

A A $ B3 2A

$

N N

N A45 AB$AN

1 7$ANANAB

2 1B$ANANA

4 3NAB$ANA

5NANAB$A6

7 6ANANAB

A
1 42 7653

NANAB $
a letter in the 1st column is easy to find,
because they are sorted

the letter in the last column preceeds the
one in the 1st column (thus, searching for
words starts at the last letter)

the order of occurrence of a single letter in
the last and the 1st column is the same
(the 2nd A in the one is the 2nd A in the
other)
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Burrows-Wheeler-Transform (BWT) - some observations

A A $ B3 2A

$

N N

N A45 AB$AN

1 7$ANANAB

2 1B$ANANA

4 3NAB$ANA

5NANAB$A6

7 6ANANAB

A
1 42 7653

NANAB $
a letter in the 1st column is easy to find,
because they are sorted

the letter in the last column preceeds the
one in the 1st column (thus, searching for
words starts at the last letter)

the order of occurrence of a single letter in
the last and the 1st column is the same
(the 2nd A in the one is the 2nd A in the
other)
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Burrows-Wheeler-Transform (BWT) - some observations

A A $ B3 2A

$

N N

N A45 AB$AN

1 7$ANANAB

2 1B$ANANA

4 3NAB$ANA

5NANAB$A6

7 6ANANAB

A
1 42 7653

NANAB $
a letter in the 1st column is easy to find,
because they are sorted

the letter in the last column preceeds the
one in the 1st column (thus, searching for
words starts at the last letter)

the order of occurrence of a single letter in
the last and the 1st column is the same
(the 2nd A in the one is the 2nd A in the
other)
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Burrows-Wheeler-Transform (BWT) - easier decoding

A A $ B3 2A

$

N N

N A45 AB$AN

1 7$ANANAB

2 1B$ANANA

4 3NAB$ANA

5NANAB$A6

7 6ANANAB

2

$ANANAB
6 75431

from these observations about the
last-column-first-column property, we can
derive an easier way to decode a BWT

We start from the end character ($) in the
first column.

We determine the preceeding character by
checking the last column of the same row.

Then we jump the the according character
in the first column,

and we note down the decoded character.

Now we can repeat that to determine all
preceeding characters

and finish when we meet the end character
($) again
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Burrows-Wheeler-Transform (BWT) - easier decoding

A A $ B3 2A

$

N N

N A45 AB$AN

1 7$ANANAB

2 1B$ANANA

4 3NAB$ANA

5NANAB$A6

7 6ANANAB

A
1 2 3 4 765

ANAB N $

from these observations about the
last-column-first-column property, we can
derive an easier way to decode a BWT

We start from the end character ($) in the
first column.

We determine the preceeding character by
checking the last column of the same row.

Then we jump the the according character
in the first column,

and we note down the decoded character.

Now we can repeat that to determine all
preceeding characters

and finish when we meet the end character
($) again
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Burrows-Wheeler-Transform (BWT) - easier decoding

A A $ B3 2A

$

N N

N A45 AB$AN

1 7$ANANAB

2 1B$ANANA

4 3NAB$ANA

5NANAB$A6

7 6ANANAB

2

$AA NNAB
5 6 7431

from these observations about the
last-column-first-column property, we can
derive an easier way to decode a BWT

We start from the end character ($) in the
first column.

We determine the preceeding character by
checking the last column of the same row.

Then we jump the the according character
in the first column,

and we note down the decoded character.

Now we can repeat that to determine all
preceeding characters

and finish when we meet the end character
($) again
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Burrows-Wheeler-Transform (BWT) - easier decoding

A A $ B3 2A

$

N N

N A45 AB$AN

1 7$ANANAB

2 1B$ANANA

4 3NAB$ANA

5NANAB$A6

7 6ANANAB

$
1 2 4 7653

B A NAN A

from these observations about the
last-column-first-column property, we can
derive an easier way to decode a BWT

We start from the end character ($) in the
first column.

We determine the preceeding character by
checking the last column of the same row.

Then we jump the the according character
in the first column,

and we note down the decoded character.

Now we can repeat that to determine all
preceeding characters

and finish when we meet the end character
($) again
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Burrows-Wheeler-Transform (BWT) - easier decoding

A A $ B3 2A

$

N N

N A45 AB$AN

1 7$ANANAB

2 1B$ANANA

4 3NAB$ANA

5NANAB$A6

7 6ANANAB

B $AA N A N
3 5 6 72 41

from these observations about the
last-column-first-column property, we can
derive an easier way to decode a BWT

We start from the end character ($) in the
first column.

We determine the preceeding character by
checking the last column of the same row.

Then we jump the the according character
in the first column,

and we note down the decoded character.

Now we can repeat that to determine all
preceeding characters

and finish when we meet the end character
($) again
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Burrows-Wheeler-Transform (BWT) - easier decoding

A A $ B3 2A

$

N N

N A45 AB$AN

1 7$ANANAB

2 1B$ANANA

4 3NAB$ANA

5NANAB$A6

7 6ANANAB

3 5 6

$
2 41 7

AB A N A N

from these observations about the
last-column-first-column property, we can
derive an easier way to decode a BWT

We start from the end character ($) in the
first column.

We determine the preceeding character by
checking the last column of the same row.

Then we jump the the according character
in the first column,

and we note down the decoded character.

Now we can repeat that to determine all
preceeding characters

and finish when we meet the end character
($) again
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Burrows-Wheeler-Transform (BWT) - easier decoding

A A $ B3 2A

$

N N

N A45 AB$AN

1 7$ANANAB

2 1B$ANANA

4 3NAB$ANA

5NANAB$A6

7 6ANANAB

3 5 6

$
2 41 7

AB A N A N

from these observations about the
last-column-first-column property, we can
derive an easier way to decode a BWT

We start from the end character ($) in the
first column.

We determine the preceeding character by
checking the last column of the same row.

Then we jump the the according character
in the first column,

and we note down the decoded character.

Now we can repeat that to determine all
preceeding characters

and finish when we meet the end character
($) again
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Burrows-Wheeler-Transform (BWT) - searching
Searching from the last letter to the first of the search string (q=ANA):

N

AA Nq=query:

$ B A N A N A67

6A $ B A N A N5

A N A $ B A N34

A N A N A $ B12

B A N A N A $71

A $ B A N A45

N A N A $ B A23

A 5

4A N A $ B A N3

2A N A N

AB$N3

4A

$7 B

ANA

A N A

AA N

NAB$AN5

7$ANAN

6A

find last
letter

q=

A

2

1B

1B$A

N

A6 $ B A N N

to next A N Aq=
position

$7 B A N A N A6

6A $ B A N A N5

4A N A $ B A N3

2A N A N A $ B1

1B A N A N A $7

5N A $ B A N A4

3N A N A $ B A2

67$

last letter
check 2nd

B A N

q= N AA

A N A
6A $ B A N A N5

4A N A $ B A N3

2A N A N A $ B1

1B A N A N A $7

5N A $ B A N A4

3N A N A $ B A2

N $ B1

1

N A N A $ B A2

B A

position
to next

N A

q=

N A $7

5N A $ B A N A4

3

ANA

7$ B A N A N A6

6A $ B A N A N5

4A N A $ B A N3

2A N A A A B1

3

1B A N A N A $7

5N A $ B A N A4

3N A N A $ B A2

found
twice!

ANAq=

7$ B A N A N A6

6A $ B A N A N5

4A N A $ B A N
2A N A N $
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Burrows-Wheeler-Transform (BWT) - approximate
matches

this way exact matches can be found easily

to find approximate matches,

everytime a mismatch is detected,

a backtrace is done, introducing changes at any position

at the beginning only one change and later more if still no match is
found
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BWT-based mapping
Reference genome

(> 3 gigabases)

Bowtie index
(~2 gigabytes)

Concatenate into
single string

Burrows-Wheeler
transform and indexing

ACTCCCGTACTCTAAT
•
•
•

AAT

AT

T

ACTCCCGTACTCTAAT

Convert each
hit back to
genome location

Report alignment to user

Chr1
Chr2
Chr3
Chr4

Short read

ACTCCCGTACTCTAAT

Look up
‘suffixes’
of read

Hits identify
positions in

genome where
read is found

Source: Trapnell+Salzberg (2009)

BWT-based is harder to implement than
seed based approaches

however, it is less memory intense (only
(about 1-2GB for the human genome of 3
Gbp) and much faster

on the other hand, seed based approaches
have been shown to be much more
sensitive, and thus able to match more
reads correctly
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Genome Analysis
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Genomics is Changing Biology - pre-genomic era

In the pre-genomic era:

1 gene →
1 research project

or

1 gene ⇒
1 master/PhD
thesis

Albinism

Melanine

Tyrosine

Tyrosinase
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Genomics is Changing Biology - post-genomic era

Today, in the post-genomic era:

1 genome →
1 PhD/Masters project

or

Dozens or hundreds of
genomes →
background for one
research project
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Newspapers: Genome deciphered, but...

agtctggagcccagaagggacacaccagcacagtctggtaggctacagca
gcaagtctctaaagaaaggctgagaacacccagaacaggagagttcaggt
ccaggatggccagcctgttccggtcctatctgccagcaatctggctgctg
ctgagccaactccttagagaaagcctagcagcagagctgaggggatgtgg
tccccgatttggaaaacacttgctgtcatattgccccatgcctgagaaga
cattcaccaccaccccaggagggtggctgctggaatctggacgtcccaaa
ggtgagagccctggactaccaaacaatcagaatgaggcctgaaaaaacag
gctccagatctcattgactgcctgtagtcaactcagactctactgtggct
agtgcctacaagtttgtggtttttcattgtaatgtgcttttattaaaagg
gtctcaccagaaatctcatgggaagttgggggtagaggagaagctgcagg
aaaaacagaagaacagcctcaccttggaggctcttggtgcctttcccacc
tggcagccagagatacagggtggagaaaacagggaatcctcagagaaggt
gactattctcaaacaccagcaggaggtgaggtgtactcccagacccccag
agataaatttaacaagaaaaatggaaagtattcatggataacaaatgtta
acatttggtgtcgacacatatagatgtatgttgcttctcagccttttagc
taagatccactgatatagatgtatagatttatgtggatcagatttgaata
tctgaatctttctattagaataacttgtgattataaaaaaaattccctat
tgctatccagtacataatgcattgaggttatcaatcaaaacagtgtcagg
gagagtcaaaagtggtatggtataggcatttagagggtcattagaagagt
gcatagaggggacaggatgaggagttagcatatccttaatattgtagtat
cttaaagtgccctactctaagtaagctaagttgttgaaatgttaggatac
ttgctgattctctctggtgtttaattacatggaggcaatgggtacattgt
ggtctaggcaaattgtataatttttctgatcctctttcacatgaatgttt
ttcctcacctttcattcctctcttttacttcacagaaatggtgtcaacct
ccaacaacaaagatggacaagccttaggtacgacatcagaattcattcct
aatttgtcaccagagctgaagaaaccactgtctgaagggcagccatcatt
gaagaaaataatactttcccgcaaaaagagaagtggacgtcacagatttg
atccattctgttgtgaagtaatttgtgacgatggaacttcagttaaatta
tgtacatagtagagtaatcatggactggacatctcatccattctcatatg
tattctcaatgacaaattcactgatgcccaattaaatgattgctgttt
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Procedures of Genome Analyses

Gene annotation

Alternative splicing (transcript variants, RNA-seq)

Differential expression (transcript abundance, RNA-seq)

Annotation of regulatory elements (ChIP-seq)

Detection of genome variants
(Single Nucleotide Polymorphisms or SNPs)

Comparative genomics

Repeat annotation
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Gene annotation

Sequenced 
genome or 

genome region 

Map ESTs or 
cloned cDNA 

Translate into all 
6 reading frames 
and compare to 
a database for 

protein-
sequences 

Ab initio gene prediction 

Use gene 
prediction 

software to 
build or refine 
gene models 
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Sequencing quality: the Phred score

 Q = -10 log10( P ) 

P is the probability that your 
base call is incorrect 
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Gene Models: quick review

Prokaryotic gene model 
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Gene Models: quick review

A Eukaryotic gene model:

EXON EXON EXON 

Wikipedia

Remember: All parts remaining in the mRNA are exonic, not just the
coding parts.
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Homology based (extrinsic) methods

Alignment of translated DNA sequence to protein database

NEED TO TRANSLATE ALL 6 
READING FRAMES! 

Protein 
DB 

TBLASTN 

Genomic Sequence 

P1 P2 
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Homology based (extrinsic) methods

Alignment of translated DNA sequence to protein database

NEED TO TRANSLATE ALL 6 
READING FRAMES! 

Hs-HoxA1 
Hs-HoxA2 
Hs-HoxA3 

TBLASTN 

Opossum Genome Sequence 
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Homology based (extrinsic) methods

Proteins aligned to opossum genomic DNA:
pink regions depict the optimum that can be achieved

EXON 

EXON 

EXON 

Ultimate drawback: no information about 5 and 3 UTRs!
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Homology based (extrinsic) methods

Alignment of transcribed sequences (cDNA, ESTs or mRNAs from RNAseq)
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Homology based (extrinsic) methods

cDNAs or ESTs aligned to opossum genomic DNA: pink regions depict the
optimum that can be achieved
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Ab initio Gene Annotation (intrinsic methods)

Nucleotide sequences are not random across the genome; instead,
there are sequences features that are common among protein-coding
genes

Some of them are:

long open reading frames;
codon bias;
proximity to transcriptional and translational initiation motifs;
3’ polyadenylation sites and
splicing consensus sequences at putative intron-exon boundaries

Ab initio gene discovery programs recognize such features to identify
protein-coding genes. Most popular programs are based on Hidden
Markov Models (HMMs)

Irrespective of which discovery algorithm is used, all computationally
identified putative genes must be confirmed by a second line of
evidence before being elevated to gene status in the genome
annotation
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Ab Initio Gene Finding with HMMs

The states of AUGUSTUS and the possible transitions between them.

DSS0 ASS0 DSS1 ASS1 DSS2 

1 1 1 
E2 

I2short ASS2 

1/3 

0.9 

1 1 
1 

0.1 
0.1 

0.1 

Eterm Esimgle E2
initE1

initE3
init

IR 

0.9999 

0.000041 
0.000009 1/3 1/3 1/3 

I0fixed I0geo I1fixed I1geo I2fixed I2geo 

I1shortI0short

E0 E1 

1 1 

1/3 
1/3 

Modified from Stanke and Waack (2003), Bioinformatics
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Ab Initio Gene Finding with HMMs

DSS0 ASS0 DSS1 ASS1 DSS2 

1 1 1 
E2 

I2short ASS2 

1/3 

0.9 

1 1 
1 0.1 

0.1 

0.1 

Eterm Esimgle E2
initE1

initE3
init

IR 

0.9999 

0.000041 
0.000009 1/3 1/3

1/3 

I0fixed I0geo I1fixed I1geo I2fixed I2geo 

I1shortI0short

E0 E1 

1 1 

1/3 
1/3 

11111 
intergenic region 

20 
translation initiation 

motif 

3 
start 

codon 

< 4 
initial 

pattern 

< 15 
initial content 

model 

> 0 
exon content 

model 

9 
DSS 

model 

d 
Ifixed 

111..111 
IGeo 

32 
Branch 

Point Model 

initial exon 

terminal exon 

long intron 

short intron internal exon 

< 4 
initial 

pattern 

> 0 
exon content 

model 

< 5 
internal 

3’ content 
model 

9 
DSS 

model 

6 
ASS 

model 

< d 
Ishort 

32 
Branch 

Point Model 

6 
ASS 

model 

< 4 
initial 

pattern 

> 0 
exon content 

model 

3 
stop 

codon 

11111 
intergenic region 

single exon gene 

11111 
intergenic region 

20 
translation initiation 

motif 

3 
start 

codon 

< 4 
initial 

pattern 

< 15 
initial content 

model 

> 0 
exon content 

model 

3 
stop 

codon 

11111 
intergenic region 

Modified from Stanke and Waack (2003), Bioinformatics
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Gene Prediction: Ultima Ratio

Include ANY information that can point toward the presence of a
gene into the prediction procedure:

similarity to known proteins/expressed sequences
(to identify exon candidates)

similarity to non-coding parts of expressed sequences
(to identify UTR candidates)

presence of putative signal sequences to identify new exons or to
refine exon borders

sequence conservation in intra-specific or inter-specific genome
comparisons

enrichment of words that occur preferentially in coding sequences
(codon bias, hexamers, etc)

periodicity in the DNA sequence

. . .
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