

EST infor	mation helps sometimes	
1: <u>EC906561</u> .	Reports XBT_L-1_E18.t Xen[gi:116673034]	
IDENTIFIERS		
dbEST Id: EST name: GenBank Acc: GenBank gi:	40460848 XBT_L-1 E18.t EC905551 16673034	
CLONE INFO DNA type:	CDNA	
PRIMERS PolyA Tail:	Unknown	
SEQUENCE	GATTACTOGGACCCAGCGATAGACGTACAAAAACTOGTCCCATGGAAGACACTTC GAACGATACACTAATAGTATAAAATATCAAAGAAAATGCTTTGGAAGAATTGGA CGGGGTGAAGACCCGTCGACTGCTGCGCCGAGGACGAATTGAAGGAATTGA CAGCCCTCATGACGCGACCCCTCGACGACGAAGAATTGAACGAATTGAACGA ATCCCCAATGGAGAAACGCCAAAGAGAGAAATTATACCGAACTTAATGCCAA CCAACGCAAGCCGCCACGCGACGAAGAAAGTCGACCAAGACTTAATGCCAA CCAACGCAAGCCGCGAATTCAACGAAGAATGTCGACCGCAAGCATTAATGCCAA CGAAGGAAACCGCGCAATTCAACGAACATTTAACCGAACTTCAAAAAAGAAGA AAGGACAAGGAACTTCGAAAGAGGAGAATTTAACGCAAAAAAAA	ACGGA AATCT TGTCC AAATA AGATC GGGAA AGATT GAGAA ATGAT AGTAC
Entry Created: Last Updated:	Oct 26 2006 Oct 26 2006	
LIBRARY Lib Name: Organism: Tissue type: Vector: Description:	<pre>Xenoturbella bocki, whole animal expression library (XB Xenoturbella bocki whole animal pGemT Amplified CDNA library. Library split by size >1.5 KB ()) and size <1.5KB (XBT_5)</pre>	T_L) XBT_L
SUBMITTER Name: Lab: Institution: Address: Tel: Fax: E-mail:	Leonid L. Moroz and Andrea B. Kohn Whitney Laboratory, Dept of Neuroscience University of Florida 9505 Ocean Shore Blvd, St. Augustine, FL 32080, USA (904) 461-4020 (904) 461-4052 abk&whitney.ufl.edu, moroz&whitney.ufl.edu	

Trace Information also provides relevant information
xml version="1.0"?
<trace_volume></trace_volume>
<trace></trace>
<pre></pre> <pre> </pre> <
<ncbi_trace_archive></ncbi_trace_archive>
<t< td=""></t<>
<pre>\taxiu>242335\taxiu> <hasenali length="">1174</hasenali></pre> /hasenali length>
clad date>
<state>active</state>

sequence ··· AGCGACAGACCG ····) ··· TCGTATTACAATTCACT ··· quality value ··· CUN ··· ··· CUN ··· CUN ··· ··· ·· ·· ·· CUN ··· ··· ··· ··· ··· ··· ··· ··· ··· ·	1. Determine longest continuous high-qual region (overall quality must exceed a user defined value)
1st sequence ···· AGGGACAGACCG ···· ··· ··· ··· ··· ··· TCGTATTACAATTCACT ···· ··· ··· 2nd sequence TCGGACGACAGACCG ···· ··· ··· ··· ··· ··· ··· ··· ···	
sequence - AGGGACACACCG	
Contaminant removal sequance MAGGACACACCC Contaminant removal sequance MAGGACACACCC Contaminant removal Contaminant Contaminant removal Contaminant removal Co	
Fig. 2. Illustrations of LUCY's major processing steps. See the main text for explanations.	

LUCY	Parameter	and their	default	values
LUCI		and men	ucraun	varues

CIBIV		MFPL
-------	--	------

Parameters	Default values	Related operation steps
pass_along min_value max_value med_value	0 0 0	pass to assembly program
error max_avg_error max_error_at_ends	0.025 0.02	quality area determination
window window_size max_avg_error	50 0.08 10 0.3	quality area determination
bracket window_size max_avg_error	10 0.02	quality area determination
range area1 area2 area3	40 60 100	vector splice site trimming
alignment area1 area2 area3	8 12 16	vector splice site trimming
vector vector_sequence_file splice_site_file	none	vector splice site trimming
cdna [min_span max_error initial_search_range]	none or 10 3 50	poly-A/T trimming
keep	none	poly-A/T trimming
size vector_tag_size	10	contaminant removal
threshold vector_cutoff	20	contaminant removal
minimum good_sequence_length	100	overall quality control
xtra cpu_threads	1	overall program control
output, quiet, inform_me, debug	none	overall program control

From: Chou H.-H. and Holmes M. H. (2001) Bioinformatics 17:1093-104

	CAP3: Overlap identification	CIBIV
	combined sequence	
ESTs 1. Concatenate s	sequences into a combined sequence. Reads are separate	ed by a separation character

