
Distance-based methods

seq 1 A G C T T A C C T G T T A C T
seq 2 C G T A A A T T T C C C G A T
seq 3 C G C A A G T T T C C C G A T
seq 4 C A C T T A T T A G T C A A C

⇓ (dij)i ,j=1,...,4

seq 1 seq 2 seq 3 seq 4

seq 1 0 11 11 8
seq 2 11 0 2 10
seq 3 11 2 0 9
seq 4 8 10 9 0
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Distance Methods: Aim

D

2 v3

v1 v4

A B C

v

Aim: Find branch lengths vb such that the sum of the branch lengths
connecting any two leaves gets close to the measured distances between all
pairs of leaves. That is, for instance

dmeasured
A,D = v1 + v2 + v3 + v4
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Distance Methods: UPGMA

One possibility are clustering methods like UPGMA = Unweighted Pair
Group Methods using Arithmetic means.

A B C D

A 0 6 7 13
B 6 0 8 14
C 7 8 0 11
D 13 14 11 0

⇒
6.333

A B C D

3

3.75

0.75

3

2.583

Note:

In the reconstructed rooted tree all sequences are equally far away
from the root.

If the distance matrix does not comply to this, UPGMA will likely
reconstruct the wrong tree.

Heiko A. Schmidt Bioinformatik für Biologen 327

Distance Methods: Neighbor Joining (NJ)

A widely used distance method is Neighbor-Joining:

1 begin with a star tree with N leaves:
B

A
F

E

D
C

X

2 For each taxon i compute the net divergence r

ri =
N∑

k=1

dik

For all pairs of taxa i , j , compute rate-corrected distances

Mij = dij −
ri + rj
N − 2

3 Choose the pair (A,B) that minimizes this equation.
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Distance Methods: Neighbor Joining (NJ)

4 cluster (A,B) and define an interior node W representing them:

C
D

E
F

B

A

X ⇒

C
D

A

B

W

E

X

F

5 compute the branch lengths for the external edges:

vAW =
1

2

(
dAB +

rA − rB
N − 2

)
vBW = dAB − vAW .

Heiko A. Schmidt Bioinformatik für Biologen 329

Distance Methods: Neighbor Joining (NJ)

C
D

A

B

W

E

X

F

6 compute the distances of W to the remaining N − 2 leaves k:

dWk =
1

2
(dAk + dBk − dAB))

7 continue at step 2 with the reduced set of leaves
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Distance Methods: The NJ Tree Step-by-step

The algorithm is repeated until the tree is fully resolved:

1.

C
D

E
F

B

A

X

2. W

A

B

E
F

X

C
D

3.

A

B

X

C

E
F

W

D

4.

C

A

B

F

X

D

E

W
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The most simple tree: How to get distances?

The most simple tree could be seen as two
sequences and the distance between them.

Distances can be computed in various ways. . .
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Jukes-Cantor Correction for Multiple Mutations

GTA A GCCG C A
tim

e

CA G C C A G A GC

C G C A GC GGA C

GA G C C C A GCC

CGCCGA GAC G

CA G C G C A GGA

AA G G C GGCAG

C A GCAG AG GA

G C ACAG A AA G

CGGA ACC AAA

C AC T GGA C AA

0

8

6

2

0
10

ob
se

rv
ed

distance

8642

4

10

The substitution process is commonly modeled as a Markov process.
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The most simple tree: How to get distances?

The most simple tree could be seen as two
sequences and the distance between them.

Distances can be computed in various ways. . .

Usually via Maximum Likelihood (ML).

Ronald Fisher (1890-1962)

Joe Felsenstein (born 1942)
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Introduction: ML on Coin Tossing

Given a box with 3 coins with different levels of fairness
(
1
3 ,

1
2 ,

2
3 heads

)
We take out one coin and toss 20 times:

H,T ,T ,H,H,T ,T ,T ,T ,H,T ,T ,H,T ,H,T ,T ,H,T ,T

Probability Likelihood

p(k heads in n tosses|θ) ≡ L(θ|k heads in n tosses)

=

(
n

k

)
θk(1− θ)n−k

(here binomial distribution)

Aim: The ML approach searches for that parameter set θ for the
generating process which maximizes the probability of our given data.

Hence, ”likelihood flips the probability around.”
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Introduction: ML on Coin Tossing (Estimate)

0.0 0.2 0.4 0.6 0.8 1.0

0.
00

0.
05

0.
10

0.
15

0.
20

coin tossing: 7 heads, 13 tails

θ [probability of heads]

lik
el

ih
oo

d(
θ)

Three coin case

L(θ|7 heads in 20) =

(
20

7

)
θ7(1−θ)13

for each coin θ ∈
{

1
3 ,

1
2 ,

2
3

}
For infinitely many coins
θ = (0...1)

ML estimate: L(θ̂) = 0.1844 where
coin shows θ̂ = 0.35 heads
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From Coins to Phylogenies?

While the coin tossing example might look easy, in phylogenetic analysis,
the parameter (set) θ comprises:

evolutionary model

its parameters

tree topology

its branch lengths

That means, a high dimensional optimization problem.
Hence, some parameters are often estimated/set separately.
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Modeling Evolution

Evolution is usually modeled as a

stationary, time-reversible Markov process.

What does that mean?
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Assumptions on Evolution

Markov Process

The (evolutionary) process evolves
without memory, i.e. sequence S2
mutates to S3 during time tn+1

independent of state of S1.

A A G G C T T C A G... ...=S1

time t n

A A G C T C A G... ...G C=2S

time t n+1

A G C T C A G... ...AGT=3S
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Assumptions on Evolution

Stationary:
The overall character frequencies πj of the nucleotides or amino acids are
in an equilibrium and remain constant.

Time-Reversible:
Mutations in either direction are equally likely

πi · Pij(t) = Pji (t) · πj

This means a mutation is as likely as its back mutation.

P(i → j) = P(i ← j) (JC69)
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Substitution Models

Evolutionary models are often described using a substitution rate matrix R
and character frequencies Π. Here, 4× 4 matrix for DNA models:

A

C T

G

S

P

3’

O

H

N

N

N

H

CH3

S

P

3’

O

H

N

N

O

S

P

3’

HN

N

N

N

O

N H

H

S

P

3’

N

N

N

N

H

H

N

b

a
d c

f

e

R =

A C G T
− a b c
a − d e
b d − f
c e f −



Π = (πA, πC , πG , πT )

From R and Π we reconstruct a
substitution probability matrix P,
where Pij(t) is the probability
of changing i → j in time t.
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Relations between DNA models

equal base frequencies

JC69

2 transitions)
(transversions,
3 subst. types 6 subst. types

(4 transversions,
2 transitions)

frequencies
different base

2 subst. types
(transitions vs.
transversions)

frequencies

1 substitution type,

different base

F81

2 subst. types
(transitions vs.
transversions)

HKY85 TN93 GTR

K2P

Further modification:
rate heterogeneity: invariant sites, Γ-distributed rates, mixed.
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Protein Models

Generally this is the same for protein sequences, but with 20× 20
matrices. Some protein models are:

Poisson model (”JC69” for proteins, rarely used)
Dayhoff (Dayhoff et al., 1978, general matrix)
JTT (Jones et al., 1992, general matrix)
WAG (Whelan & Goldman, 2000, more distant sequences)
VT (Müller & Vingron, 2000, distant sequences)
mtREV (Adachi & Hasegawa, 1996, mitochondrial sequences)
cpREV (Adachi et al., 2000, chloroplast sequences)
mtMAM (Yang et al., 1998, Mammalian mitochondria)
mtART (Abascal et al., 2007, Arthropod mitochondria)
rtREV (Dimmic et al., 2002, reverse transcriptases)
. . .
BLOSUM 62 (Henikoff & Henikoff, 1992) → for database searching
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Computing ML Distances Using Pij(t)

The Likelihood of sequence s evolving to s ′ in time t:

L(t|s → s ′) =
m∏
i=1

(
Π(si ) · Psi s

′
i
(t)
)

Likelihood surface for two
sequences under JC69:

TGATCCTGAGTGAACTAAGC = s ′

TGGTCCTGACTGAACTAAGC = s

Note: we do not compute the
probability of the distance t
but that of the data D = {s, s ′}. 0.00 0.05 0.10 0.15 0.20 0.25

−
39

.0
−

38
.5

−
38

.0
−

37
.5

−
37

.0
−

36
.5

−
36

.0

branch length [subst. per site]

lo
g−

lik
el

ih
oo

d(
t)

lnL= −36.4

αt= 0.1073



Computing Likelihood Values for Trees

Given a tree with branch lengths and sequences for all nodes, the
computation of likelihood values for trees is straight forward.
Unfortunately, we usually have no sequences for the inner nodes (ancestral
sequences).
Hence we have to evaluate every possible labeling at the inner nodes:

G

C

C

C

L =
G

C

C

C
A AL +

G

C

C

C
A CL + · · ·+

G

C

C

C
G CL + · · ·+

G

C

C

C
TTL

for every column in the alignment. . . but there is a faster algorithm.
(Peeling Algorithm by Felsenstein, 1981)
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Likelihoods of Trees (Single alignment column, given tree)

For a single alignment column

and a given tree:

2:

4:

...

...

...

... ...

...

...

...

C

C

G

C

k

1:

3:A
C
G
T

A
C
G
T

A
C
G
T

6

435

21

4
d

3
d

5
d

2
d

1
d

T
G
C
A

A
C
G
T

A
C
G
TT
G
C
A

2

A
C
G
T

1

1
d

2
d

5

T
G
C
A

T

6

d
4

d
3

d
5

T
G
C
A

T
G
C
A

A
C

4

G

3

Likelihoods of nucleotides i at inner nodes:

L5(i) = [PiC (d1) · L1(C )] · [PiG (d2) · L2(G )]

L6(i) =
∏

v={3,4,5}

 ∑
j={ACGT}

Pij(dv ) · Lv (j)


Site-Likelihood of an alignment column k:

L(k) =
∑

i={ACGT}

πi · L6(i) = 0.005489

with all dx = 0.1 and Pij (0.1) =

{
.9068 i = j
.0313 i 6= j

(JC)

Heiko A. Schmidt Bioinformatik für Biologen 346



Likelihoods of Trees (multiple columns)

1: C

G

4:

3:

2:

C

C

1

G

G

3

T

GG

T

T

T

2

TT

G

GG

G

C C

G

0
.0

0
5
4
8
8
5
5

C

0
.0

0
5
4
8
8
5
5

T

6

0.1

0.1

0.1

0.1 0.1

35

1

4

2

T

0
.0

0
5
4
8
8
5
5

Considering this tree with n = 4 sequences of
length m = 3 the tree likelihood of this tree
is

L(T ) =
m∏

k=1

L(k)

= 0.0054886 · 0.0054886 · 0.0054886

= 0.0000001653381

or the log-likelihood

lnL(T ) =
m∑

k=1

ln L(k) = −15.61527
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Adjusting Branch Lengths Step-By-Step

To compute optimal branch lengths do the following. Initialize the branch
lengths.
(1.) Choose a branch. (2.) Move the virtual root to an adjacent node.
(3.) Compute all partial likelihoods recursively. (4.) Adjust the branch
length to maximize the likelihood value.

1. 2. 3.
4.

Repeat this for every branch until no better likelihood is gained.

This is based on the Pulley-Principle (Felsenstein, 1981) which states that
the root can be moved on the tree but the likelihood doesn’t change.
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Number of Trees to Examine. . .

B

A
C

D

CD

BA

C D

BA

B

A C

B(n) = (2n−5)!
2n−3(n−3)!

B(10) = 2027025
B(55) = 2.98 · 1084

B(100)= 1.70 · 10182

D

A CAA

AA

B

CA

B D

CA

E

D

A

E

A

D

A

DD

C

D

CA

C

D

E

E

D

E

E

B

A

B

C

B A

E

D C

B

C

C

B

B

E

E

D

B

B

D

A

C

E

E

C

D

D

B

C

B

C

E

E

B

C

B

A

D

E

E

B
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Finding the ML Tree

Exhaustive Search: guarantees to find the optimal tree, because all trees
are evaluated, but not feasible for more than 10-12 taxa.

Branch and Bound: guarantees to find the optimal tree, without searching
certain parts of the tree space – can run on more sequences,
but often not for current-day datasets.

Heuristics: cannot guarantee to find the optimal tree, but are at least
able to analyze large datasets.
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Build up a tree: Stepwise Insertion

A

C

B BA

C D

BA

CD

A

B

C

D
-3920.21

-3689.22

-3920.98

B

D

A

C

BC

D
A

E

B

A D
C

E

BC

A D
E

B

A

C

D
E

D

A

C

B
E

B

A

C

D
E

-4710.37

-4560.70

-4521.39

-4579.17-4610.40

Is also used for other (non-ML) methods like parsimony.
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Local Maxima

What if we have multiple maxima in the likelihood surface?

Tree rearrangements to escape local maxima.
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Tree Rearrangements: Scanning a Tree’s Neighborhood

O(n 3

Tree−Bisection + Reconnection (TBR)

) TBR trees

H

A
E

F

G

D

C

B

Subtree Pruning + Regrafting (SPR)

O(n ) SPR trees2

H

G

E

F

B

D
C

A

B

A

C D

E

F

GH

O(n) NNI trees

Nearest Neighbor Interchange (NNI)

B

A

GH

E F

C

D
B

A
E

F

G

CD

H

H G

F

E

DC

A

B
full tree

F

GH

B

A

C D

E

From a current tree construct other trees by rearranging its subtrees and evaluate

all resulting trees. Repeat with the best tree found, until no better tree can be

found. This also used for other (non-ML) methods, like parsimony.
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How reliable is the reconstructed tree:

Usually programs deliver a single (best) tree, but without confidence
values for the subtrees.

How can we assess reliability for the subtree?

Heiko A. Schmidt Bioinformatik für Biologen 354



Bootstrap and Consensus Tree

Bootstrapping creates many pseudo-alignments by sampling
alignment columns with replacement from the original alignment.

From the pseudo-alignment we reconstruct trees.

From the trees we collect and count all splits.

From the splits we construct a consensus tree.

Definition: A split A|B in the tree is the bipartition of the
leaves/taxa into two subsets A and B induced by removing an edge or
branch from the tree.

Definition: A trivial split is a split induced by an external branch,
because they have to be present in every tree. Otherwise a leaf would
not be connected to the tree.

Definition: Two splits A|B and C|D are compatible, i.e. not
contradictory, if at least one intersection of A ∩ C, A ∩D, B ∩ C,
B ∩ D is empty.
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Estimating Confidence: The Bootstrap

..AGGCUCCAAA..

..AGGUUCGAAA..

..AGCCCCGAAA..

..AUUUCCGAAC..

Alignment

A

F

E

D

C

B

..AGGGGUCAAA..

..AGGGGUCAAA..

..AGGGCCCAAA..

..AUUUUCCACC..

Sample 1

..GGGUUUUCAA..

..GGGUUUUGAA..

..GCCCCCCGAA..

..UUUCCCCGAA..

Sample 2
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..AGUUCCAAAA..

..ACCCCCAAAA..

..AUCCCCAACC..
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C
Tree 1

B

F

E

D

A

F

E

D

C

B
Tree 2

A

F

C
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D
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D
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B
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B
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Summarizing Trees: Consensus Methods

E

C

A

F

D

F

DA

B

C

A

C

B

E

Tree A

Tree B

Tree CB

E

F

D

ABCD|EF

ABC|DEF

AC|BDEF

ABC|DEF

AC|BDEF

ABC|DEF

AB|CDEF

AC|BDEF

− 1 (33.3%)

ABCD|EF − 1 (33.3%)

AB|CDEF

− 2 (66.7%)

− 3 (100%)ABC|DEF

A

B

strict consensus
EABC|DEF

C

D

F

C

AABC|DEF

B

D

F

E
ABCD|EF

semi−strict

B
ABC|DEF

AC|BDEF EC

A
majority−rule

D

F

Strict consensus: contains all splits occuring in all input tree.
Semi-strict consensus: contains all splits which are not contradicted
by any tree.
Majority consensus M`: contains all splits which occur in more than `
input trees, where ` ≥ 50% typically exactly 50%.
Majority Rule extended (MRe): starting from the most to the least
frequent splits one collects compatible splits. If a split is incompatible
to the already collected ones, it is discarded and the next is examined.
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Towards Phylogenomics

In the past often sequences of single genes were used as
representative for the species they originates from to reconstruct the
tree of the species history - the speciestree.

However, the reconstructed tree reflects the gene’s history - thus, the
genetree.

With the advent of genomics data, often sequence data for several
genes per species are available.

This approach is based on the hope, that the majority of genes
evolved according to the species history, averaging out the genes
which did not.
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Reconstruct a speciestree from multi-gene data

’speciestree’

supertree

consensus

genetree x genetree y genetree z ’speciestree’

superalignment

alignments

concatenate
spec1

spec2

spec3

...

specn

spec3

spec2

specn

spec2

spec1

specn

gene y gene zgene x

genomic data:

...

spec2

spec1

specn

...

spec3

...

spec1

spec3
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