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Motivation

The central dogma of molecular biology

DNA RNA Protein
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Microarrays analyse the gene expression by measuring the amount

of mRNA in the cell at a special point in time.
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Why expression analysis?

Gene expression information is not available from the
sequence alone

Reaction of cells or organisms to different treatments

Understand the difference between different entities (mutants)

Gene expression change during development

Gene regulation networks

�
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�
Microarrays simultaneously measure the expression of thousands of

genes → global view on gene expression



Microarray analysis

Motivation

Why expression analysis?

Gene expression information is not available from the
sequence alone

Reaction of cells or organisms to different treatments

Understand the difference between different entities (mutants)

Gene expression change during development

Gene regulation networks

�
�

�
Microarrays simultaneously measure the expression of thousands of

genes → global view on gene expression



Microarray analysis

Experiment design

Survey of one experiment

1 mRNA → cDNA (reverse transcription)

2 Amplification of the cDNA

3 Labelling of the cDNA with a dye
4 Hybridisation of the cDNA with DNAs on a slide

On a slide a large number (10,000s) of DNA fragments
(probes) are attached as a regular pattern

5 Hybridised DNA fragments are immobile → measure of the
dye’s intensities

6 Analysis of the measurement (here)
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Experiment design

Sources of error

Sources of error

Biological noise:

Transcription is a stochastic process

Posttranscriptional regulation

Stability of the mRNA

Technical noise:

cDNA from mRNA

Binding of the dye

Hybridisation

Measurement of the signal
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Experiment design

Types of microarrays

Oligonucleotide arrays

Affymetrix arrays

One biological sample per array
(a new slide for every sample)

cDNAs are labelled with biotin

Oligonucleotides of length ≈ 25 on
array

Perfect matching sequences
One or more mismatching
nucleotides (control for
non-specific binding)
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Experiment design

Types of microarrays

cDNA arrays

Two biological samples per array

Each labelled with one of the
fluorescent dyes Cy3 (green) or Cy5
(red)

Mixture of labelled cDNAs on slide

Intensities of the dyes measured →
Ratio of the intensities provides
information of the mRNA ratios in the
original samples
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Experiment design

Types of microarrays

Questions before the design

1 Scientific questions: Intention of the experiment

2 Logistic questions: Number of genes, number of measurements
(probes) per gene, control genes (housekeeping genes)

3 Statistical questions: Control of the data quality, normalisation

Decisions about Blocking (distribution of the probes on the slides):

Variables influencing the analysis on different blocks

Reduction of block effects

E.g. dye R or G
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Experiment design

Replicates

Replicates

Technical replicates:

The same sample is spotted on different slides (but labelled
independently)

Measurements of errors in the procedure or in the technology

Biological replicates:

Different samples spotted on different slides

Inference of the underlying population

Type I: different extracts of a cell line or a tissue

Type II: the same tissue but different individuals (greater
variability)�



�
	The larger the number of replicates the better mean and variance

can be estimated.
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Experiment design

Design of cDNA arrays

Reference design

Ref

A B

C

Green −→ Red

One sample is the reference,
everything else is hybridised to
it

With multiple mutants, all
ratios can be computed

A and B are compared
indirectly

May include a dye swap

Advantage: Factorial
experiment design, extendible

Disadvantage: one-half of all
hybridisations are the reference
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Experiment design

Design of cDNA arrays

Loop design

B

C

A

Green −→ Red

There is no reference

On every array there is a
different pair of samples (allows
for biological replicates)

With many variables, more
ressources are needed compared
to the reference design

A and B are compared directly,
i.e. on one slide

Direct comparisons are more
efficient, i.e. have a smaller
variance
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Experiment design

Design of cDNA arrays

Fold change

The fold change (FC) is a measure for differential expression:

Expression in sample B

Expression in sample A
(normally in log2-scale)

log FC variance

One cDNA
array

logB − logA σ2

2 arrays,
direct
comparison

[(logB − logA)−
(logA− logB)]/2

σ2/2

2 arrays,
indirect
comparison

(logR − logA)−
(logR − logB)

2σ2
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Experiment design

Design of cDNA arrays

Simultanous computation of the expression values for a
complex design
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Analysis of microarrays

Analysis of microarrays

1 Image analysis

2 Normalisation
(each slide
separatly)

3 Differential gene
expression (all
slides, whole
experiment)

4 Analysis of gene
expression
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Image analysis

Image analysis

1 Localisation of the spots

2 Segmentation: Determination of the spot borders, partition in
foreground and background

3 Computation of the intensities (next slide)

4 Filtering of low-quality spots
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Image analysis

Background normalisation

Background signal (noise) varies across slide

For every spot: means over intensities in the neighborhood are
substracted from foreground intensities

Background values can be greater then corresponding
foreground values

1 Removing of genes with negative intensities
2 Replacement by the minimal value of the array (problem:

decreases the variance)
3 Statistical approach based on the assumption that foreground

is always larger than background
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Normalisation

Visualisation

M/A plot

Assumption: Only a small
part of the genes are dif-
ferentially expressed, then
the plot of R against G
should be a line

A = (log2(R) + log2(G ))/2
(Addition, mean intensity)

M = log2(R)− log2(G )
(Minus, differential expression)
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Normalisation

Visualisation

Boxplot of the intensities
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Normalisation

Normalisation

Lowess normalisation

Normalisation within one
array

Data within a small
window are fitted to a
straight line

Straight segments are
averaged → non-linear fit

Normalisation:
Mnew = Mold − c(A)

Risk of overfitting

Loess normalisation: Similar to Lowess normalisation, but instead
of a straight line, a complex polynomial function (e.g. quadratic or
cubic) is fitted.
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Normalisation

Normalisation

Median centering

Microarrays, combined in an experiment, have different
statistical distributions
From all expression values of one array the median is
substracted and they are divided by the standard deviation
Global method: Normalisation between arrays after
normalisation within arrays
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Normalisation

Normalisation

Quantile normalisation

Ranking the genes by their intensity values

One array is the masterarray, its intensities are copied to the
other arrays for the genes of the same rank

The intensity distributions are then identical

Can also be applied to the two dyes of one slide only
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Differential gene expression

Types of experiments

Types of experiments

Question: Is the expression of a special gene different in different
treatments?

1 One factor

Two samples
Multiple samples

2 Time courses

3 Factorial experiments
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Differential gene expression

One factor, two samples - no replicates

One factor, two samples - no replicates

1 Absolute value of M = log2(R)− log2(G )
M < 0 Gene over-expressed in green-labelled sample compared to

red-labelled sample
M = 0 Gene equally expressed in both samples
M > 0 Gene over-expressed in red-labelled sample compared to

green-labelled sample

2 Statistical
modelling of
(R,G )-pairs

But: very
error-prone
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Differential gene expression

One factor, two samples - m replicates

Ranking the genes - |M |

There are different statistical methods to rank the genes by
differential expression when having m replicates:

|M| Mean intensities: M =
1

m

m∑
i=1

Mi

Problem: Variance of the M-values not considered
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Differential gene expression

One factor, two samples - m replicates

Ranking the genes - |T |

T-test Null hypothesis: two distributions show the same mean

here: Does the distribution of M values deviate from mean 0?

T =
M

σ/
√

m
(Standard deviation σ =

√
1

m − 1

m∑
i=1

(Mi −M)2 )

Problem: Large T value can also be caused by a low standard
deviation
With small sample size σ cannot be well estimated →
moderated T -statistic (variances are borrowed from other
genes)
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Differential gene expression

One factor, two samples - m replicates

Ranking the genes - P-value of the T -test

P-value probability that a |T | is larger or equal to the observed |T |,
while the null hypothesis is true

If P is smaller than a prior chosen cutoff the null hypothesis
is rejected

E.g. 10000 genes on a chip and a cutoff of 0.05,
10000× 0.05 = 500 significant results (false-positives) are
expected under the null hypothesis
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Differential gene expression

One factor, two samples - m replicates

Ranking the genes - P-value with multiple tests

Solution When testing multiple times, the P-values must be adjusted

FWER Family-wise error rate: Probability of at least one
false-positive - Pr(V > 0)

Bonferroni correction: multiply all P-values with the number
of tests

FDR False discovery rate: Expected proportion of true null
hypotheses on all rejected hypotheses - E [V /R]

The significance level 5 % now controls FWER or FDR.
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Differential gene expression

One factor, two samples - m replicates

Ranking the genes - B

Empirical Bayes method estimates posterior probabilities for
differential expression

Need prior assumtions about distribution of differentially
expressed genes

B-values are posterior log odds for differential expression

Estimated variables are used for other statistics:

Moderated T
Moderated F : Combination of T -statistics to an overall test
for significance for that gene
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Differential gene expression

One factor, two samples - m replicates

Example
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Differential gene expression

One factor, two samples - m replicates

Graphical representations

Quantile-quantile plot:
M or T against the normal
distribution

Volcano plot:
Plot of the P-values against M
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Analysis

Functional analysis

Gene sets

Use the functional information (meta-data, annotations) available
for the genes on the array to define gene sets:

GO Gene Ontology: Molecular function, biological process and
cellular component

Annotations arranged in a directed acyclic graph

Pathways KEGG, BioCarta, GenMapp

Loc Chromosomal Localisation → clusters of co-regulated genes

TFBS Transcription factor binding sites

...
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Analysis

Functional analysis

Gen-Class Testing (differentially expressed genes)

Guess: List of differentially expressed genes are functionally
related

Problem: Find functional group(s) which are related to the
differentially expressed genes

Procedure: Choose gene sets of known function and test every set
whether it is overrepresented in the set of differentially
expressed genes

Test Null hypothesis: The amount of a category K is equally
distributed among differentially and non-differentially
expressed genes

2× 2 Contingency table:

diff nd

K a b
not K c d

→
Fisher-Test
(hypergeometric

distribution)

Attention: Multiple tests and complex dependencies
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Analysis

Functional analysis

Rank-based Gene-Class Testing

Genes ranked by a measure for differential expression (e.g.
|T |, B), but no cutoff needed

KS Kolmogorov-Smirnov-Test: Does the genes of category K
occur more frequently in the beginning of the list?

Null distribution estimated by permutation
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Analysis

Classification and Clustering

Distance functions

Data matrix E :
Sample

Gene 1 . . . m

1 Expres-
... sion
n values

Application of distance funtions to
the n-dimensional column vectors:

1 Euclidean distance:

d(x , y) =

√
n∑

i=1

(xi − yi )2

2 1− r(x , y) with correlation
coefficient r

3 1− |r(x , y)|
Analogous for the m-dimensional row
vectors
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Analysis

Classification and Clustering

Types of learning
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Analysis

Classification

Classification

Classification is a form of unsupervised learning → external
information is used.

Question: Classification of patients by their expression profiles
(learn with healthy and ill persons)

Multilevel process:

1 Feature selection: Select informative components

2 Learn a classifier with labelled samples

3 Classify an unlabelled sample with the classifier
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Analysis

Classification

Feature selection (Gene filtering)

A Classification with the complete n-dimensional data is often
problematic

Improvement: extract N genes, that distinguish best between
the classes and learn the classifier only with the reduced
N-dimensional data

m1 data sets for class 1 and m2 data sets for class 2
1 T-Test for every gene, whether two classes have the same

mean expression value
2 Wilcoxon-Test whether two classes have the same median

(non-parametric test)

Only thake the N most significant genes
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Analysis

Classification

Classification algorithms

k-NN k nearest neighbors:

Majority decision of the k objects with the smallest distance
to the classified object

LDA Linear discriminant analysis

For every class, a “feature vector” is learned which represents
the class

CART Classification and regression trees:

Decision trees: Partitioning with respect to a component
(gene expression value) on every inner node, class labels on
the leaves

SVM Support vector machines:

With a mathematical expression, the objects are transfered in
a space where they can be separated with a straight line
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Analysis

Classification

Validation

To protect the classifier against overfitting, a test data set is
neccessary.

Cross validation:

The labelled data is
partitioned several times
in training data and test
data

The classifier is learned
with the training data
and the test data is
classified

The gene selection can also be validated (avoids overfitting to the
selected genes)
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Clustering is a form of unsupervised learning → no external
information is used.

Input: Distances computed between the genes from a microarray
experiment

Output: Assignment of classes to the genes

Also: Clustering of samples or two-sided clustering

Problems:

Few known about reliability and problems of clustering
methods

Hard to reproduce

Does not answer biological question for differential expression



Microarray analysis

Analysis

Clustering

Clustering

Clustering is a form of unsupervised learning → no external
information is used.

Input: Distances computed between the genes from a microarray
experiment

Output: Assignment of classes to the genes

Also: Clustering of samples or two-sided clustering

Problems:

Few known about reliability and problems of clustering
methods

Hard to reproduce

Does not answer biological question for differential expression



Microarray analysis

Analysis

Clustering

Clustering

Clustering is a form of unsupervised learning → no external
information is used.

Input: Distances computed between the genes from a microarray
experiment

Output: Assignment of classes to the genes

Also: Clustering of samples or two-sided clustering

Problems:

Few known about reliability and problems of clustering
methods

Hard to reproduce

Does not answer biological question for differential expression



Microarray analysis

Analysis

Clustering

Clustering algorithms

HC Hierarchical clustering

Genes with the smallest distance are
merged

New distances computed to inner node

Tree (dendogram) is produced

Mistakes cannot be taken back

Hopach Hierarchical ordered
partitioning and collapsing
hybrid

Partitioning und merging
steps
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Clustering algorithms

k-means Partition clustering
k classes → class means → classification according to
smallest distance → new classes → . . .
The classes are recomputed in every step
Initialised randomly, must not converge always

PCA Principal component analysis

Dimension reduction: Extraction
of the components, that explain
the largest portion of the
variation (can see clusters)

SOM Self-organising maps

Dimension reduction:
high-dimensional data is
represented by a lower
dimensional grid
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Clustering as a visualisation tool

Heatmap:

Color-coding of
the expression
level

Two-sided
hierarchical
clustering

Rearrangement of
rows and columns
such that similar
rows (columns)
are placed next to
each other
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