Excursion: Beginning of Graph Theory

KONINGSBERGA.

Leonhard Euler (1707-1783)

Popular 18" century problem:
Is there a walk through
Konigsberg using each bridge
exactly once?
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Euler Paths and Tours

Given an undirected connected graph G = (V/, E) with nodes V and
edges E, we define:

Euler Path or Trail

is a path visiting each edge (of a graph) exactly once.

Euler Tour or Circuit or Cycle

is a path visiting each edge (of a graph) exactly once and ending at the
starting point.

Heiko A. Schmidt Bioinformatik fiir Biologen 416



Euler Paths and Tours: Solution?

Leonhard Euler (1735) showed that the existence of

such paths or tours depend on the degree of the
nodes.

128 SOLPTIO PROBLEMATTS
SOLVTIO PROBLLMATI:)

GEOMETRIAM SITVS

‘PERTINENTIS.

AVCTORE

Levib. Eudero.

. . . §. 1.

exists if there are exactly 0 or 2 nodes with uneven | ... i G peen, g g
: P gl "‘*’3‘;3“““; s

degree (i.e. number of attached edges). ;g i g G

dcterm uando ﬁtusque pxopr e‘mbus elueldxs occupats,
i nd Quantitares - re-

um  veendum - fit,

c firs Geometriam -

i
. fd -geometriam pertinere videbatur,
paratum, vt neque determinationem requi-
rerer, neque folutionem calculi quantitamm ope admit-
teret, id -ad geome crriam  fis referre hand  dubitavi:
praefertim guod in ejus folutione folus fitus in confide~
rationem vemat, calculus vero nnllius prorfus fiv vius,

Methodum ergo meam quam ad huius generis proble-
exists iff the graph is connected and has no nodes of ’
odd degree.
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Euler Paths and Tours on directed graphs

In directed graphs, that means, that edges have only one direction in
which they can be crossed. . .

exists iff the in-degree of each node is equal to its out-degree and if the

graph is a strongly connected component, i.e. every node is reachable
from every other node via a directed path.

exists iff there at most one node with in-degree - out-degree = 1 exists at
most one node with out-degree - in-degree = 1.

Note, in graph theory the terms node and vertex (pl. vertices) are used
interchangeably, as are directed edge and arc.
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Variation: Hamiltonian Paths and Tours

Hamiltonian Path (or traceable path)

is a path that visits every node (of a graph) exactly
once.

Hamiltonian Tour

is a Hamiltonian path ending at its starting point.

Problems:

@ determining whether such a path/tour exists is
NP-complete.

William Rowan Hamilton )
. : ) (1805-1865)
@ Hamiltonian Tours are a special case of the

Traveling Salesman Problem.
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Nicolaas de Bruijn

In 1946 Nicolaas de Bruijn got interested in the
superstring problem:

@ Find the shortest circular superstring that
contains all possible k-mers as substrings.

@ There are n* k-mers for an alphabet of size

n=|x|.
@ For example, the number DNA-triplets:
nk = 43 = 64.

Nicolaas de Bruijn (1918-2012)
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De Bruijn Graphs

De Bruijn Graph

@ nodes: for all possible (k — 1)-mers

@ edges: directed links between nodes a and b if the kK — 2-long prefix of
b is the suffix of a.

@ Note: A Eulerian Tour exists because every node have one in-edge
and one out-edge for each character in .
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De Bruijn Graph Example

@ The nodes are labeled

De Bruijn Graph for k =4 and ¥ = {0, 1}: with 000, 001, 010, 011,
100, 101, 110, 111.

@ The edges are labeled
linking the overlapping
node labels, e.g. 100—
001 with 1001.

@ An Eulerian Tour exists,
each node has in-degree
and out-degree 2.

@ The Eulerian Tour
(marked by blue
numbers) spells out the

circular superstring:
0000110010111101.
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De Bruijn Graphs in Sequence Assembly

Source: Compeau et al. (2011)

a M b v
A ATGGCGT
NG Libtac
e K
........ > ATGGCGT i
O 9 Short-read TGCAATG
< 5 o) sequencing 5 H«MGIGC
(GGeaTaC | (CAATGGC | Ay
Genome: ATGGCGTGCA
split reads into k-mers
Vertices are k-mers e ” e . Vertices are (k-1)-mers
Edges are pairwise alignments .-~ el _Edges are k-mers
s A
y
AT
TGG
11
GGC
[
GCG
11
CGT
.............. > 11 e
k-mers from vertices GT? k-mers from edges
TGC
11
GCA
[
O.*/.*
AN
ATG
Genome: ATGGCGTGCAATG
Hamiltonian cycle Eulerian cycle
Visit each vertex once Visit each edge once
(harder to solve) (easier to solve)
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Sequence De Bruijn Graph (from reads to graph)

_ read 2:
rGeadGl.ACTAAAT ¢ A C C A A A T C
G G A ¢ & C

c a c A Cc cC
A c T cC Cc A
c T a C A A
T n A A A A
A A a A A T
A A T A T C
o o O O

GAC ACC CCA CAA AAA AAT ATC
GGA GAC ACT CTA TAA AAA AAT 1 ) (1) (1) (1) 1) (1)
m o O @O @O @O M
@ construct a de Bruijn graph for each read with k —1 =13
@ split the read into overlapping kK — 1mers
@ and construct the de Bruijn graph

@ count 1 for the read at each node
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Sequence De Bruijn Graph (merging identical nodes)

O—0Os0O——sO—sO—> >
GGA |GAC| ACT CTA TAA |AAA||AAT
(1)

n @ @ )]0

o take all 'read graphs’

O——>0——0——0O— OO0 _ _
GAC| ACC CCA CAA |AAA||AAT| ATC @ ...and merge identical nodes
) @ @ LaJas M . .
o @ ...gaining a large de Bruijn
merge identical nodes
land update read counts gra ph
/XW @ sum up the read counts at the
G D)D) N e e merged node
GGA GAC AAA AAT ATC .
D@ @ @ ) @ do repeat this for all other
ACC CCA CAA reads
1 @
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Sequence De Bruijn Graph (reducing the graph to contigs)

TGAG ATGA GATG CGAT CCGA TCCG ATCC GATC AGAT
(9) (®) (5) (6) (0

bulge caused by seq. error

GCTC CTCT TCTA CTAG
AAGT AGTC GTCG TCGA CGAG GAGG AGGC GGCT TAGA AGAG GAGA AGAC GACA ACAA
(©)) 7 ©) (10) ®) (1 ®) ®)
tip caused by seq. error O——a>0O—>0O—>

CGAC GACG ACGC
(1) (1) (1)

GCTT CTTT TTTA TTAG
(12)

@ sequencing errors cause tips and bulges with low read counts and can
be identified using thresholds
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Sequence De Bruijn Graph (reducing the graph to contigs)

TGAGA

TGAG

TAGATCCGATGAG
GGCTCTAGA

TGAGG

AAGTCGA TCGAGG GAGGCT

> >(——>
TCGA GAGG GGCT
CGACGC

@ sequencing errors cause tips and bulges with low read counts and can
be identified using thresholds

@ compactify the graph by merging the branch labels (rf. de Bruijn
graph definition) on non-branching paths

@ delete the obsolete nodes and re-link the branching nodes

TAGAGA GAGACAA

TAGA GAGA
GGCTTTAGA
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Sequence De Bruijn Graph (reducing the graph to contigs)

TGAGA

TGAG TAGATCCGATGAG

TGAGG

o AAGTCGAGG GAGGCTTTAGA TAGAGA GAGACAA
GAGG TAGA GAGA

@ sequencing errors cause tips and bulges with low read counts and can
be identified using thresholds

@ compactify the graph by merging the branch labels (rf. de Bruijn

graph definition) on non-branching paths

delete the obsolete nodes and re-link the branching nodes

remove the tips and bulges with low read counts (sequencing errors)

re-compactify the graph

all the labels on the non-branching paths are our reconstructed contigs
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De Bruijn Graphs for Assembly with Sequencing Errors

Heiko A. Schmidt

@ The number of reads
participating in bulges
and tips tell us which
are the frequent, and
thus likely true ones.

@ Bulges and tips with
few reads are removed.
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De Bruijn Graphs for Assembly with Repeats

AAGACTCCGACTGGGACTTT

A de Bruijn graph of a sequence

ACTCCGAC

BAG-RACAE @ I ACTT. >

ACTGGGAC
B condensed de Bruijn graph

Source: Chaisson et al. (2009)

Heiko A. Schmidt

In the case of repeats, Euler
paths are not possible, because
the edges of the repeated
region have to be used
repeatedly.

Typically the order in which
edges from a repeat have to be
followed cannot be determined.
Then the paths have to be kept
as separate contigs.

Exception: if we have reads or
paired-end information, which
reach longer than the repeat,

this helps to order the contigs.
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Bidirected de Bruijn Graphs (Medvedev et al. 2007)

seql: GGACTAAAT seqg2: GATTTGGTC
convert to bidirectional
De Bruijn subgraphs @ Problem: How do we
(GGAL(&}»(ACTHCTAM(TAAL(EL(KTW seql know. which strand our
(021 D10/ (IDY* (DVL* (Y1l LI I1V) read is from? We don't!
1 1 1 1 1 1 1 .
AN Y DA M o @ With bidirected de

(GAC)+(ACC}»{CCA) »{CAA} AAA | +AAT ) »ATC) Bruijn Graphs one can
zbes  [DIDf (199 DOL/* (OIL | LLL | LIYF (L¥D) cover kemers and their

) m  m Lmjm) M
complements.

merge identical nodes
land update read counts @ Note:

ACT) +(CTR) »(TAR A1_: no_ t|m§ two n.odes

IOV /¢ (OVL < (YLl with identical strings can

(1) (1) (1) AAA) »(AAT| »/ATC) ict |

K A s exist in one (sub)graph,

N @ \{AccHCCAp(CAA @ @ and both strings have to

LOD)* (991 (DLL be treated equally.

(1) (1) (1)
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Some measures on genome sequencing and assembly

Coverage

Coverage describes the average number of times a nucleotide in the
template DNA has been sequenced which is equivalent to the number of
reads that cover each nucleotide on average.

Y>> length of read i
ie{all reads}

length of template or genome

coverage —

Rule of thumb: the higher the better!
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Some measures on genome sequencing and assembly

The quality of an assembly is hard to measure. Typically several values are
used like

@ maximum contig/scaffold length
@ average contig/scaffold length
@ combined total length

@ the N50 or the NG50 value
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N50 and NG50

N50 value

All contigs/scaffold are ordered descending in size. Starting from the
largest contig/scaffold add their lengths. The N50 value is the length of
the first contig, for which this sum of contig lengths covers > 50% of the
total length of contigs/scaffolds, i.e. the entire assembly.

Rule of thumb: the longer the better!

| \

NG50 value

All contigs/scaffold are ordered descending in size. Starting from the
largest contig/scaffold add their lengths. The NG50 value is the length of
the first contig, for which this sum of contig lengths covers > 50% of the
total length of the sequenced genome.

Rule of thumb: the longer the better!

A\

Sometimes other percentages than 50% are used leading to, e.g. N70 etc.
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Reference based assembly

The whole procedure gets much easier if we have a reference genome
available.

@ mapping using search tools like BLAST or BLAT

@ dynamic programming (e.g. Smith-Waterman) with pre-filtering to
keep the candidate regions small, using

e hash-based k-mer index
e spaced-seeds index

@ Approaches using the Burrows-Wheeler-Transform (BWT) of the
reference sequence,

and the mapped reads are then summarized to contigs using consensus
approaches.
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Hash-based approaches

@ Hash-based approaches typically require matching seed sequences
(one or several) to identify candidate regions to be checked

@ often contiguous seeds are used (e.g. perfectly matching words of

length k)
111111111 seed encoding
...ACTATCATCGTACACAT... referencesequence
TCATCGTAC seed sequence (len=9)

ACTATCATTGTACACAT query sequence

@ Another way is to use spaced seeds, i.e. that only certain letters in a

longer word have to match.
1000111000111 0011 seed encoding

ACTATCATCGTACACAT... reference sequence
A...TCcA...TAC. .AT spaced seed (weight=9, len=17)
ACTATCATTGTACACAT query sequence

@ It has been shown that the use of spaced seeds is much more sensitive,
missing less hits. Especially, when using sets of spaced seeds.
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Hash-based mapping

Reference genome Short read
(> 3 gigabases)
Chr1 e ACTCCCGTACTCTAAT
Chr2 e
Chr3m==

Chr4
l Extract seeds

Position 2
CTGC CGTA AACT AATG

\
ACTC CCGT ACTC TAAT
L]
wxxx TAAT Six seed L2]
******** pairs per —— 3

******** read/ 4

ACTG CCGT #ax sxnx fragment L 5]
L6 |

wxxk CCGT AAAC wrws

Position 1
ACTG CCGT AAAC TAAT

ACTG #xx

llndex seed pairs

Seed index .
(tens of gigabytes) Look up each pair

of seeds in index

ACTG *#xx AAAC *xkk
0 Hits identify positions

in genome where
spaced seed pair
is found

.
o

ACTG wrxk #ake TAAT Confirm hits

wxxk CCGT AAAC #xws by checking

“exxx” pOSItions

Report alignment to user

Source: Trapnell+Salzberg (2009)

Heiko A. Schmidt

mapping with candidate filtering based on
(spaced) seed matches is easy to
implement

however, to generate a typical seed index is
memory-intense (about 50GB for the
human genome of 3 Gbp)

the example uses six spaced seeds

(1111111100000000, 0000000011111111,
0000111100001111, 1111000011110000,
0000111111110000, 1111000000001111)

from all candidates the actual best hit
position of the read has to be found by
alignment and reported
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Burrows-Wheeler-Transform (BWT) - encoding

Methods using the Burrows-Wheeler-Transform (BWT) for mapping generate the
BWT from the text, e.g. the genome, adding an start (") and end character ($):

(Note, in the example we assume that $ sorts before the letters.)

use text with end ($):

generate all rotations:

BANANAS

SBANANA

sort lexicographically: BWT is the last column:

SBANAN

ANNBSAA

EEX YD

Originally, the Burrows-Wheeler-Transform (BWT) has been introduced in the
field of data compression, because (a) the BTW compresses better than the
original text and (b) one can decode the original text from the BWT.

Heiko A. Schmidt
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Burrows-Wheeler-Transform (BWT) - decoding

From the BTW the original text can easily decoded:

start from
the BTW

EEY )

and
sort

SBA
ASB
ANA
ANA
BAN
NAS
NAN

sort

ZZ2WPp P Pn

add BTW
and sort

SBAN
ASBA
ANAS
ANAN
BANA
NASB
NANA

we know 1st
+last column

(= )

ZZ2Wp PP

EENEEE

add BTW
and sort

SBANA
ASBAN
ANASB
ANANA
BANAN
NASBA
NANAS

rotate rotate
(BTW front) sort (BTW front)
as . $B... [Al$B...
NA . AS... NAS...
NA . AN... INAN...
BA . AN... BAN...
$SB . BA... $BA...
AN . NA... |AINA...
AN . NA... ANA...
add BTW ...until the matrix
and sort has its width again
SBANAN SBANANA
ASBANA ASBANAN
ANASBA ANASBAN
ANANAS ANANASB
BANANA BANANAS
NASBAN NASBANA
NANASB NANASBA

The original text can be found in the line ending with $.

Heiko A. Schmidt
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Burrows-Wheeler-Transform (BWT) - some observations

7$ _________ >A6
GA _________ >N5
4A _________ >N3
2A _________ >B1
1B _________ > $7
5N _________ >A4
3N _________ >A2

@ a letter in the 1st column is easy to find,

because they are sorted

@ the letter in the last column preceeds the
one in the 1st column (thus, searching for
words starts at the last letter)

Heiko A. Schmidt
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Burrows-Wheeler-Transform (BWT) - some observations

7$ //,,Ae
6P <« - N°
4Ay<\ N3
2AV< M B’
1B \\\ \\ $7
°N ST AC
SN \Az

@ a letter in the 1st column is easy to find,
because they are sorted

@ the letter in the last column preceeds the
one in the 1st column (thus, searching for
words starts at the last letter)

@ the order of occurrence of a single letter in
the last and the 1st column is the same
(the 2nd A in the one is the 2nd A in the
other)
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Burrows-Wheeler-Transform (BWT) - some observations

B'ANA'N°A §’

7S AS
N . N°
N ////’N3
N /,’ // B’
B ///,’ §7
SN}/// A
3N} A2

@ a letter in the 1st column is easy to find,
because they are sorted

@ the letter in the last column preceeds the
one in the 1st column (thus, searching for
words starts at the last letter)

@ the order of occurrence of a single letter in
the last and the 1st column is the same
(the 2nd A in the one is the 2nd A in the
other)
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Burrows-Wheeler-Transform (BWT) - easier decoding

AS’
78 B N RS
6 <~ B N°
N N?®
N B’
B §7
5N Al
N A2

from these observations about the
last-column-first-column property, we can
derive an easier way to decode a BWT

We start from the end character ($) in the
first column,

We determine the preceeding character by
checking the last column of the same row.

Then we jump the the according character
in the first column,

and we note down the decoded character.
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Burrows-Wheeler-Transform (BWT) - easier decoding

N°A §’
7$ AG
GA _________ /»NS
ip // N3
2p /,’ B’
B Bot §7
s\ & A
3N A2

from these observations about the
last-column-first-column property, we can
derive an easier way to decode a BWT

We start from the end character ($) in the
first column,

We determine the preceeding character by
checking the last column of the same row.

Then we jump the the according character
in the first column,

and we note down the decoded character.

Now we can repeat that to determine all
preceeding characters
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Burrows-Wheeler-Transform (BWT) - easier decoding

ANAS
7$ AG
GA N5
4A\ N3
2A \\\\ B1
B \\\ $7
5N ________ :\»A4
3N A2

from these observations about the
last-column-first-column property, we can
derive an easier way to decode a BWT

We start from the end character ($) in the
first column,

We determine the preceeding character by
checking the last column of the same row.

Then we jump the the according character
in the first column,

and we note down the decoded character.

Now we can repeat that to determine all
preceeding characters
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Burrows-Wheeler-Transform (BWT) - easier decoding

7$ AG
GA N5
4A _________ /»N3
A 5 B
1B /// $7
SN 2,4 A’
N A Az

from these observations about the
last-column-first-column property, we can
derive an easier way to decode a BWT

We start from the end character ($) in the
first column,

We determine the preceeding character by
checking the last column of the same row.

Then we jump the the according character
in the first column,

and we note down the decoded character.

Now we can repeat that to determine all
preceeding characters
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Burrows-Wheeler-Transform (BWT) - easier decoding

ANANDAS

7$ AG
6A N5
4A N3
2Ay<\ B’
1B \\\ $7
N YL Al
3N ________ :\>A2

from these observations about the
last-column-first-column property, we can
derive an easier way to decode a BWT

We start from the end character ($) in the
first column,

We determine the preceeding character by
checking the last column of the same row.

Then we jump the the according character
in the first column,

and we note down the decoded character.

Now we can repeat that to determine all
preceeding characters
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Burrows-Wheeler-Transform (BWT) - easier decoding

B'ANANA S’

7$ AS
N\ N°
5\ N3
2ANAN e o B’
R« $ 7
SN Al
IN A2

from these observations about the
last-column-first-column property, we can
derive an easier way to decode a BWT

We start from the end character ($) in the
first column,

We determine the preceeding character by
checking the last column of the same row.

Then we jump the the according character
in the first column,

and we note down the decoded character.

Now we can repeat that to determine all
preceeding characters
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Burrows-Wheeler-Transform (BWT) - easier decoding

B'AN'A'N°A §’

'S
°A
‘A
A

1B _________

°N
°N

@ from these observations about the
last-column-first-column property, we can
derive an easier way to decode a BWT

A @ We start from the end character ($) in the
first column.
5
N @ We determine the preceeding character by
N°® checking the last column of the same row.
B’ @ Then we jump the the according character
> $7 in the first column,
@ and we note down the decoded character.
A4
) @ Now we can repeat that to determine all
A preceeding characters

@ and finish when we meet the end character

($) again
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Burrows-Wheeler-Transform (BWT) - searching

Searching from the last letter to the first of the search string (qg=ANA):
find last g=ANA to next g=ANA

query: g=ANA
7$ AS
GA N5
4A N3
ZA B1
B $7
5N A4
3N A2

check2nd gq=A N A

last letter
7$ A°
GA NS
4A N3
ZA B1
1B $7
°N A A’
°N A A’

letter position
7$ AG 7$ AG
5.\ N° SA -5 =k I N°®
N N® 4A“"““J/‘/',‘/N3
2p B’ 27 "':"::,/"—‘/—"B1
‘B §  BA o
5N A4 SN“ = 4 A4
3N AZ SN“/ A2

to next g=ANA  found g=ANA

position twice!
7$ AG 7$ As
°A N° °A N°
‘A N° ‘ANA N°
AW B’ *ANA B’
‘B At n §7 'B $’
SN""“"\“":\‘\A" SN Al
IN-AN-A-S- S A2 SN A?
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Burrows-Wheeler-Transform (BWT) - approximate
matches

@ this way exact matches can be found easily

to find approximate matches,
everytime a mismatch is detected,
a backtrace is done, introducing changes at any position

at the beginning only one change and later more if still no match is
found
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BWT-based mapping

Reference genome Short read
(> 3 gigabases)
Chr1 e ACTCCCGTACTCTAAT
Chr2
Chr3 m==
Chr4

Concatenate into l

single string

(- J
Burrows-Wheeler l

@ BWT-based is harder to implement than
seed based approaches

transform and indexing

ng?ie it:ciex = v
(-2 gebries) @ however, it is less memory intense (only
‘suffixes’ AAT

Look up H u (about 1-2GB for the human genome of 3
ofread = N : Gbp) and much faster

Hitsidentifyii @ on the other hand, seed based approaches

positions in
genome where 1

road i found B have been shown to be much more
sensitive, and thus able to match more
reads correctly

Convert each
hit back to
genome location

Report alignment to user
Source: Trapnell4-Salzberg (2009)
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Genome Analysis J
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Genomics is Changing Biology - pre-genomic era

In the pre-genomic era:

1 gene —
1 research project J

or
1 gene =
1 master/PhD
t h eSiS Tyrosine
Tyrosinase
l Q"--vAlbinism

Melanine
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Genomics is Changing Biology - post-genomic era

Today, in the post-genomic era:

Finished Human Genome

1 genome —
1 PhD/Masters project

WHERE is a WHAT or
functionality functionality
i ?
encoded Is encoded: Dozens or hundreds of
.Wellcome 'brrustr I genomes —
Sanger Institute Z
background for one
research project
v
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Newspapers: Genome deciphered, but...

agtctggagcccagaagggacacaccagcacagtctggtaggctacageca
gcaagtctctaaagaaaggctgagaacacccagaacaggagagttcaggt
ccaggatggccagcctgttccggtecctatctgccagcaatectggectgetg
ctgagccaactccttagagaaagcctagcagcagagectgaggggatgtgg
tccccgatttggaaaacacttgectgtcatattgecccatgectgagaaga
cattcaccaccaccccaggagggtggctgctggaatctggacgtcccaaa
ggtgagagccctggactaccaaacaatcagaatgaggcctgaaaaaacag
gctccagatctcattgactgcctgtagtcaactcagactctactgtggcect
agtgcctacaagtttgtggtttttcattgtaatgtgcttttattaaaagg
gtctcaccagaaatctcatgggaagttgggggtagaggagaagctgcagg
aaaaacagaagaacagcctcaccttggaggctcttggtgeccttteccacce
tggcagccagagatacagggtggagaaaacagggaatcctcagagaaggt
gactattctcaaacaccagcaggaggtgaggtgtactcccagacccccag
agataaatttaacaagaaaaatggaaagtattcatggataacaaatgtta
acatttggtgtcgacacatatagatgtatgttgcttctcagccttttage
taagatccactgatatagatgtatagatttatgtggatcagatttgaata
tctgaatctttctattagaataacttgtgattataaaaaaaattccctat
tgctatccagtacataatgcattgaggttatcaatcaaaacagtgtcagg
gagagtcaaaagtggtatggtataggcatttagagggtcattagaagagt
gcatagaggggacaggatgaggagttagcatatccttaatattgtagtat
cttaaagtgccctactctaagtaagctaagttgttgaaatgttaggatac
ttgctgattctctctggtgtttaattacatggaggcaatgggtacattgt
ggtctaggcaaattgtataatttttctgatcctctttcacatgaatgttt
ttcctcacctttcattectetettttacttcacagaaatggtgtcaacct
ccaacaacaaagatggacaagccttaggtacgacatcagaattcattcct
aatttgtcaccagagctgaagaaaccactgtctgaagggcagccatcatt
gaagaaaataatactttcccgcaaaaagagaagtggacgtcacagatttg
atccattctgttgtgaagtaatttgtgacgatggaacttcagttaaatta
tgtacatagtagagtaatcatggactggacatctcatccattctcatatg
tattctcaatgacaaattcactgatgcccaattaaatgattgctgttt
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Procedures of Genome Analyses

Gene annotation

Alternative splicing (transcript variants, RNA-seq)

Annotation of regulatory elements (ChIP-seq)

°
°
e Differential expression (transcript abundance, RNA-seq)
°
°

Detection of genome variants
(Single Nucleotide Polymorphisms or SNPs)

@ Comparative genomics

@ Repeat annotation
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Gene annotation
Szﬂg(rannec i? Map ESTs or
9 . cloned cDNA
genome region
Use gene
prediction

Translate into all
6 reading frames
and compare to
a database for
protein-
sequences

—| Ab initio gene prediction

software to
build or refine
gene models
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Sequencing quality: the Phred score

UCSC Genome Browser on Rhesus Jan. 2006 Assembly (rheMac2)
move (<<<)(<<)(<)I(>)(>>>) zoom in (1.5x)(3x)(10x)(base ) zoom out (1.5x )(3x)(10x)

position/search  chr7:60,416,968-60,506,607 size 89.640 bp.

Scale 28 Kb} |
chr7: | 60430008| 68440008] 60450008| 66450008| 56470008| 60450008| 656490008| 656500008|
Assemb 1y Contigs
1699214265475
1699214663557
189921466358

1899214663555
Gap Locations

fragment yes i
fragment ues H
Scores

58

([ [

Rhesus Sedquencing Quality

QUality S

of Trace display
ZDHA1-1197K15.p1k. ’

# Lock Columns:[1 2/3/4] Rows: 1/2|3/4/5 6| i Show confidence  Save settings | % Compact Gose | Hetp »»
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ZDH75-155015.q1K
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e s erE ey TTTT T TCecE T T T Ty base call is incorrect
Il

G C C ¢ T
710 720 730 740

=
2ZDH78-155m .91k
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Gene Models: quick review
Prokaryotic gene model
Send | ]  3end
Regulatory Coding region Termination
region region
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Gene Models: quick review

A Eukaryotic gene model:

Upstream

Enhancers Exonic Splicing
GT Splice Silencer (ESS)
Denor

Transcription Factor \

Binding Site Exonic Splicing \ INTRON

Enhancer (ESE)

INTRON

EXON EXON
Intronic Splicing.
Upstream TATA Enhancer (ISE) . |ntronic Splicing
repressors TSS "\ Silencer (ISS) Poly A signal

AG Splice Acceptor

Promoter Region

Wikipedia
Remember: All parts remaining in the mRNA are exonic, not just the
coding parts.
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Homology based (extrinsic) methods
Alignment of translated DNA sequence to protein database
. Genomic Sequence
Protein TBLASTN NEED TO TRANSLATE ALL 6
DB READING FRAMES!
P1 P2
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Homology based (extrinsic) methods

Alignment of translated DNA sequence to protein database
Opossum Genome Sequence

NEED TO TRANSLATE ALL 6
READING FRAMES!

Hs-HoxAl
Hs-HoxA2
Hs-HoxA3

TBLASTN

chra: 2933306008| 2933356608| 293340000| 293345066| 2933S066e| 29335S666| 293360066
Human¢hg1d) proteins mapped by chained tBLASTh

HOXAS (]

HOXAZ u

HOXA1 ]

S
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Homology based (extrinsic) methods
Proteins aligned to opossum genomic DNA:
pink regions depict the optimum that can be achieved
Upstream
Eoyencers crsmee Sl
Tra\ scription Factor Donf:r
Binding Site Exonic Splicing INTRON INTRON
\ ’ Enhancer (ES_F) | EXBN I
5 3
" \ —
h EXON Intronic s;»lk:ing | EXON |
Upstream TATA Enhancer (ISE) . Intronic Splicing
repressors TSs _Silencer (ISS) Poly A signal
AG Splice Acceptor
Promoter Region
Ultimate drawback: no information about 5 and 3 UTRs!
454
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Homology based (extrinsic) methods

Alignment of transcribed sequences (cDNA, ESTs or mRNAs from RNAseq)

m chrs: 2933360008| 293335008| 293340008 2933450608| 293350e0e| 293355660 2933660600
Humand{hais) proteins mapped by chained tBLASTN
HOXAS ]

HOXA2 ]
HOXA1
Non-0possum mRNAsS from GenBank

Homo AKB894266 =i
Mus AK142386
Bos BC123759
Xehopus BCB41731
Homo BC815156
Gallus AFBE7959
Dahio AFB7124S5
Dahio BCOTE469
Gallus AB111118
Fleurod AY333558
Mus Y11717
Mus BCOIEE12

Homo AKB96742 .
Mus MISS99 =
Xenopus AF307005 -
Xenopus AF307609 -
Bos BC126036 -
Rattus Mo15e2 -
Mus BCO27655 1
Xenopus BC123244 K-
Mus BC117187 | & |
Mus BC11716S | & |
Gallus X74323 [ = |
Mus Maz292 -l

Mus AKBS3S7S

Mus AK143943

Mus M2211S
Xenopus BCA44954
Homo BCB32547
Rattus U93693
Rattus U93692
Unknown AR361822
Unknown AR361823
sunthet AYS93837
Homo U18421

Conservation

Rl e T B ST T T AN TR W TRRRNYERTTT T Thnw ==esii I 3T 1 -li-:
HI— TR W THNIET 8T e 1T .

mouse =4 mun
rat I THNHIT - W DT T -:8:
chicken —i—I——8F—— 1 -TIIHELT- BRI l | —
X_tropicalis :::::::1tt::::':jll:::':j.[:: : Ha4—
Zebrafish
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Homology based (extrinsic) methods

cDNAs or ESTs aligned to opossum genomic DNA: pink regions depict the
optimum that can be achieved

Upstream
Enbancers Exonic Splicing
GT Splice Silencer (ESS)
\ Donor
Transcription Factor \
Binding Site Exonic Splicing . INTRON INTRON
I Enhancer (ESE) | |
5 . 3
U \
AN Intronic Splicing. |
Upstream TATA Enhancer (ISE) Intronic Splicing
repressors TSS _Silencer (ISS) Poly A signal

AG Splice Acceptor

Promoter Region
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Ab initio Gene Annotation (intrinsic methods)

@ Nucleotide sequences are not random across the genome; instead,
there are sequences features that are common among protein-coding
genes

@ Some of them are:

e long open reading frames;

codon bias;

proximity to transcriptional and translational initiation motifs;
3’ polyadenylation sites and

o

o

o

e splicing consensus sequences at putative intron-exon boundaries

@ Ab initio gene discovery programs recognize such features to identify
protein-coding genes. Most popular programs are based on Hidden

Markov Models (HMMs)

@ lrrespective of which discovery algorithm is used, all computationally
identified putative genes must be confirmed by a second line of
evidence before being elevated to gene status in the genome
annotation
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Ab Initio Gene Finding with HMMs

The states of AUGUSTUS and the possible transitions between them.

B i y 0.000009
G 0.000041
\‘

0.9999

Modified from Stanke and Waack (2003), Bioinformatics
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Ab Initio Gene Finding with HMMs

initial exon long intron
------------------------ PO TR e
1111 <15 20 9 d 1111 32
T T e et e e
Cfinternal exon short intron terminal exon

<d 2 6 54 B 111
ot Branch  ASS el exoncontent siop intergenicregion
PointModel model patem  model jon

single exon gene

3 4 15 0 3 111

1111 20 s < 2
intergenic region translation initiation ~ start initial initial content exon content stop  intergenic region
me codon pattern model model codon

113 I
1/31IST / 0.00

0009, 1
Ow 1

¢

0.9999

Modified from Stanke and Waack (2003), Bioinformatics
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Gene Prediction: Ultima Ratio

Include ANY information that can point toward the presence of a
gene into the prediction procedure:

@ similarity to known proteins/expressed sequences
(to identify exon candidates)

@ similarity to non-coding parts of expressed sequences
(to identify UTR candidates)

@ presence of putative signal sequences to identify new exons or to
refine exon borders

@ sequence conservation in intra-specific or inter-specific genome
comparisons

@ enrichment of words that occur preferentially in coding sequences
(codon bias, hexamers, etc)

@ periodicity in the DNA sequence

Heiko A. Schmidt Bioinformatik fiir Biologen





