
BLAST/FASTA flavors

The BLAST and FASTA package contain programs for different purposes:

BLAST FASTA query type database type
program program
blastn fasta nucleotide nucleotide

blastp fasta protein protein

blastx fastx nucleotide protein
(translated in 6 frames)

tblastn tfasta protein nucleotide
(translated in 6 frames)

tblastx nucleotide nucleotide
(both translated in 6 frames)

Further FASTA programs: fasty, tfasty (translation with frameshifts),
ssearch (Smith-Waterman).
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BLAT - BLAST-Like Alignment Tool (Kent, 2002)

To reduce search time BLAT requires only one single, but longer
exact match (instead on several consecutive ones), to be candidate
for the more rigorous search.

This speeds up the candidate search, but makes the search less
sensitive. . .

that means it might miss (more) relevant hits.

Nevertheless, BLAT works well if the database sequences and the
query are closely related.

However, this is the scenario BLAT was developed for (mapping reads
against a closely related reference).
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Criteria to compare search methods (I)

When doing a database search, the following can happen

we find a sequence which is indeed related to the query
(=true positive, TP)

we discard a sequence which is indeed not related to the query
(=true negative, TN)

we discard a sequence which is actually related to the query
(=false negative, FN)

we find a sequence which is actually not related to the query
(=false positive, FP)
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Criteria to compare search methods (II)

Criteria:

sensitivity TP
(TP+FN) : The proportion of those correctly found among

all those which should have been found.

specificity TN
(TN+FP) : The proportion of those correctly dicarded

among all those which should have been discarded.

positive predictive value TP
(TP+FP) : The proportion of those correctly

found among all found. (a.k.a. precision)

negative predictive value TN
(TN+FN) : The proportion of those correctly

discarded among all discarded.
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Criteria to compare search methods (III)

Confusion matrix 

Correct classification 

related 
sequences 

unrelated 
sequences 

Search 
result 

retrieved
(found)  

sequences 

TP (true 
positives) 

FP (false 
positives, 

type I error) 

discarded 
sequences 

FN (false 
negatives, 

type II error) 

TN (true 
negatives) 

Specificity = TN
TN +FP

Sensitivity = TP
TP +FN
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A comparison of BLAST, FASTA, Smith-Waterman
(Shpaer et al., 1996)

Shpaer et al. (1996) did a comparison of BLAST, FASTA, and
Smith-Waterman. They found that

Smith-Waterman (SW) dynamic programming method and the
optimized version of FASTA are significantly better able to distinguish
true similarities from statistical noise than is the popular database
search tool BLAST.

FASTA performs worse than Smith-Waterman, but much better than
BLAST.

On the other hand, Smith-Waterman takes much longer.

Despite its good performance, Smith-Waterman is by far the slowest.

The reason that many people use a software like BLAST, does not
make it better.

Note: These points results do not reflect improvements done to the
softwares since 1996.
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Search Methods Based on Multiple Alignments

BLAST, FASTA, Smith-Waterman, BLAT etc. search with a single query
sequence in a Database of sequences.

If we have multiple sequence alignments available (e.g. of a sequence
family or of conserved regions), we can use it to extract information to
search in databases.
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Database searching: A Typical workflow

With a new sequence

search SwissProt/UniProt, EMBL-ENA/GenBank/DDBJ databases
for similar sequences.

collect similar sequences from fast heuristic searches

use more optimal methods to sort out false positives, if necessary

use multiple alignments methods to produce an MSA

maybe use the multiple alignments to train other tools (e.g. HMMs)
to find more distantly related sequences.

extend the MSA with newly found sequences

do further Analyses with the data: e.g. phylogenetic analyses
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Searching for Patterns with PSSM

Searching for specific pattern can be accomplished using position specific
scoring matrices (PSSM).
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PSSM - construction

1 Given a set of aligned sequences containing the wanted pattern,

2 Compute the relative frequencies fi ,c of each amino acid i for each
column c

3 Compute the overall frequencies pi for each amino acid i from all
counts

4 Construct the log-odds entries for each position and amino acid of the

PSSM using PSSMi ,c = 1
λ logb

fi,c
pi

.

5 (this works the same for nucleotides)
Note: PSSMs are also called position-specific weight matrices (PWM)
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Specialized BLAST developments: Psi-BLAST

Position-specific iterated BLAST does repeated searches using PSSMs to
search for distantly related proteins.

1 First search: ordinary BLAST

2 The matches found are combined in an multiple sequence alignment.

3 Generate a consensus sequence and a PSSM from the alignment.

4 From now on: search with the consensus and the PSSM in the DB.

5 Iterate steps 2-4, adding more and more sequences.

This gives better results than blastp, if the first blastp is able to return a
reasonable starting set of sequences and if we are searching for distantly
related proteins in the DB.
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Specialized BLAST developments: Phi-BLAST

Pattern-hit initiated BLAST searches for ’regular expressions’ of motifs in
a protein database.

Often we have certain patterns that have to occur in a sequence but
we cannot write them down as one sequence,

then Patterns can help.

If the Patterns we are searching for must contain a Tryptophane and
then after 9-11 residues a Phenylalanine, Valine, or Tyrosine followed
by an Alanine

we can code it as: W-x(9-11)-[FVY]-A

and feed it to Phi-BLAST.
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Psi-BLAST and Phi-BLAST

Psi-BLAST searches for quantitative sequence motifs

Phi-BLAST searches for qualitative sequence motifs
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DB Search Algorithms/Methods

Ordinary Search Strategies:

Smith-Waterman (1981)

Baeza-Yates and Perleberg (1992)

Chang and Lawler (1994)

Myers (1994)

FASTA (Pearson and Lipman, 1988)

BLAST (Altschul et al., 1990)

Gapped-BLAST/BLAST2 (Altschul et al., 1997)

BLAT (Kent, 2002)

. . .

Specialized Approaches:

PSSMs

HMMs

Psi-BLAST (Altschul et al., 1997)

Phi-BLAST (Zhang et al., 1998)

. . .
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Introduction to Probability and Statistics of Sequence Alignments
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Motivation

We have found that the score of the local alignment between two
sequences is S .

Question: What is the ’significance’ of this score?

Differently stated, what is the probability P that the alignment of two
random sequences has a score at least equal to S?

P is the P-value, and is considered a measure of statistical
significance.

If P is small, the initial alignment is significant.
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Hypothesis testing

If one wants to decide if the score S of an alignment is significantly larger
than expected one needs to test a hypothesis.

1 One typically starts with the Null-hypothesis H0:
The sequence pair is not homologous, i.e. the score is expected by
chance.

2 Find the alignment or the optimal sub-alignment.

3 Compute the probability distribution under H0

4 Determine the significance level α you want to work on

5 Determine the actual score S

6 Compute the probability to obtain a score at least as large as S
assuming H0.
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A simple application

Tossing a coin n times and counting the number of heads H
Null hypothesis H0: the coin is fair, i.e. the expected number of head |H|
and tails |T | are equal or E (|H| − |T |) = 0.

The Null hypothesis is typically tested against an alternative hypothesis
HA that depends on the question one wants to answer.

For example: HA the number of Heads is larger than the number of Tails.
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Usual Null-Hypotheses:
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First the Null hypothesis (H0) has to be
stated, for example:

top: The observed value x is not
significantly larger than expected under
the Null distribution.

bottom: The observed value x is not
significantly different from what is
expected under the Null distribution – i.e.
the expected value E (x) = 0.

If the observed value falls into the white area,
the Null hypothesis cannot be rejected.
If it falls into the grey area, this is interpreted
as support for the alternative hypothesis by
rejecting the Null hypothesis.
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Local alignment

What is a local alignment ?

’A local alignment without gaps consists simply of a pair of equal
length segments, one from each of the two sequences [. . . ]
whose scores can not be improved by extension or trimming.
These are called high-scoring segment pairs or HSPs.’
(NCBI online BLAST tutorial)
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Significance of alignment scores I

s1 and s2 are two random sequences of length m and n, respectively, then
Karlin and Altschul (1990), Altschul et al (1997) showed, that

The number of pair-wise subalignments with score larger than S ,
follows approximately a Poisson-distribution with expectation

E (S) = Kmne−µS

where the constants K and µ depend on the scoring matrix.
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Significance of alignment scores II

Database query:
Let m be the length of the query sequence s1 and N be the size of the
database D, then the expected number of segment pairs with score larger
S equals

E (S) = KmNe−µS

this is the so-called E-value.
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Significance of alignment scores III

The probability of a score of at least S in a database of random sequences
can be calculated as follows:

P(S ≥ x) = 1− e(−KmNe−µx ) = 1− e−E(x)

BLAST E−value − P−value correspondence

E−values

P
−

va
lu

es
 (

=
1−

e^
(−

E
))

1e−05 1e−04 0.001 0.01 0.1 1

1e
−

05
1e

−
04

0.
00

1
0.

01
0.

1
1

Thus, BLAST E-values can
be treated similar to P-values
if they are at least < 0.001.
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Bit Score of a sequence alignment

Raw scores have little meaning without knowledge of the scoring scheme
used for the alignment (or of the parameters K and µ).
Scores can be normalized according to:

S ′ =
µS − ln(K )

ln(2)

S is the bit score of the alignment.
Then, the E -value can be simplified as follows: E = mn2−S

′
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BLAST output

A DtASTf 2.0.5 [Hay-5-199Bl 
Ouery= hUIllilf> XP_P r e pair gene (90S lettere ) 

• Color Ke~ for AlienHent Scores 

qUERY I . 
o 

- .... -"_.- ....... .. . ~ 
250 

• • I 
125 

I 

Distri bution ot 11 BLAST I!itl on the Query Sequence 

soguer.ce$ produc in9 l ignH i cant a liljlnlllents: 

, I 
625 

SCOre S 
(bits) v alue 

spI Q92889jXPP_UUMAN DNA-REPAIR PRO't'EI N COtU'LEMENTI NG XP _F CELL . " 1659 0.0 
sp1PJ6617 jRA16_SCHPO DNA REPAIR PR01'BlN """" '" e - 13 6 

" P067" IRAD1_YEAST DUA RBt'AIR PitO'l'BIH ""'" m 40-60 

" P40562 IYlS2_YEASl' PUTATIVE ATP _DI!PENDlmr "" HELlCASB YJROO2C " 0. 17 
. p Ol 0202 )tAXB_SCHPO PUTATIVE ATP- DEPENDENT RNA IlBLICASE eDF4 .11C " 0. 38 
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Mutually exclusive, independent and dependent events

If two events are mutually exclusive, but alternatives, their
probabilities are summed up.
Example: what is the probability to get either or when rolling
dice.
If two events are independent from each other their probabilities are
multiplied.
Example: from a bag with 3 red and 2 blue marbles (•••••), you are
drawing one marbel, put it back and draw again (chances do not
change).
Probability of drawing twice a blue marble

P(••) = P(•) · P(•) =
2

5
· 2

5
=

4

25
= 0.16

However, if the probability of one event depends on another, that does not
work.

Example: what is P(••) if we do not put the marbel back after
drawing. . . ?
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Conditional probabilities

the conditional probabilities can be listed in a tree diagram:

such conditional probabilities are denoted as P(B|A)
which stands for: probability of event B given (′|′) event A

the total probability P(A,B) of events A and B is

P(A,B) = P(A) · P(B|A)

or for the marbels in the case that A = • and B = •:

P(•1st , •2nd) = P(•1st) · P(•2nd |•1st)
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