
Hidden Markov Models
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Markov model

The Markov chain is the tuple

M = (Q,P, π)
where:
Q is the set of states
P is the probability matrix of state transition
π is the vector of initial probabilities to start states

HMM and MAS
3

Markov Model

The Markov chain is the tuple

M = (Q, P, !)
where:

Q is the set of states

P is the probability matrix of state transition

! is the vector of initial probabilities

q1

q2

q3

P(q2 | q1)

P(q3 | q1)

!(q1)

A Markov chain is traversed from state to state, producing a sequence of
states.
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Sequence Probability

The probability of a sequence (of states) x = x1, x2, . . . , xn is

P(x) = P(xn, xn−1, ..., x2, x1)

Using P(x , y) = P(x |y)P(y) this can be re-written as follows

P(x) = P(xn, xn−1, xn−2..., x2, x1) =
P(xn|xn−1, xn−2..., x2, x1)P(xn−1, xn−2..., x2, x1) =
P(xn|xn−1, xn−2..., x2, x1)P(xn−1|xn−2..., x2, x1)P(xn−2..., x2, x1) =
P(xn|xn−1, xn−2..., x2, x1)P(xn−1|xn−2..., x2, x1)P(xn−2|xn−3..., x2, x1)...P(x2|x1)P(x1)

but this can be simplified for a Markov chain model, because
the probability of any next state depends ONLY on the previous state

P(xn|xn−1, xn−2..., x2, x1) = P(xn|xn−1)
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Markov Process

Hence,

P(x) =
P(xn|xn−1, xn−2..., x2, x1)P(xn−1|xn−2..., x2, x1)P(xn−2|xn−3..., x2, x1)...P(x2|x1)P(x1)

can be re-written as follows:

P(x) = P(xn|xn−1)P(xn−1|xn−2)P(xn−2|xn−3)...P(x2|x1)P(x1)

and thus re-written in terms of the transition probabilities as,t (= P(t|s))

P(x) = axn−1,xnaxn−2,xn−1axn−3,xn−2axn−4,xn−3 ...ax1,x2P(x1)
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Sequence Probability

So the probability of any given sequence x

X1 X2 X3 ... ... ... Xn-2 Xn-1 Xn

can be found by:

multiplying the probabilities of the individual transitions, and

the probability of starting in the state x1

P(x) = axn−1,xn · axn−2,xn−1 · axn−3,xn−2 · axn−4,xn−3 . . . ax1,x2 · P(x1)

P(x) = (
∏n

i=2 axi−1,xi )P(x1)
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Markov Chains: a simple Markov model for DNA

4 states A,C,G,T

Transition between states
occur with particular
probabilities

Each arrow has a
probability parameter
associated with it

P(x = T |x = A) = aA,T

A T

GC

as,t = P(xi = t|xi−1 = s)
probability of making a transition from state s to state t
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Include BEGIN and END state

A T

GC

start end

Two new states can be added to the Markov model.
These are treated as silent states, since they do not add to the sequence.
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Hidden Markov Model (HMM)

Hidden Markov Models (HMMs) resemble Markov Models in having a
finite number of states connected by transitions.

But the major difference between the two is that the states of the Hidden
Markov Models are not associated with one symbol but with more than
one symbol. Each state q can emit a symbol x with a probability given by
the distribution of emission probabilities eq(x).

u

qj

eq j
(u)eq j

(a)

qi

eq i
(a) eq i

(u)

aq iq j

a u a
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Hidden Markov Model (HMM)

The HMM is a tuple
M = (Σ,Q,A,E )

There are a finite number of states Q in the model

At a given time j , each new state qj is entered from a previous state qi ,
based upon a transition probability aqi ,qj = P(qj |qi ) from the probability
distribution A, which only depends on the previous state qi (the
Markovian property)

After each transition a symbol yj from Σ is produced based on the current
state qj , with emission probability eqj (yj) = P(yj |qj)

u

qj

eq j
(u)eq j

(a)

qi

eq i
(a) eq i

(u)

aq iq j

a u a
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Example 1 (HMM)

e
C

P(e|q1P(q )1|s)

P(q
1
|q

1
)

e
G

e
T

e
A

1

C GA T

qstart end

0.99

0.25 0.250.25

0.011.0

0.25

1

C GA T

qstart end

0.7 0.1 0.1

1.0 0.4

0.6

0.1

1

C GA T

qstart end

AAAATGGTGAACCTGTCGTTCCG

GAAA
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Example 2 (HMM)

0.2 1.00.6 0.4 0.0 0.50.50.8

1.0 1.01.0 1.01.0start q1 q q2 3 4q end

1 0 1 0 1 0 1 0

Can this HMM produce the following emitted sequences?

1 1 1 1 1 no
0 0 0 0 yes
1 0 0 1 yes
1 1 1 1 no
1 0 no
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HMMs - splice site finding example (Eddy, 2004)

Given:

Exon frequencies (A: 0.25, C: 0.25, G: 0.25, T: 0.25)

Intron frequencies (A: 0.4, C: 0.1, G: 0.1, T: 0.4)

Splice site donor (G: 0.95, A: 0.05)

A sequence with exon, (unknown) splice site, intron

then we can draw a simple HMM:
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HMMs - splice site finding example (Eddy, 2004)

Imagine the HMM produces sequences, instead of taking input.

These sequences will occur with certain probabilities
(but possibly produced by several unknown (= hidden) state paths).

The HMM is a full probabilistic model.

We can use the model to retrieve the state path through the HMM
and also the probability of a sequence.
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HMMs - example (Eddy, 2004)
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Typical problems associated with HMMs

Given a sequence y = (y1y2y3...yn) and a model M

???

Given the sequence y , what was the optimal state sequence?

???

What is the probability of the observed sequence y?

???

What is the most probable state for a particular observation yi ?
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Example: HMM for the Fair Bet Casino

M = (Q, Σ,A,E)

Q = {F ,B} – F for Fair and B for Biased coin

Σ = {H,T} – Heads and Tails

transition probabilities:

A =



a0F = P(F |0) = 0.5[= πF ],
a0B = P(B|0) = 0.5[= πB ],
aFF = P(F |F ) = 0.9,
aBF = P(F |B) = 0.1,
aFB = P(B|F ) = 0.1,
aBB = P(B|B) = 0.9


Note, that a0q reflect the initial probabilities of
starting in states q (coming from the start state 0).

emission probabilities:

E =


eF (T ) = P(T |F ) = 1/2,
eF (H) = P(H|F ) = 1/2,
eB(T ) = P(T |B) = 1/4,
eB(H) = P(H|B) = 3/4



F

B

H T

H T

1/10 1/10

9/10

9/10

1/21/2

3/4 1/4
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Example: HMM for the Fair Bet Casino (II)

Given an emitted sequence y = (HHHT ) we can easily construct all
possible state paths through that HMM M.

For simplicity we add a start state 0 using π as transition probabilities

and an end state E, where the HMM ends after having emitted the
last sign in y.
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All possible paths for y=HHHT in a tree-shaped graph

3/4

emission probability e()

1

1

0

a

transition probability a

.5

e()

3/4

.9

.1

1/2

.5

1/2

1/4

.1

1/2

3/4

1/2

.9

E

y1|F

y2|F

y2|F y3|F

y3|F

y3|F

y3|F

y4|F

y4|F

y4|F

y4|F

y4|F

y4|F

y4|F

y4|F

y1|B

y2|B

y2|B

y3|B

y3|B

y3|B

y3|B

y4|B

y4|B

0

E

E

E

E

E

E

E

E

E

E

E

E

E

E

E

4

4

|B4y

4y |B

|B4y

4|By

y |B

y |B

|B

|F
4

y =T3
y =H2

y =H1
y =H

E

|B

|0

|F

BF

Due to the Markov property identical states (same color) for the same positions
can be collapsed.
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All possible paths for y=HHHT in a reduced state graph

Due to the Markov property, that transition to a new state of the
(hidden) Markov model only depends on the current state,

the state graph can be very much reduced

by collapsing identical states (same color) for the same positions

thus, producing a linear HMM where certain states associated with
certain positions.

y2|Fy1|F

y1|B y2|B y3|B y4|B

0 E

y4|Fy3|F

Heiko A. Schmidt Bioinformatik für Biologen 224

Finding the optimal state path: Viterbi algorithm

Using this representation and the emitted sequence Y = y1, y2 . . . yL we
can use the Viterbi Algorithm to find the optimal state path π∗.

Viterbi Algorithm

1 initialize start state (k = 0), disable other states before position i=1:

vk,0 =

{
1.0 if k = 0 (start state)
0.0 otherwise

2 compute for any state k and position i = 1 . . . L:

vk,i = max
q∈Q

(vq,i−1 · aq,k) · ek(yi )

3 result in end state E (i.e. probability of the maximal state path π∗):

P(y , π∗) = vE ,L+1 = max
q∈Q

(vq,L)

(end of forward part)

4 to get the maximal state path π∗: backtrace (backward part)
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Viterbi algorithm - finding the optimal state path

|B4y

E

|F4y

|B3y

|F3y

0

y1|F

y1|B |B2y

|F2y

a =Hy
1 =Hy

2 =Hy
3 =Ty

4

|F

|B

1/2

3/4

1/2

3/4

1/2

3/4

1/2

1/4

emission probability e()

|F

|0

|B

E

0

1

1

F

.5

.1

.9

B

.5

.9

.1

transition probability a

e()

.5

.5

.2500

.3750

.3375

.0250

.0375

.2250

.2531

.1125

.2278

.1013

.0253

.0113

.0506

.1708

.0051

.0456

.0171

.1537

.0384

.0228

.0228

.0384

.0384
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Typical problems associated with HMMs

Given an observation sequence y = (y1y2y3...yn) and a model M

Viterbi algorithm

Given the observation sequence y , what was the optimal state sequence?

???

What is the probability of the observed sequence y?

???

What is the most probable state for a particular observation yi ?
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Finding the overall probablility: Forward algorithm

Using the graph representation and the emitted sequence Y = y1, y2 . . . yL
we can use the so-called Forward Algorithm to compute the overall
probability of all state paths emitting Y .

Forward Algorithm

1 initialize start state (k = 0), disable other states before position i=1:

fk,0 =

{
1.0 if k = 0 (start state)
0.0 otherwise

2 compute for any state k and position i = 1 . . . L:

fk,i =
∑
q∈Q

(fq,i−1 · aq,k) · ek(yi )

3 result in end state E (i.e. probability of the HMM generating Y ):

P(y) = fE ,L+1 =
∑
q∈Q

(fq,L)

Note, fk,i are called forward-probabilities.
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Forward algorithm - finding the overall sequence probability

|F

0

y1|F

y1|B

y2|F

y2|B

y3|F

y3|B

y4

E

|B4y

.5

=Hy
1 =Hy

2 =Hy
3 =Ty

4

|F

|B

1/2

3/4

1/2

3/4

1/2

3/4

1/2

1/4

emission probability e()

|F

|0

|B

E

0

1

1

F

.1

.9

B

.5

.9

.1

transition probability a

e()a

.5

.5

.2500

.3750

.2250

.0375

.0250

.3375

.1313

.2719

.0131

.0272

.2447

.1181

.1934

.0727

.1740

.0073

.0193

.0653

.0453

.0424

.0453

.0424

.0877
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Typical problems associated with HMMs

Given an observation sequence y = (y1y2y3...yn) and a model M

Viterbi algorithm

Given the observation sequence y , what was the optimal state sequence?
(attempt to recover the hidden part of the model = posterior decoding)

Forward algorithm

What is the probability of the observed sequence y?

???

What is the most probable state for a particular observation yi ?
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Backward algorithm – most probable state for observation

Using the graph representation and the emitted sequence Y = y1, y2 . . . yL
we can use the so-called Backward Algorithm to compute the backward
probabilities bl ,i .

Backward Algorithm

1 initialize last emmitting states (i = L):

bk,L =
{

1.0 for all k ∈ Q

2 compute for any state k and position i = L− 1 . . . 1:

bk,i =
∑
q∈Q

(ak,q · eq(yi+1) · bq,i+1)

3 result in start state 0, position i = 0:

P(y) = b0,0 =
∑
q∈Q

(a0,q · eq(y1) · bq,1)

Note, bk,i are called backward-probabilities, and P(y) is the same as in the
forward algorithm.
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Backward algorithm – most probable state for observation

Finally, the probability that a state qk produced the output yi is computed
by

P(πi = qk |y) =
P(y , πi = qk)

P(y)
=

fqk ,i · bqk ,i
P(y)

This reflects the sum of probabilities over all paths leading through qk :

1

q2

qk

y1 y1 yL

q
i

P(qk|y)

y

Thus, choosing the path π′ of states qi maximizing the probability at each
position i is an alternative to the Viterbi algorithm for posterior decoding.
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Typical problems associated with HMMs

Given an observation sequence y = (y1y2y3...yn) and a model M

Viterbi algorithm

Given the observation sequence y , what was the optimal state sequence?
(attempt to recover the hidden part of the model = posterior decoding)

Forward algorithm

What is the probability of the observed sequence y?

Backward algorithm

What is the most probable state for a particular observation yi ?
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