IQPNNI - Important Quartet Puzzling and Nearest Neighbor Interchange

IQPNNI Manual

Version 3.2 (Aug 2007)

Copyright (C) 2006-2007 by Bui Quang Minh, Le Sy Vinh, Heiko A. Schmidt,

and Arndt von Haeseler

Copyright (C) 2003-2005 by Le Sy Vinh and Arndt von Haeseler

Bui Quang Minh

Center for Integrative Bioinformatics Vienna, Max F. Perutz Laboratories, Dr. Bohr-Gasse 9/6, A-1030 Vienna, Austria. email: minh.bui (at) mfpl.ac.at

Le Sy Vinh

NIC, Forschungszentrum Juelich, Germany email: vinh (at) cs.uni-duesseldorf.de

Heiko A. Schmidt

Center for Integrative Bioinformatics Vienna, Max F. Perutz Laboratories, Dr. Bohr-Gasse 9/6, A-1030 Vienna, Austria. email: heiko.schmidt (at) mfpl.ac.at

Arndt von Haeseler

Center for Integrative Bioinformatics Vienna, Max F. Perutz Laboratories, Dr. Bohr-Gasse 9/6, A-1030 Vienna, Austria. email: arndt.von.haeseler (at) mfpl.ac.at

Legal Stuff

This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version.

This program is distributed in the hope that it will be useful, but WITHOUT ANY WAR-RANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details.

Contents

1	Intr	oduction	2
2	Met	hods	2
3	Main features		3
4	4 Command-line options		3
	4.1	General options	4
	4.2	IQP options	5
	4.3	Model options	5
	4.4	Rate heterogeneity	6
	4.5	User-defined protein model	7
5 Text-menu options		-menu options	8
	5.1	General options	8
	5.2	IQP options	9
	5.3	Substitution process	9
	5.4	Rate heterogeneity	10
6	Out	put files	10
7	Installation		11
	7.1	Sequential Version - Binary release	11
	7.2	Sequential Version - Source package	11
	7.3	Parallel Version - Binary release	12
	7.4	Parallel Version - Source package	12
8	Version History		13
9	Credits		14

1 Introduction

IQPNNI is a computer program to reconstruct the evolutionary relationships among contemporary species based on DNA, protein, or protein-coding sequences. In case of protein-coding sequences, several codon models are implemented for inferring positive selection.

IQPNNI is a command-line and menu-driven program which allows users to specify the parameter values or let the program estimate them from the input data (a nucleotide or amino acid alignment in PHYLIP format). The options are classified into four main groups, general options, IQP options, substitution process options, and rate heterogeneity options.

IQPNNI is available free of charge from

http://www.cibiv.at/software/iqpnni/

IQPNNI is written in C++. It will run on most personal computers and workstations if compiled by an appropriate C++ compiler. Please read the *Installation* section 7 for more details. We suggest that this documentation should be read before using IQPNNI the first time. To find out what's new in the current version please read the *Version History* section 8.

Important Notice:

In this new version 3.2, the option "Number of iterations" is changed to "Minimum number of iterations", meaning that the program will run at least the specified number of iterations, no matter if the stopping rule is applied or not. This is to avoid the behavior that IQPNNI stops so early that does not guarantee to find a good tree. Moreover, another option with maximum number of iterations is also added, to avoid cases where IQPNNI runs "forever" since the stopping rule suggest too many number of iterations. For more details see Section 4 and 5.

Since **version 3.1**, IQPNNI is extended to work on protein-coding sequences. In such cases, it will first treat the data as DNA and reconstruct a tree based on the HKY85 model. Then IQPNNI turns the alignment into codon-frames and estimates codon model parameters based on the reconstructed tree. Finally it infers sites under positive selection using Yang's empirical Bayesian method. For more details see Section 8.

2 Methods

The methods are described in detail in the following papers:

• Vinh and von Haeseler (2004) IQPNNI: Moving fast through tree space and stopping in time, *Mol. Biol. Evol.* **21(8)**:1565-1571 http://dx.doi.org/10.1093/molbev/msh176dd

 MPI parallelization: Minh, Vinh, von Haeseler and Schmidt (2005) pIQPNNI - parallel reconstruction of large maximum likelihood phylogenies. *Bioinformatics* 21(19):3794-3796

http://dx.doi.org/10.1093/bioinformatics/bti594

- OpenMP and hybrid MPI/OpenMP parallelization: Minh, Vinh, Schmidt and von Haeseler (2006) Large maximum likelihood trees. In *Proceedings of the 3rd NIC Symposium 2006*, pp. 357–365, Forschunungszentrum Jülich, Germany. http://www.fz-juelich.de/nic-series/volume32/minh.pdf
- Inference of positive selection: please cite this manual.

3 Main features

- Reconstructing maximum likelihood tree on DNA or protein alignment.
- Various substitution models for nucleotide, amino-acid, and codon w/o rate heterogeneity.
- Parallel version with MPI and OpenMP.
- Inferring positively selected sites on protein-coding alignment.
- Inferring site-specific rates under Gamma, Gamma+Invar, or Meyer and von Haeseler model.
- Evaluating user-tree.

4 Command-line options

Since version 3.0, users can specify parameters through a set of command-line options, which are extremely useful to start a batch job. Run 'iqpnni -h' to print out a short description of available options:

```
Syntax: iqpnni [OPTIONS] [Filename]
```

GENERAL OPTIONS:

IQP OPTIONS:

```
-p -p probability> set the probability of deleting a sequence
```

-k <representatives> set the number of representatives

MODEL OPTIONS:

```
-m <model> set the model type for:
```

Nucleotides: JC69, K2P, F81, HKY85, TN93, GTR

Amino acids: WAG, Dayhoff, JTT, VT, mtREV, rtREV, Blosum Protein-coding DNA: GY94, YN98, NY98, CP98, CGTR, CPR Otherwise: Name of file containing user protein model

-w <rate_type> either uniform, gamma, igamma or sitespec

-c <num_rate> number of rate categories, for gamma and igamma only

You can specify some options first with the command line, and then change again with the menu-driven interface. The mechanism is follows: First, the 'input_file.iqpnni.checkpoint' file is read if this file is available and the '-sfc' option is NOT specified. If the last run on this alignment was NOT finished, the parameters recorded in the checkpoint file will be loaded and all the command line options will be omitted. In this case, you will see some printout like:

The program was not done from the last run! Load parameters from the checkpoint file...

IQPNNI now displays the menu and waits for user input if option '-ni' is not specified, otherwise it starts the computation directly.

4.1 General options

-n min_iterations and -s stopping_rule

These two options are not independent except you specify '-s off'. In any case, IQPNNI will loop at least a number of min_iterations. If you set '-s on', the program will automatically estimate the number of iterations required to ensure that with a 95% confidence, further search will not detect a better tree. If you set '-s max max_iterations', IQPNNI will always stop after max_iterations, even if the stopping rule suggests more iterations. By '-s max 0', it will set max_iterations to 10 times of min_iterations.

If '-n 0' is specified, IQPNNI will only evaluate ML branch lengths of the starting tree (either BioNJ tree or user-tree), no topology rearrangement is perform.

-u user_tree

Instead of starting the search from BioNJ tree, IQPNNI will make use of the tree from user_tree file in Newick format. The branch lengths of this tree will be ignored, but the

topology will be used to estimate the model parameters and also reestimate the branch lengths.

-sfc

This tells the program not to load the checkpoint file, so that the command-line options will be taken.

-ni

This is helpful to start a batch job. The parameters will be displayed again but the program will not prompt for user input and just start the computation directly.

4.2 IQP options

-p probability and -k representatives

These two options are concerned with the original IQP algorithm, see Vinh and von Haeseler (2004); Minh et al. (2005) for more details. In short, IQPNNI iterates through a number of steps to search the tree space. In each step, several taxa are randomly pruned away from the current best tree. The proportion of deleted leaves is determined by the option '-p probability'. Then these leaves will be reinserted into the tree in a random order following the IQP algorithm, which takes '-k representatives' parameter into account. This full tree will be rearranged according to the NNI algorithm, resulting in an intermediate tree. If this intermediate tree shows a better likelihood, the current best tree will be updated. This completes one iteration of the IQPNNI algorithm.

4.3 Model options

-m model

For DNA alignment the following models are implemented:

- JC69 (Jukes and Cantor, 1969).
- K2P (Kimura, 1980).
- F81 (Felsenstein, 1981).
- HKY85 (Hasegawa *et al.*, 1985).
- TN93 (Tamura and Nei, 1993).
- GTR General Time Reversible (e.g., Tavaré, 1986).

For protein alignment:

- Dayhoff (Dayhoff et al., 1978).
- JTT (Jones et al., 1992).
- VT (Müller and Vingron, 2000).
- mtREV (Adachi and Hasegawa, 1996).
- WAG (Whelan and Goldman, 2001).
- rtREV (Dimmic et al., 2002).
- BLOSUM62 (Henikoff and Henikoff, 1992).
- User-defined protein model (see Section 4.5).

Note that the BLOSUM62 matrix should better not be used for phylogenetic reconstruction, because it was constructed for database searches and does not reflect an evolutionary process.

For codon models:

- NY98 (Nielsen and Yang, 1998; Yang et al., 2000): to infer positive selection. Submodels include:
 - M0 (One ratio): same as YN98.
 - M1 (Neutral).
 - M1a (Nearly neutral).
 - M2 (Selection).
 - M2a (Positive selection).
 - M3 (Discrete): default model.
- YN98 (Yang, 1998): special case of NY98 with 1 Ns/Sy category.
- GY94 (Goldman and Yang, 1994).
- CP98 (Pedersen et al., 1998): model incorporating CpG depression.
- CGTR: GTR version of nucleotide for codon (unpublished).

4.4 Rate heterogeneity

The program can also assume rate heterogeneity. Users can either choose uniform rate over all sites (rate homogeneity, default), site-specific substitution rates based on the model from (Meyer and von Haeseler, 2003), Gamma distributed rates, or Gamma+Invariable rates. Note that rate heterogeneity is only allowed for DNA and protein data.

-w rate_type

- uniform: the default homogeneous site rate model.
- gamma: site rates follow a discrete gamma distribution (Yang, 1994).
- igamma: site rates follow a discrete gamma distribution plus one category of zero rate.
- sitespec: site-specific rates follow the model in Meyer and von Haeseler (2003).

Note that for '-w sitespec' option, the tree is first reconstruced based on uniform rate model. In the second phase, this tree topology is used to infer site-specific rates until convergence. The procedure is described in Meyer and von Haeseler (2003).

-c num_rate

The number of gamma rate categories if '-w gamma' or '-w igamma' is specifed. Default value is 4 categories.

4.5 User-defined protein model

User-defined protein model can be specified with '-m filename'. An example file which defines the cpREV model (Adachi et al., 2000) is:

```
105
 227
      357
 175
        43 4435
 669
      823
            538
                   10
 157 1745
            768
                  400
                         10
 499
      152 1055 3691
                         10 3122
 665
      243
            653
                  431
                        303
                              133
                                    379
  66
      715
           1405
                  331
                        441
                             1269
                                    162
                                           19
 145
      136
            168
                   10
                        280
                               92
                                    148
                                           40
                                                 29
      203
                        396
                                     82
                                           20
                                                 66 1745
 197
            113
                   10
                              286
 236 4482 2430
                  412
                         48 3313 2629
                                          263
                                                305
                                                     345
                                                            218
 185
      125
              61
                   47
                        159
                              202
                                    113
                                           21
                                                 10 1772 1351
                                                                  193
        53
                   22
                        726
  68
              97
                               10
                                    145
                                           25
                                                127
                                                      454
                                                          1268
                                                                   72
                                                                       327
 490
        87
            173
                  170
                        285
                              323
                                    185
                                                                  302
                                                                       100
                                           28
                                                152
                                                      117
                                                            219
                                                                              43
2440
      385 2085
                  590
                       2331
                                    568
                                                303
                                                      216
                                                                  868
                                                                             487 1202
                              396
                                          691
                                                            516
                                                                         93
1340
      314
           1393
                  266
                        576
                              241
                                    369
                                           92
                                                 32
                                                    1040
                                                            156
                                                                  918
                                                                        645
                                                                             148
                                                                                   260
                                                                                        2151
      230
  14
              40
                   18
                        435
                               53
                                     63
                                           82
                                                 69
                                                       42
                                                            159
                                                                   10
                                                                         86
                                                                             468
                                                                                    49
                                                                                          73
                                                                                                29
                                                            189
                                                                                                71
  56
      323
            754
                  281 1466
                              391
                                    142
                                           10 1971
                                                       89
                                                                  247
                                                                       215 2370
                                                                                    97
                                                                                         522
                                                                                                     346
 968
        92
              83
                   75
                        592
                               54
                                    200
                                           91
                                                 25 4797
                                                            865
                                                                  249
                                                                             317
                                                                                   122
                                                                                         167
                                                                                               760
                                                                                                      10
                                                                                                          119
```

0.0755 0.0621 0.0410 0.0371 0.0091 0.0382 0.0495 0.0838 0.0246 0.0806 0.1011 0.0504 0.0220 0.0506 0.0431 0.0622 0.0543 0.0181 0.0307 0.0660

The format is following. The first 19 lines describe the bellow triangle of the amino acid replacement matrix. Then comes a list of 20 amino acid frequencies. The rest of file will be ignored. The order of amino-acids is:

Α R N D C Ε G Η Ι L K М F S Τ Y Ala Arg Asn Asp Cys Gln Glu Gly His Ile Leu Lys Met Phe Pro Ser Thr Trp Tyr Val

5 Text-menu options

GENERAL OPTIONS Display as outgroup? FL-1-103 Minimum number of iterations? 200 n Stopping rule? No, stop after 200 iterations S IQP OPTIONS Probability of deleting a sequence? 0.5 р k Number representatives? 4 SUBSTITUTION PROCESS d Type of sequence input data? Nucleotides Model of substitution? HKY85 (Hasegawa et al. 1985) m Ts/Tv ratio (0.5 for JC69)? Estimate from data t f Base frequencies? Estimate from data RATE HETEROGENEITY Model of rate heterogeneity? Uniform rate quit [q], confirm [y], or change [menu] settings:

In the following the available options will be briefly introduced.

5.1 General options

- Option 'o': Users can specify a sequence as the outgroup sequence. The final tree with the highest likelihood will be rooted with respect to the outgroup sequence.
- Option 'n': Users can specify the minimum number of iterations or use the default value.
- Option 's': Users can choose one of three possibilities to stop the program.
 - The first possibility is
 "s Stopping rule? No, stop after 'n' iterations"
 It means that the program will stop after 'n' iterations.
 - 2. The second possibility is
 - "s Stopping rule (if applicable)? Yes"

It means that the program will stop and output the optimal tree with 95% confidence if at least three better trees found during the search, otherwise it will stop after 'n' iterations.

3. The third possibility is "s Stopping rule (if applicable)? Yes, and at most 'max' iterations" It is similar to the second possibility, but the program will run at most 'max' iterations.

5.2 IQP options

- Option 'p': Users can specify the probability of deleting a sequence or let the program estimate it from the input data. Note that, when the sequence length is very long users should increase the value of p and try different runs with various choices of p.
- Option 'k': One can specify number of representatives leaves for a rooted tree. However, we strongly recommend to use the default value.

5.3 Substitution process

- Option 'd': Users must specify the type of sequence input data: Nucleotides, Amino acids, or Protein-coding DNA.
- Option 'm': To change among substitution models.

The subsequent options depend on the type of data and model selected. For DNA models the following options are available:

- Option 'f': Users can specify the base frequencies or let the program estimate them from the input data.
- Option 't': If HKY85 or TN93 model are chosen, users can specify the transition/transversion ratio (between 0.2 and 32.0) or let the program estimate it from the input data (default).
- Option 'u': For the TN93 model users can also enter the py/pu ratio (the ratio of pyrimidine transition rate to purine transition rate) between 0.2 and 32.0, or let the program estimate it from the input data (default).
- Option 'g': If users choose GTR model, they can specify six different rate parameters:
 - 1. Transversion rate from A to C,
 - 2. Transition rate from A to G,
 - 3. Transversion rate from A to T,
 - 4. Transversion rate from C to G,
 - 5. Transition rate from C to T,
 - 6. Transversion rate from G to T,
 - or let the program estimate them from the input data.

For protein models:

Option 'f': Users can specify the amino-acid frequencies from the default frequencies
of the corresponding protein model or let the program estimate them from the input
data.

For codon models:

- Option 'f': Users can let the program estimate codon frequencies from the input data with one of following types: Codon table (default), Equal, F1x4 or F3x4.
- Option 't': Users can specify the transition/transversion ratio (between 0.2 and 32.0) or let the program estimate it from the input data (default).
- Option 'w': If NY98 model is chosen, users can specify the type of submodels (see Section 4.3).
- Option 'g': If NY98 model and 'Discrete' submodel are chosen, users can specify the number of Nonsynonymous/Synonymous classes. Default value is 3.

5.4 Rate heterogeneity

- Option 'r': To switch among 3 types: Uniform rate, Gamma distributed rate, and site specific rate.
- Option 'a': If users choose Gamma distributed rate, they can specify the Gamma distribution shape parameter alpha (between 0.1 and 100.0) or let IQPNNI program estimate it from the input data (default).
- Option 'c': If users choose Gamma distributed rates, they can specify a number of Gamma rate categories between 2 and 32. The default is 4 categories.
- Option 'i': To specify the proportion of invariable sites among No (default), Estimate from data, or a user-defined value.

6 Output files

Running results as well as input parameters are summarized in filename.iqpnni file. Resulting tree will be written to filename.iqpnni.treefile in Newick format. If Gamma, Gamma+I, or Meyer and von Haeseler's site-specific model is used, the rates for each alignment position will be written to filename.iqpnni.rate.

IQPNNI will also create several files:

filename.iqpnni.bionj - BioNJ tree, in Newick format.

filename.iqpnni.treels - List of all intermediate trees.

filename.iqpnni.dist - Maximum likelihood distance matrix based on the specified model, in Phylip format.

filename.iqpnni.checkpoint - program current parameters, will be loaded in case of a crash or interruption.

filename.iqpnni.prediction - is used internally by the stopping rule.

7 Installation

See below for information how to install/build the different versions of the IQPNNI software. Executable versions of the sequential, that is, non-parallel program are intended for a number of operating systems. The parallel program (pIQPNNI) has to be build from the sources, as is the sequential program if a binary release does not exist for you operating system.

7.1 Sequential Version - Binary release

- You might want to download the executable version of IQPNNI for your operating system if it is available (iqpnni-XXX-OS.tar.gz or iqpnni-XXX-OS.zip, where XXX is the current version number and OS the operating system) from its web page http://www.cibiv.at/software/iqpnni
- 2. Extract the files (e.g., with tar xvzf iqpnni-XXX-OS.tar.gz under Unix) This should create a directory iqpnni-XXX.
- 3. You will find the executable in iqpnni-XXX/src This executable you should rename to iqpnni (or iqpnni.exe on Windows systems) and copy it to your system's search path such that it is found by your system.

If you encounter problems, please ask your local administrator for help.

7.2 Sequential Version - Source package

To build IQPNNI from the sources you need a functional C++ compiler installed (This is usually the case on UNIX/Linux systems. For Windows you might want to obtain CygWin or XCode for MacOSX). Then you can follow the procedure below:

- Download the current version of the software (iqpnni-XXX.tar.gz or iqpnni-XXX.zip, where XXX is the current version number) from its web page http://www.cibiv.at/software/iqpnni
- 2. Extract the files (e.g., with tar xvzf iqpnni-XXX.tar.gz under Unix) This should create a directory iqpnni-XXX.

- 3. Change into this directory.
- 4. To compile the program, type the following:

./configure

This should configure the package for the build. You might also want to refer to the INSTALL file for more (general) details.

make

This compiles and builds the executable iqpnni (or iqpnni.exe on Windows systems) to be found in the src directory. This executable can copied to your system's search path such that it is found by your system or it can be installed to the default destination (e.g., /usr/local/bin on UNIX/Linux) using

make install

If you encounter problems, please ask your local administrator for help.

7.3 Parallel Version - Binary release

There will be no binary version of the parallel program because it depends on the MPI library you have installed locally.

7.4 Parallel Version - Source package

To build the MPI-parallel version of IQPNNI (pIQPNNI) you need a functional C++ compiler installed (This is usually the case on UNIX/Linux systems. For Windows you might want to obtain CygWin or XCode for MacOSX). In addition you have to install an implementation of the MPI (Message Passing Interface) library. There is a list of (free) implementations at http://www.lammpi.org/mpi/implementations/ available.

Then you can follow the procedure below:

- Download the current version of the software (iqpnni-XXX.tar.gz or iqpnni-XXX.zip, where XXX is the current version number) from its web page http://www.cibiv.at/software/iqpnni
- 2. Extract the files (e.g., with tar xvzf iqpnni-XXX.tar.gz under Unix) This should create a directory iqpnni-XXX.
- 3. Change into this directory.

4. To compile the program, you have to run the configure script with the environment variable CXX set to the MPI-C++ compiler of your local MPI implementation and turn on the preprocessor directive PARALLEL, e.g.

env CXX=mpiCC CXXFLAGS="-DPARALLEL -02" ./configure

This should configure the package for the build using mpiCC as the C++ compiler. You might also want to refer to the INSTALL file for more (general) details.

make

This compiles and builds the executable iqpnni (or iqpnni.exe on Windows systems) to be found in the src directory. This executable should be renamed to piqpnni and copied to your system's search path such that it is found by your system.

5. To run the parallel version please refer to the documentation of your locally installed MPI implementation and/or ask your local system administrator.

If you encounter problems, please ask your local administrator for help.

8 Version History

Version 3.2

- 1. Rewritten user manual.
- 2. Change "number of iterations" to "minimum number of iterations".
- 3. Addtion of maximum number of iterations.
- 4. GTR model rates are scaled such that the rate from G to T is equal to 1.
- 5. For G+I model, initialize proportion of invariable sites to the number of constant sites
- 6. Check identical sequences.

Version 3.1

- 1. Codon model: The program goes through two stages. At first the tree is reconstructed based on HKY model for DNA. Then it applies codon model for inference of positively selected sites.
- 2. Gamma + Invariable sites rate heterogeneity.
- 3. Site-specific rates (Meyer and von Haeseler, 2003) improved. Also write out siterates based on empirical bayesian if gamma rate is specified.
- 4. New protein models: rtREV (Dimmic *et al.*, 2002), user-defined model by a file containing amino-acid replacement rates and frequencies.

- 5. Warning if number of iterations is too small as recommended by the stopping rule.
- 6. New command line options.
- 7. Bugs fixed:
 - Zero state frequencies: they are now replaced by a very small number.
 - Checkpoint: now correctly recovered from stopped point.
 - Restriction on number of sites: from limit 100,000 to unlimited now.
- 8. Bugs identified:
 - Parallel version on Infiniband system under MPICH.

Version 3.0.1

- 1. Zero iteration: if user specifies number of iterations to be zero, the program will only evaluate the starting tree (either BIONJ or user-defined tree) by optimizing model paramters and branch lengths.
- 2. Triplet tree: the program can now run on alignment of just 3 sequences.
- 3. Scaling technique to avoid numerical underflow on large datasets. It now can stably analyze alignments with more than 1,000 sequences.
- 4. At least twice faster than v3.0. The "long double" datatype is replaced by "double", making it more compatible to most computers.
- 5. Memory consumption is reduced at least by half by a new mechanism of storing conditional likelihood vector.
- 6. New eigensystem adapted to reversible instantaneous rate matrix.

Version 3.0.beta1

- 1. The program now runs at least twice faster (applying Newton's method instead of Brent's algorithm and some other algorithmic means).
- 2. Running in Parallel with Message Passing Interface (MPI).
- NOTE The option to change rate heterogeneity is now 'r' instead of 'w'. The stopping rule is now switched off by default, which can be changed using the 's' option.

Version 2.6

- 1. General Time Reversible model of evolution.
- 2. Site-specific substitution rates.
- 3. Check point: If the program was crashed or stopped by users, it can continue from the last stopped point.

9 Credits

Some parts of the code were taken from TREE-PUZZLE package (Schmidt *et al.*, 2002). The source code to construct the BIONJ tree were taken from BIONJ software (Gascuel, 1997).

Acknowledgement

Financial support from the Wiener Wissenschafts-, Forschungs- and Technologiefonds (WWTF) is greatly appreciated.

References

- Adachi, J. and Hasegawa, M. (1996) Model of amino acid substitution in proteins encoded by mitochondrial DNA. J. Mol. Evol., 42, 459–468.
- Adachi, J., Waddell, P. J., Martin, W. and Hasegawa, M. (2000) Plastid genome phylogeny and a model of amino acid substitution for proteins encoded by chloroplast DNA. *J. Mol. Evol.*, **50**, 348–358.
- Dayhoff, M. O., Schwartz, R. M. and Orcutt, B. C. (1978) A model of evolutionary change in proteins. In Dayhoff, M. O. (ed.), *Atlas of Protein Sequence Structure*, volume 5, pp. 345–352, National Biomedical Research Foundation, Washington DC.
- Dimmic, M. W., Rest, J. S., Mindell, D. P. and Goldstein, R. A. (2002) rtREV: An amino acid substitution matrix for inference of retrovirus and reverse transcriptase phylogeny. *J. Mol. Evol.*, **55**, 65–73.
- Felsenstein, J. (1981) Evolutionary trees from DNA sequences: a maximum likelihood approach. J. Mol. Evol., 17, 368–376.
- Gascuel, O. (1997) BIONJ: An improved version of the NJ algorithm based on a simple model of sequence data. *Mol. Biol. Evol.*, **14**, 685–695.
- Goldman, N. and Yang, Z. (1994) A codon-based model of nucleotide substitution for protein-coding DNA sequences. *Mol. Biol. Evol.*, **11**, 725–736.
- Hasegawa, M., Kishino, H. and Yano, T.-A. (1985) Dating of the human–ape splitting by a molecular clock of mitochondrial DNA. J. Mol. Evol., 22, 160–174.
- Henikoff, S. and Henikoff, J. G. (1992) Amino acid substitution matrices from protein blocks. *Proc. Natl. Acad. Sci. USA*, **89**, 10915–10919.
- Jones, D. T., Taylor, W. R. and Thornton, J. M. (1992) The rapid generation of mutation data matrices from protein sequences. *Comput. Appl. Biosci.*, **8**, 275–282.
- Jukes, T. H. and Cantor, C. R. (1969) Evolution of protein molecules. In Munro, H. N. (ed.), *Mammalian Protein Metabolism*, volume 3, pp. 21–123, Academic Press, New York.
- Kimura, M. (1980) A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J. Mol. Evol., 16, 111–120.
- Meyer, S. and von Haeseler, A. (2003) Identifying site-specific substitution rates. *Mol. Biol. Evol.*, **20**, 182–189.

- Minh, B. Q., Vinh, L. S., von Haeseler, A. and Schmidt, H. A. (2005) pIQPNNI parallel reconstruction of large maximum likelihood phylogenies. *Bioinformatics*, **21**, 3794–3796.
- Minh, B. Q., Vinh, L. S., Schmidt, H. A. and von Haeseler, A. (2006) Large maximum likelihood trees. In *Proceedings of the 3rd NIC Symposium 2006*, pp. 357–365, Forschunungszentrum Jülich, Germany.
- Müller, T. and Vingron, M. (2000) Modeling amino acid replacement. J. Comput. Biol., 7, 761–776.
- Nielsen, R. and Yang, Z. (1998) Likelihood models for detecting positively selected amino acid sites and applications to the HIV-1 envelope gene. *Genetics*, **148**, 929–936.
- Pedersen, A. K., Wiuf, C. and Christiansen, F. B. (1998) A codon-based model designed to describe lentiviral evolution. *Mol. Biol. Evol.*, **15**, 1069–1081.
- Schmidt, H. A., Strimmer, K., Vingron, M. and von Haeseler, A. (2002) TREE-PUZZLE: Maximum likelihood phylogenetic analysis using quartets and parallel computing. *Bioinformatics*, **18**, 502–504.
- Tamura, K. and Nei, M. (1993) Estimation of the number of nucleotide substitutions in the control region of mitochondrial DNA in humans and chimpanzees. *Mol. Biol. Evol.*, **10**, 512–526.
- Tavaré, S. (1986) Some probabilistic and statistical problems on the analysis of DNA sequences. *Lec. Math. Life Sci.*, **17**, 57–86.
- Vinh, L. S. and von Haeseler, A. (2004) IQPNNI: Moving fast through tree space and stopping in time. *Mol. Biol. Evol.*, **21**, 1565–1571.
- Whelan, S. and Goldman, N. (2001) A general empirical model of protein evolution derived from multiple protein families using a maximum likelihood approach. *Mol. Biol. Evol.*, **18**, 691–699.
- Yang, Z. (1994) Maximum likelihood phylogenetic estimation from DNA sequences with variable rates over sites: Approximative methods. *J. Mol. Evol.*, **39**, 306–314.
- Yang, Z. (1998) Likelihood ratio tests for detecting positive selection and application to primate lysozyme evolution. *Mol. Biol. Evol.*, **15**, 568–573.
- Yang, Z., Nielsen, R., Goldman, N. and Pedersen, A.-M. K. (2000) Codon-substitution models for heterogeneous selection pressure at amino acid sites. Genetics, 155, 431–449.