

Leonhard Euler (1707-1783)
Popular $18^{\text {th }}$ century problem: Is there a walk through Königsberg using each bridge exactly once?

Euler Paths and Tours

Given an undirected connected graph $G=(V, E)$ with nodes V and edges E, we define:

Euler Path or Trail

is a path visiting each edge (of a graph) exactly once.

Euler Tour or Circuit or Cycle

is a path visiting each edge (of a graph) exactly once and ending at the starting point.

Euler Paths and Tours: Solution?

Leonhard Euler (1735) showed that the existence of such paths or tours depend on the degree of the
nodes.

128 SOLVTIO PROBLEMATIS SOLVTIO PROBLEMATIS GEOMETRIAM SITVS

Euler Path

exists if there are exactly 0 or 2 nodes with uneven degree (i.e. number of attached edges).

Euler Tour

exists iff the graph is connected and has no nodes of odd degree.

1 Raeter illam Geometriae partem, quac circa quantitates verfatur, et omni tempore fummo studio eft excula, alterius partis etiamnum admodum guotae primus mentionem fecit Leibnitzius, quam Geometriam Gitus vocauit. Ifta pars ab ipfo in folo fini eterminando, Gitusque proprietatibus eruendis occupata effe ertatuitur; in quo negotio neque ad quantitates re-
ficiendum, neque calculo quantitarum vrendum fit. fipciendum, neque calcalo quantitatum vrendum fit. pertineant, et quali methodo in iis refoluendis vti oporteat, non fatis eff definitum. Quamobrem, cum nuper problematis cuiusdam mentio effet facta, quod quidem ad geometriam pertinere videbatur, at ita crat comparatum, vt neque determinationem quantitatum requi-
rerer, neque folutionem calculi quastitatum ope admitteret, id -ad geometriam fitus referre haud dubiatai: praefertim quod in eius folutione folius fitus in confiderationem vemat, calculus vero nullius prorfus fit vaus. Methodum ergo meam quam ad huius generis proble-

Euler Paths and Tours on directed graphs

In directed graphs, that means, that edges have only one direction in which they can be crossed...

Euler Tour

exists iff the in-degree of each node is equal to its out-degree and if the graph is a strongly connected component, i.e. every node is reachable from every other node via a directed path.

Euler Path

exists iff there at most one node with in-degree - out-degree $=1$ exists at most one node with out-degree - in-degree $=1$.

Note, in graph theory the terms node and vertex (pl. vertices) are used interchangeably, as are directed edge and arc.

Variation: Hamiltonian Paths and Tours

Hamiltonian Path (or traceable path)

is a path that visits every node (of a graph) exactly once.

Hamiltonian Tour

is a Hamiltonian path ending at its starting point.

Problems:

- determining whether such a path/tour exists is NP-complete.
- Hamiltonian Tours are a special case of the

William Rowan Hamilton (1805-1865) Traveling Salesman Problem.

Nicolaas de Bruijn

In 1946 Nicolaas de Bruijn got interested in the superstring problem:

- Find the shortest circular superstring that contains all possible k-mers as substrings.
- There are $n^{k} k$-mers for an alphabet of size $n=|\Sigma|$.
- For example, the number DNA-triplets:
$n^{k}=4^{3}=64$.

Nicolaas de Bruijn (1918-2012)

De Bruijn Graphs

De Bruijn Graph

- nodes: for all possible $(k-1)$-mers
- edges: directed links between nodes \mathbf{a} and \mathbf{b} if the k-2-long prefix of \mathbf{b} is the suffix of \mathbf{a}.
- Note: A Eulerian Tour exists because every node have one in-edge and one out-edge for each character in Σ.

De Bruijn Graph Example

De Bruijn Graph for $k=4$ and $\Sigma=\{0,1\}$:

- The nodes are labeled with 000, 001, 010, 011, 100, 101, 110, 111.
- The edges are labeled linking the overlapping node labels, e.g. $100 \rightarrow$ 001 with 1001.
- An Eulerian Tour exists, each node has in-degree and out-degree 2.
- The Eulerian Tour (marked by blue numbers) spells out the circular superstring: 0000110010111101.

De Bruijn Graphs in Sequence Assembly

split reads into k-mers

Vertices are k-mers Edges are pairwise alignments

Genome: ATGGCGTGCAATG

Hamiltonian cycle Visit each vertex once (harder to solve) (harder

Eulerian cycle
Visit each edge once
(easier to solve)

Heiko A. Schmidt

Sequence De Bruijn Graph (from reads to graph)

read 1:
$\begin{array}{llllllll}\mathbf{G} & \mathbf{G} & \mathbf{A} & \mathbf{C} & \mathbf{T} & \mathbf{A} & \mathbf{A} & \mathbf{A}\end{array} \mathbf{T}$
read 2:

G G A
G A C
A C T
C $\mathbf{T} \quad \mathrm{A}$
TA A
A A A
A A T

\mathbf{G}	\mathbf{A}	\mathbf{C}	\mathbf{C}	\mathbf{A}	\mathbf{A}	\mathbf{A}	\mathbf{T}	\mathbf{C}
\mathbf{G}	\mathbf{A}	\mathbf{C}						
	\mathbf{A}	\mathbf{C}	\mathbf{C}					
		\mathbf{C}	\mathbf{C}	\mathbf{A}				
		\mathbf{C}	\mathbf{A}	\mathbf{A}				
				\mathbf{A}	\mathbf{A}	\mathbf{A}		
					\mathbf{A}	\mathbf{A}	\mathbf{T}	
						\mathbf{A}	\mathbf{T}	\mathbf{C}

(1) (1) (1)
(1) (1) (1)
(1)

- construct a de Bruijn graph for each read with $k-1=3$
- split the read into overlapping $k-1$ mers
- and construct the de Bruijn graph
- count 1 for the read at each node

Sequence De Bruijn Graph (merging identical nodes)

(1) (1)
(1)

- take all 'read graphs'
- ... and merge identical nodes
- ...gaining a large de Bruijn graph
- sum up the read counts at the merged node
- do repeat this for all other reads

Sequence De Bruijn Graph (reducing the graph to contigs)

- sequencing errors cause tips and bulges with low read counts and can be identified using thresholds

Sequence De Bruijn Graph (reducing the graph to contigs)

- sequencing errors cause tips and bulges with low read counts and can be identified using thresholds
- compactify the graph by merging the branch labels (rf. de Bruijn graph definition) on non-branching paths
- delete the obsolete nodes and re-link the branching nodes

Sequence De Bruijn Graph (reducing the graph to contigs)

- sequencing errors cause tips and bulges with low read counts and can be identified using thresholds
- compactify the graph by merging the branch labels (rf. de Bruijn graph definition) on non-branching paths
- delete the obsolete nodes and re-link the branching nodes
- remove the tips and bulges with low read counts (sequencing errors)
- re-compactify the graph
- all the labels on the non-branching paths are our reconstructed contigs

De Bruijn Graphs for Assembly with Sequencing Errors

- The number of reads participating in bulges and tips tell us which are the frequent, and thus likely true ones.
- Bulges and tips with few reads are removed.

De Bruijn Graphs for Assembly with Repeats

AAGACTCCGACTGGGACTTT

A de Bruijn graph of a sequence

B condensed de Bruijn graph
Source: Chaisson et al. (2009)

- In the case of repeats, Euler paths are not possible, because the edges of the repeated region have to be used repeatedly.
- Typically the order in which edges from a repeat have to be followed cannot be determined. Then the paths have to be kept as separate contigs.
- Exception: if we have reads or paired-end information, which reach longer than the repeat, this helps to order the contigs.

- Problem: How do we know which strand our read is from? We don't!
- With bidirected de Bruijn Graphs one can cover k-mers and their complements.
- Note:

At no time two nodes with identical strings can exist in one (sub)graph, and both strings have to be treated equally.

Some measures on genome sequencing and assembly

Coverage

Coverage describes the average number of times a nucleotide in the template DNA has been sequenced which is equivalent to the number of reads that cover each nucleotide on average.

$$
\text { coverage }=\frac{\left.\sum_{i \in\{a l l} \text { reads }\right\}}{\text { length of read } i}
$$

Rule of thumb: the higher the better!

Some measures on genome sequencing and assembly

The quality of an assembly is hard to measure. Typically several values are used like

- maximum contig/scaffold length
- average contig/scaffold length
- combined total length
- the N50 or the NG50 value

N50 and NG50

N50 value

All contigs/scaffold are ordered descending in size. Starting from the largest contig/scaffold add their lengths. The N50 value is the length of the first contig, for which this sum of contig lengths covers $\geq 50 \%$ of the total length of contigs/scaffolds, i.e. the entire assembly.

Rule of thumb: the longer the better!

NG50 value

All contigs/scaffold are ordered descending in size. Starting from the largest contig/scaffold add their lengths. The NG50 value is the length of the first contig, for which this sum of contig lengths covers $\geq 50 \%$ of the total length of the sequenced genome.

Rule of thumb: the longer the better!
Sometimes other percentages than 50% are used leading to, e.g. N70 etc.

Reference based assembly

The whole procedure gets much easier if we have a reference genome available.

- mapping using search tools like BLAST or BLAT
- dynamic programming (e.g. Smith-Waterman) with pre-filtering to keep the candidate regions small, using
- hash-based k-mer index
- spaced-seeds index
- Approaches using the Burrows-Wheeler-Transform (BWT) of the reference sequence,
and the mapped reads are then summarized to contigs using consensus approaches.

Hash-based approaches

- Hash-based approaches typically require matching seed sequences (one or several) to identify candidate regions to be checked
- often contiguous seeds are used (e.g. perfectly matching words of length k)

```
            1111111111
...ACTATCATCGTACACAT...
    TCATCGTAC
        ACTATCATTGTACACAT
                                    seed encoding
                                    reference sequence
                                    seed sequence (len=9)
                                    query sequence
```

- Another way is to use spaced seeds, i.e. that only certain letters in a longer word have to match.

```
    10001110001110011
    ..ACTATCATCGTACACAT
        A . . .TCA...TAC.. AT
        ACTATCATTGTACACAT
```

seed encoding
reference sequence spaced seed (weight=9, len=17)
query sequence

- It has been shown that the use of spaced seeds is much more sensitive, missing less hits. Especially, when using sets of spaced seeds.

Hash-based mapping

- mapping with candidate filtering based on (spaced) seed matches is easy to implement
- however, to generate a typical seed index is memory-intense (about 50GB for the human genome of 3 Gbp)
- the example uses six spaced seeds (11111111100000000, 0000000011111111, 0000111100001111, 1111000011110000, 0000111111110000, 1111000000001111)
- from all candidates the actual best hit position of the read has to be found by alignment and reported

Burrows-Wheeler-Transform (BWT) - encoding

Methods using the Burrows-Wheeler-Transform (BWT) for mapping generate the BWT from the text, e.g. the genome, adding an start (\wedge) and end character (\$): (Note, in the example we assume that $\$$ sorts before the letters.)
use text with end (\$):

BANANA\$
generate all rotations:

sort lexicographically: BWT is the last column:
\$ BANANA
A \$ BANAN
ANA\$BAN
ANANA\$B
BANANA\$
NA\$BANA
NANA\$BA
ANNBSAA

Originally, the Burrows-Wheeler-Transform (BWT) has been introduced in the field of data compression, because (a) the BTW compresses better than the original text and (b) one can decode the original text from the BWT.

Burrows-Wheeler-Transform (BWT) - decoding

From the BTW the original text can easily decoded:

start from the BTW	sort	we know 1st +last column	rotate (BTW front)	sort	rotate (BTW front)
A	\$	\$. . A	A \$	\$ B	A \$ B
N	A	A . . . N	N A	A \$	$\mathbf{N} \mathbf{A}$ \$
N	A	A . . . N	N A	A N	$\mathbf{N} \mathbf{A} \mathbf{N}$
B	A	A . . . B	B A	A N	B A N
\$	B	B . . . ${ }^{\text {S }}$	\$ B	B A	\$ B A
A	N	N . . . A	A N	N A	A $\mathrm{N} A$
A	N	N . . . A	A N	N A	A $\mathrm{N} A$
and sort	add BTW and sort	add BTW and sort			...until the matrix has its width again
\$ B A	\$ B A N	\$ B A N A	\$ B A	N A N	\$ B A N A N A
A \$ B	A \$ B A	A \$ B A N	A \$ B	A A	A \$ B A N A N
A N A	A N A \$	A N A \$ B	A N A	\$ B A	A NA \$ B A N
A N A	A N A N	A N A N A	A N A	N A \$	ANANA\$ B
B A N	BANA	BANAN	B A N	A ${ }^{\text {A }}$	BANANA\$
N A \$	N A \$ B	NA \$ B A	N A \$	BAN	NA \$ BANA
N A N	NANA	N A N A \$	NAN	A \$ B	NANA\$ B A

The original text can be found in the line ending with $\$$.

Burrows-Wheeler-Transform (BWT) - some observations

$B^{1} A^{2} N^{3} A^{4} N^{5} A^{6} \7

${ }^{6} \mathbf{A}-\$-B-2-2 y-\mathbf{N}^{5}$
${ }^{4} \mathbf{A}-1 \mathbf{l}-\mathrm{E}-\mathrm{S}-\mathrm{B}-\mathbf{N}^{3}$

${ }^{5} \mathbf{N}-\mathrm{A}-\xi-\mathrm{B}-\mathrm{Z}-\mathbf{A}^{4}$

- a letter in the 1 st column is easy to find, because they are sorted
- the letter in the last column preceeds the one in the 1st column (thus, searching for words starts at the last letter)
$B^{1} A^{2} N^{3} A^{4} N^{5} A^{6} \7
- a letter in the 1st column is easy to find, because they are sorted
- the letter in the last column preceeds the one in the 1st column (thus, searching for words starts at the last letter)
- the order of occurrence of a single letter in the last and the 1st column is the same (the $2 n d A$ in the one is the $2 n d A$ in the other)

Burrows-Wheeler-Transform (BWT) - some observations

$B^{1} A^{2} N^{3} A^{4} N^{5} A^{6} \7

- a letter in the 1 st column is easy to find, because they are sorted
- the letter in the last column preceeds the one in the 1st column (thus, searching for words starts at the last letter)
- the order of occurrence of a single letter in the last and the 1st column is the same (the $2 \mathrm{nd} A$ in the one is the $2 \mathrm{nd} A$ in the other)
$B^{1} A^{2} \mathbb{N}^{3} A^{4} N^{5} \mathbf{A}^{6} \7${ }^{7}$ \$-3-2${ }^{6}$ A $\$$ BANA \mathbf{N}^{5}
${ }^{4}$ A
${ }^{2}$ ANANA B^{1}
'B${ }^{5} \mathrm{~N} A \$ \mathrm{~B} A$$\mathbb{N} \mathbf{A}^{4}$
${ }^{3}$ N A N A \$ B \mathbf{A}^{2}
- from these observations about the last-column-first-column property, we can derive an easier way to decode a BWT
- We start from the end character (\$) in the first column.
- We determine the preceeding character by checking the last column of the same row.
- Then we jump the the according character in the first column,
- and we note down the decoded character.

Burrows-Wheeler-Transform (BWT) - easier decoding

- from these observations about the last-column-first-column property, we can derive an easier way to decode a BWT
- We start from the end character (\$) in the first column.
- We determine the preceeding character by checking the last column of the same row.
- Then we jump the the according character in the first column,
- and we note down the decoded character.
- Now we can repeat that to determine all preceeding characters

- from these observations about the last-column-first-column property, we can derive an easier way to decode a BWT
- We start from the end character (\$) in the first column.
- We determine the preceeding character by checking the last column of the same row.
- Then we jump the the according character in the first column,
- and we note down the decoded character.
- Now we can repeat that to determine all preceeding characters

Burrows-Wheeler-Transform (BWT) - easier decoding

- from these observations about the last-column-first-column property, we can derive an easier way to decode a BWT
- We start from the end character (\$) in the first column.
- We determine the preceeding character by checking the last column of the same row.
- Then we jump the the according character in the first column,
- and we note down the decoded character.
- Now we can repeat that to determine all preceeding characters
- from these observations about the last-column-first-column property, we can derive an easier way to decode a BWT
- We start from the end character (\$) in the first column.
- We determine the preceeding character by checking the last column of the same row.
- Then we jump the the according character in the first column,
- and we note down the decoded character.
- Now we can repeat that to determine all preceeding characters

Burrows-Wheeler-Transform (BWT) - easier decoding

- from these observations about the last-column-first-column property, we can derive an easier way to decode a BWT
- We start from the end character (\$) in the first column.
- We determine the preceeding character by checking the last column of the same row.
- Then we jump the the according character in the first column,
- and we note down the decoded character.
- Now we can repeat that to determine all preceeding characters

$B^{1} A^{2} N^{3} A^{4} N^{5} A^{6} \7

${ }^{7} \$ \mathrm{~B} A \mathbb{N} \mathbb{A} \mathbb{N} \mathrm{~A}^{6}$
${ }^{6} \mathbf{A} \$ \mathrm{BANA} \mathbf{N}^{5}$
${ }^{4} \mathbf{A} N A \$ B A \mathbf{N}^{3}$
${ }^{2} \mathbf{A} N A N A \$ B^{1}$

${ }^{5} \mathbf{N} \mathbb{A} \$ \mathrm{BA} \mathbb{N} \mathbf{A}^{4}$
${ }^{3} \mathbf{N} A \mathbb{A} A \$ B A^{2}$

- from these observations about the last-column-first-column property, we can derive an easier way to decode a BWT
- We start from the end character (\$) in the first column.
- We determine the preceeding character by checking the last column of the same row.
- Then we jump the the according character in the first column,
- and we note down the decoded character.
- Now we can repeat that to determine all preceeding characters
- and finish when we meet the end character (\$) again

Burrows-Wheeler-Transform (BWT) - searching

Searching from the last letter to the first of the search string ($q=A N A$):

query: $\quad q=A N A$		$\begin{aligned} & \text { to next } \\ & \text { position }\end{aligned} \quad q=A N A$
${ }^{7} \mathbf{\$} \mathrm{~B} A \mathbb{N} \mathbb{A} \mathbb{N} \mathbf{A}^{6}$	${ }^{7}$ \$ B A N A N \mathbf{A}^{6}	
${ }^{6} \mathbf{A} \$ \mathrm{BA} N \mathbb{N} \mathbf{N}^{5}$	${ }^{6} \mathbf{A} \$ \mathrm{~B} A \mathbb{N} \mathbf{A} \mathbf{N}^{5}$	
${ }^{4} \mathbf{A} N \mathbb{A} \$ \mathrm{BA} \mathbf{N}^{3}$	${ }^{4} \mathbf{A} N \mathbb{A} \$ \mathrm{BA} \mathbf{N}^{3}$	${ }^{4} \mathbf{A}-N-2-\$-\mathbf{B}^{\prime}-\mathbf{N}^{3}$
${ }^{2} \mathbf{A N A N A} \$ \mathrm{~B}^{1}$	${ }^{2} \mathrm{~A} N \mathbb{A} \sim \mathrm{~A} \$ \mathrm{~B}^{1}$	
${ }^{1} \mathrm{BANA} N \mathrm{~A} \mathbf{S}^{7}$	${ }^{1} \mathrm{BANANA} \mathbf{S}^{7}$	${ }^{1} \mathrm{BA} \mathrm{AN}^{\prime} \mathrm{A} \cap \mathrm{A} \mathbf{S}^{7}$
${ }^{5} \mathbf{N} \boldsymbol{A} \$ \mathrm{BA} N \mathbf{A}^{4}$	${ }^{5} \mathbf{N} \boldsymbol{A}$ \$ B A N \mathbf{A}^{4}	${ }^{5} \mathbf{N}^{1}$, ${ }^{\text {S }} \mathrm{BA} \mathcal{A} \mathrm{A}^{4}$
${ }^{3} \mathbf{N} \boldsymbol{A}$ N A \$ B \mathbf{A}^{2}	${ }^{3} \mathbf{N} \boldsymbol{A} \boldsymbol{N} \boldsymbol{A}$ \$ B \mathbf{A}^{2}	${ }^{3} \mathbf{N}^{\text {A }}$ N A \$ B \mathbf{A}^{2}

$\begin{gathered}\text { check 2nd } \\ \text { last letter }\end{gathered} \quad q=A N A$	$\begin{aligned} & \text { to next } \\ & \text { position }\end{aligned} \quad q=A N A$	$\begin{aligned} & \text { found } \\ & \text { twice! }\end{aligned} \quad q=A N A$
${ }^{7}$ \$ B A N A N \mathbf{A}^{6}	${ }^{7} \mathbf{\$} \mathrm{~B} \mathbb{A} \mathbb{N} \mathbb{A} \mathrm{~N}^{\mathbf{6}}{ }^{6}$	${ }^{7} \mathbf{\$} \mathrm{~B}$ A $N \mathrm{~A} \mathbb{N} \mathbf{A}^{6}$
${ }^{6} \mathbf{A}$ \$ B A N A \mathbf{N}^{5}	${ }^{6} \mathbf{A} \$ \mathrm{~B} \boldsymbol{A} \mathrm{~N} \boldsymbol{A} \mathbf{N}^{5}$	${ }^{6} \mathbf{A} \$ \mathrm{BA} \mathbb{N} \boldsymbol{A} \mathbf{N}^{5}$
${ }^{4} \mathbf{A} N \mathbb{A}$ \$ $\mathrm{B} \boldsymbol{A} \mathbf{N}^{3}$		${ }^{4} \mathbf{A} \mathbf{N} \boldsymbol{A} \$ \mathrm{~B} \boldsymbol{A} \mathbf{N}^{3}$
${ }^{2} \mathbf{A} N \mathbb{A} \sim \mathbf{A} \$ \mathbf{B}^{1}$	${ }^{2}$ A N左NA\$ B ${ }^{1}$	${ }^{2}$ A N A NA \$ \mathbf{B}^{1}
${ }^{1} \mathrm{~B}$ A $N \mathrm{~A} N \mathrm{~A} \mathbf{\7	${ }^{1} \mathrm{BA}$ A $\mathrm{N}^{\text {A }} \mathrm{N}$ A $\7	${ }^{1} \mathrm{BANANA} \mathbf{S}^{7}$
${ }^{5} \mathrm{~N} \boldsymbol{A} \$ \mathrm{BA} N \mathbf{A}^{4}$		${ }^{5} \mathbf{N} A \$ B A \mathbb{N} \mathbf{A}^{4}$
${ }^{3} \mathrm{~N} \boldsymbol{A} \mathrm{~N} \boldsymbol{A}$ \$ B \mathbf{A}^{2}		${ }^{3} \mathbf{N} \boldsymbol{A} \boldsymbol{N} \boldsymbol{A}$ \$ B \mathbf{A}^{2}

Burrows-Wheeler-Transform (BWT) - approximate matches

- this way exact matches can be found easily
- to find approximate matches,
- everytime a mismatch is detected,
- a backtrace is done, introducing changes at any position
- at the beginning only one change and later more if still no match is found

BWT-based mapping

Genome Analysis

Genomics is Changing Biology - pre-genomic era

In the pre-genomic era:

Today, in the post-genomic era:

WHERE is a functionality encoded

1 genome \rightarrow
$1 \mathrm{PhD} /$ Masters project

WHAT

functionality is encoded?

or

> Dozens or hundreds of genomes \rightarrow
> background for one research project

Newspapers: Genome deciphered, but...

Abstract

agtctggagcccagaagggacacaccagcacagtctggtaggctacagca gcaagtctctaaagaaaggctgagaacacccagaacaggagagttcaggt ccaggatggccagcctgttccggtcctatctgccagcaatctggctgctg ctgagccaactccttagagaaagcctagcagcagagctgaggggatgtgg tccccgatttggaaaacacttgctgtcatattgccccatgcctgagaaga cattcaccaccaccccaggagggtggctgctggaatctggacgtcccaaa ggtgagagccctggactaccaaacaatcagaatgaggcctgaaaaaacag gctccagatctcattgactgcctgtagtcaactcagactctactgtggct agtgcctacaagtttgtggtttttcattgtaatgtgcttttattaaaagg gtctcaccagaaatctcatgggaagttgggggtagaggagaagctgcagg aaaaacagaagaacagcctcaccttggaggctcttggtgcctttcccacc tggcagccagagatacagggtggagaaaacagggaatcctcagagaaggt gactattctcaaacaccagcaggaggtgaggtgtactcccagacccccag agataaatttaacaagaaaaatggaaagtattcatggataacaaatgtta acatttggtgtcgacacatatagatgtatgttgcttctcagccttttagc taagatccactgatatagatgtatagatttatgtggatcagatttgaata tctgaatctttctattagaataacttgtgattataaaaaaaattccctat tgctatccagtacataatgcattgaggttatcaatcaaaacagtgtcagg gagagtcaaaagtggtatggtataggcatttagagggtcattagaagagt gcatagaggggacaggatgaggagttagcatatccttaatattgtagtat cttaaagtgccctactctaagtaagctaagttgttgaaatgttaggatac ttgctgattctctctggtgtttaattacatggaggcaatgggtacattgt ggtctaggcaaattgtataatttttctgatcctctttcacatgaatgttt ttcctcacctttcattcctctcttttacttcacagaaatggtgtcaacct ccaacaacaaagatggacaagccttaggtacgacatcagaattcattcct aatttgtcaccagagctgaagaaaccactgtctgaagggcagccatcatt gaagaaaataatactttcccgcaaaaagagaagtggacgtcacagatttg atccattctgttgtgaagtaatttgtgacgatggaacttcagttaaatta tgtacatagtagagtaatcatggactggacatctcatccattctcatatg tattctcaatgacaaattcactgatgcccaattaaatgattgctgttt

Procedures of Genome Analyses

- Gene annotation
- Alternative splicing (transcript variants, RNA-seq)
- Differential expression (transcript abundance, RNA-seq)
- Annotation of regulatory elements (ChIP-seq)
- Detection of genome variants (Single Nucleotide Polymorphisms or SNPs)
- Comparative genomics
- Repeat annotation

Gene annotation

Sequencing quality: the Phred score

\mathbf{P} is the probability that your base call is incorrect

Gene Models: quick review

Prokaryotic gene model

S'end			3'end
Regulatory region	Coding region	Termination region	

Gene Models: quick review

A Eukaryotic gene model:

Wikipedia
Remember: All parts remaining in the mRNA are exonic, not just the coding parts.

Homology based (extrinsic) methods

Alignment of translated DNA sequence to protein database

Alignment of translated DNA sequence to protein database Opossum Genome Sequence

Hs-HoxA1
Hs-HoxA2
Hs-HoxA3

TBLASTN NEED TO TRANSLATE ALL 6 READING FRAMES!

Homology based (extrinsic) methods

Proteins aligned to opossum genomic DNA:
pink regions depict the optimum that can be achieved

Ultimate drawback: no information about 5 and 3 UTRs!

Homology based (extrinsic) methods

Alignment of transcribed sequences (cDNA, ESTs or mRNAs from RNAseq)

Homology based (extrinsic) methods

cDNAs or ESTs aligned to opossum genomic DNA: pink regions depict the optimum that can be achieved

Ab initio Gene Annotation (intrinsic methods)

- Nucleotide sequences are not random across the genome; instead, there are sequences features that are common among protein-coding genes
- Some of them are:
- long open reading frames;
- codon bias;
- proximity to transcriptional and translational initiation motifs;
- 3' polyadenylation sites and
- splicing consensus sequences at putative intron-exon boundaries
- Ab initio gene discovery programs recognize such features to identify protein-coding genes. Most popular programs are based on Hidden Markov Models (HMMs)
- Irrespective of which discovery algorithm is used, all computationally identified putative genes must be confirmed by a second line of evidence before being elevated to gene status in the genome annotation

Ab Initio Gene Finding with HMMs

The states of AUGUSTUS and the possible transitions between them.

Ab Initio Gene Finding with HMMs

Modified from Stanke and Waack (2003), Bioinformatics

Gene Prediction: Ultima Ratio

Include ANY information that can point toward the presence of a gene into the prediction procedure:

- similarity to known proteins/expressed sequences
(to identify exon candidates)
- similarity to non-coding parts of expressed sequences (to identify UTR candidates)
- presence of putative signal sequences to identify new exons or to refine exon borders
- sequence conservation in intra-specific or inter-specific genome comparisons
- enrichment of words that occur preferentially in coding sequences (codon bias, hexamers, etc)
- periodicity in the DNA sequence
- ...

