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: Data generation and processing CIBIV ///A\\\ [/ MEPL
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From DNA to Gene products CIBIV ///A“\ [/ MEPL

Reverse
transcription

Functional RNA
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Expressed Sequence Tag (EST)

Partial cDNA sequences of genes
expressed in different tissues
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cDNA Generation: The SMART approach CIBIV ///A\“ [/ MEPL
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Cloning Vector - pUC19
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Linker are required for directed cloning of cDNAs CIBIv ///A\k\ [/ MFPL
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Sanger Sequencing: The Trace Data CIBIV ///’*\k\ [/ MEPL
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Sequencing Methods: Real time sequencing CIB1V ///A\\\ [/ MFPL

Figure 1. Overview of the 454 sequencing system
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Sequencing Methods: Real time sequencing CIB1V ///A\\\ [/ MFPL

Step 1 - Polymerase

One of the four nucleotides dNTP (dATP, dCTP, dGTP, dTTP) is added to the reaction
mixture. If the added nucleotide is complementary to the base in the DNA strand, itis
incorporated and inorganic pyrophosphate (PPI) is released.

Step 2 - ATP sulfurylase

The PP, is converted into ATP by the enzyme ATP sulfurylase.

Step 3 - Luciferase

The luciferase catalyzes a reaction where ATP is used to generate light. The amount of

light is proportional to the amount of ATP, and hence also proportional to the amount of

incorporated nucleotides via the PP,. The light is then detected by a CCD camera.
Polymerase

3° memeee, ACCTTGAGTACCATCTAG: Step 4 - Apyrase
5 ——- TGGAACTCA

Remaining dNTP and ATP are degraded by the apyrase before the next nucleotide in the
iterative cycle is added to the reaction mixture.

ATP suifurylase (d)ADP

yrase i

= (d)AMP

Lumﬁ‘ &
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Light intensity reflects the number of inserted bases CIBIv ///A\k\ [/ MFPL
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EST information helps sometimes CIBIV ///A“\ // MFPL

[ 1: ECY906561. Reports XBT_L-1_E18.t Xen..[gi:116673034]

IDENTIFIERS

dbEST Id: 40460848

EST name: ¥BT_L-1_E18.t
CenBank Acc: EC906561
GenBank gi: 116673034
CLOKE INFO

DNA type: cDNA

PRIMERS

PolyA Tail: Unknown
SEQUENCE

GATTACTGGGACCCAGCGATAGACGTACAAAAACTGCTCCCATCGCAAGACACTTCACGGA
GAACGATACACTAATAGTATAAAATATCAAAGAAAAATGTTTGCAAGATTTGGCAAATCT
TCH TCTACATCCCTGTCTACTCTCGCCCTCCAGCAGCCARTTCAACCAATTGATCGTCC
CAGGCCTCTTCAGACCGACCCCTGCACGAMGTCAACCCTCAGATAGATGAACGGAARATA
ATCGCGAATGAGGAGAAAGCAAAGAGGGAGAGAATTATAGCTGAGAATATGCGCARAGATG
CCAGCCCTGATAGCACGCTGCCAGAAGAMAGTCCACCARCATAMAGCCARGCAGTTGGAN
GCAAAGCGAAACGCGTGAAAAAAATGCTGAAAGAAGCAAGAAGGACTTATGCGACAGAGATT
GAGAGAGGACAACCCGCAATTCARAGAACTTTTAGCCGAACTTCARAAAGANGAAGAGAN
ARAGGACAACGCGAACTTACARACAGACGGAATAATATTACCAGATAAATCATTTGTCATGAT
AATGTTGTGTAAATCGAATGATACGTTAATAGAATATTACGAATAACACAAAARRAAGTAC
CGACTGCG

Entry Created: Oct 26 2006
Last Updated: Oct 26 2006

LIBRARY

Lib Name: Xenoturbella bocki, whole animal expression library (XBT L)

Organism: Xenoturbella bocki

Tissue type: whole animal

Vector: pGemT

Description: Mmplified cDNA library. Library split by size >1.5 KB (¥BT_L
) and size <1.5KB (¥BT_S)

SUBMITTER

Name: Leonid L. Moroz and Andrea B. Kohn

Lab: Whitney Laboratory, Dept of Neuroscience

Institution: University of Florida

Address: 9505 Ocean Shore Blwd, St. Augustine, FL 32080, USA

Tel: (904) 461-4020

Fax: (904) 461-4052

E-mail: abk@whitney.ufl.edu, moroz@whitney.ufl.edua

Trace Information also provides relevant information CIB1V ///N\k\ // MFPL

<?xml version="1.0"?>
<trace_volume>
<trace>
<trace_name>Xb_MM1_01A01</trace_name>
<center_name>KML-UH</center_name>
<submission_type>NEW</submission_type>
<species_code>XENOTURBELLA BOCKI</species_code>
<strategy>EST</strategy>
<trace_type_code>EST</trace_type_code>
<source_type>NON GENOMIC</source_type>
<center_project>ANIMAL PHYLOGENOMICS</center_project>
<trace_file>XENOTURBELLA_BOCKI/KML-UH/traces/Xb_MM1_01A01.scf</trace_file>
<chemistry>BIGDYEV3.1</chemistry>
<chemistry_type>TERMINATOR</chemistry_type>
<clone_id>Xb_MM1_01A01</clone_id>
<insert_flank_left>CGACTGGAGCACGAGGACACTGACATGGACTGAAGGAGTAGAAA</insert_flank_left>
<insert_flank_right>AAAAAAAAAAAAAACACTGTCATGCCGTTACGTAGCGTATCGTTGACAGC</insert_flank_right>
<library_id>XB_MM1</library_id>
<plate_id>01</plate_id>
<program_id>KB BASECALLER VERSION=1.2</program_id>
<run_machine_type>ABI3730XL</run_machine_type>
<template_id>Xb_MM1_01A01</template_id>
<trace_end>FORWARD</trace_end>
<trace_format>SCF</trace_format>
<ncbi_trace_archive>
<ti>1926486127</ti>
<taxid>242395</taxid>
<basecall_length>1174</basecall_length>
<load_date>Oct 2 2007 3:45AM</load_date>
<state>active</state>
</ncbi_trace_archive>
</trace>
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Clipping of non-Insert DNA is essential CIBIV ///A\k\ [/ MFPL
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Fig, 2. [llustrations of LUCY’s major processing steps. See the main
text for explanations.

From: Chou H.-H. and Holmes M. H. (2001) Bioinformatics 17:1093-104
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EE e = 1. Determine longest continuous high-qual region
TS Tee—— D D (overall quality must exceed a user defined value)

VY A o DALY A YLV ! a) End Trimming (bracket): Find the first and
the last window meeting a given quality
limit, e.g. 10 consecutive base pairs with

Fig. 3. The raw data in a chromatogram file can be viewed as four max_avg_error of 0.02
sets of overlapping peaks, one each for the A, C, G and T seguencing
reactions.

] {b)
©

Fig. 4. LucY’s quality trimming steps. (a) Low quality areas are
trimmed from each end, then (b) regions of poor quality within the
sequence are identified and removed from the clean ranges. (c) The
resulting candidate clean ranges are further trimmed to satisfy the
overall average probability of error criterion and the criterion of
the probability of error at terminal bases. (d) The largest remaining
candidate is chosen as the final clean range.

From: Chou H.-H. and Holmes M. H. (2001) Bioinformatics 17:1093-104
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EE e = 1. Determine longest continuous high-qual region
TS Tee—— D D (overall quality must exceed a user defined value)

Fig. 3. The raw data in a chromatogram file can be viewed as four
sets of overlapping peaks, one each for the A, C, G and T sequencing b) Identification of regions with high error

reactions. probability (window). Find the longest
subsequence that meets the quality criteria
r & o m " specified by window_size and
- o - - “ . max_avg_error (multiple window sizes are
[ e ——— allowed)

Fig. 4. LucY’s quality trimming steps. (a) Low quality areas are
trimmed from each end, then (b) regions of poor quality within the
sequence are identified and removed from the clean ranges. (c) The
resulting candidate clean ranges are further trimmed to satisfy the
overall average probability of error criterion and the criterion of
the probability of error at terminal bases. (d) The largest remaining
candidate is chosen as the final clean range.

From: Chou H.-H. and Holmes M. H. (2001) Bioinformatics 17:1093-104
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Fig. 3. The raw data in a chromatogram file can be viewed as four
sets of overlapping peaks, one each for the A, C, G and T seguencing
reactions.
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c) Identify the longest subsequence fulfilling
Fig. 4. LucY’s quality trimming steps. (a) Low quality areas are the f)verall sequ?nce quality criteria (error).
trimmed from each end, then (b) regions of poor quality within the Options to specify are max_avg_error and
sequence are identified and removed from the clean ranges. (c) The max_error_at_ends (maximum error
resulting candidate clean ranges are further trimmed to satisfy the probability to the two bases on each end of
overall average probability of error criterion and the criterion of h

n .
the probability of error at terminal bases. (d) The largest remaining the subsequence)
candidate is chosen as the final clean range.

From: Chou H.-H. and Holmes M. H. (2001) Bioinformatics 17:1093-104
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Fig, 2. [llustrations of LUCY’s major processing steps. See the main
text for explanations.

From: Chou H.-H. and Holmes M. H. (2001) Bioinformatics 17:1093-104
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Fig, 2. [llustrations of LUCY’s major processing steps. See the main
text for explanations.

From: Chou H.-H. and Holmes M. H. (2001) Bioinformatics 17:1093-104

LUCY: Identification of ‘Vector Splice Sites’. CIB1V ///’*\k\ [/ MFPL

— > direction of sequencing —— [ E EETNRCT (05 G
INNED fragment nsert

area2 J aread | search area for end of insert |
60 | 100 I 400 - 800 |

_ 12 bp min. maich 16 bp min. match

a) splice_site_file: Used for vector clipping and contains the
flanking sequences of the cloning site, plus any adaptor
sequences used during cloning. Option: bidirectional trimming.

b) vector_file: Used for contaminant identification. Contains the
entire sequence of the cloning vector.

1) Search within the first 200 bp for the 5’ splice site. In the first 40 bp, an 8 bp long optimal
local alignment of splice site and sequence is sufficient. For the next 60 bp and 100 bp, the
minimum alignment length is set to 12 and 16, respectively.

From: Chou H.-H. and Holmes M. H. (2001) Bioinformatics 17:1093-104
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LUCY: Identification of ‘Vector Splice Sites’. CIB1V ///N\\\ // MFPL

———— direction of sequencing ———————— [ R e )
Tegmonmsan

search area for end of insert |
400 - 800

12 bp min. match 16 bp min. match

a) splice_site_file: Used for vector clipping and contains the
flanking sequences of the cloning site, plus any adaptor
sequences used during cloning. Option: bidirectional trimming.

b) vector_file: Used for contaminant identification. Contains the
entire sequence of the cloning vector.

2) Search in the remainder of the sequence for the 3’ splice site. Note, search is done only
with the highest stringency.

From: Chou H.-H. and Holmes M. H. (2001) Bioinformatics 17:1093-104

LUCY: Identification of polyA tails CIBIV ///A“\ // MFPL

1) Search for the first min_span oligo-dT in the initial_search_range bp of the insert sequence,

2) Extend from this poly-T seed towards the center of the sequence

3) Allow for max_error mismatches between the oligo-dT of min_span length and the
sequence.

4) Repeat the procedure with oligo-dA from the end of the sequence.

From: Chou H.-H. and Holmes M. H. (2001) Bioinformatics 17:1093-104
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Fig, 2. [llustrations of LUCY’s major processing steps. See the main
text for explanations.

From: Chou H.-H. and Holmes M. H. (2001) Bioinformatics 17:1093-104
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low quality regions
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aualy valve ! - (overall quality must exceed a user defined value)
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1stsequencs e AGOGACAGACCG = | |+ TCGTATTACAATICACT -+ (2. (Optional): Extend the high quality region by
s TR AT L o using a 2nd, independent base call from the
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sequnnca [ AGGQACAGACCD TECTATIACARTICACT 3. Identification of ‘Vector Splice Sites’. Different

search stringencies are used to account of
L variable base quality over the sequence

CACCGA Shoigun Insert - TTCACT.

Splice site trimming

1 nﬁtﬂ! 4 ) . . .
ccanccan s e - TeacTec 4. Identification and removal of contaminating
e e sequences, e.g. Vector inserts (cut the vector

L into a tag-library and search for hits.

Contaminant removal
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CLN= L
B e sav| 7 [ 5. Summary of the results and output generation ]
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Output generation

Fig, 2. [llustrations of LUCY’s major processing steps. See the main
text for explanations.

From: Chou H.-H. and Holmes M. H. (2001) Bioinformatics 17:1093-104
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LUCY: Parameter and their default values CIBIV ///N\\\

Parameters Default values [Related operation steps
pass_along min_value max_value med_value [0 0 0 pass to assembly program
error max_avg_error max_error_at_ends 0.025 0.02 quality area determination
window window_size max_avg_error ... 50 0.08 10 0.3 |guality areadetermination
bracket window_size max_avg_error 10 0.02 quality area determination
range areal area2 area3d 40 60 100 vector splice site timming
alignment areal area2 aread B 12 16 vector splice site timming
vector vector_sequence_file splice_site_file none vector splice site trimming
cdna [min_span max_error initial_search_range] [none or 10 3 50|poly-AT trimming

keep none poly=A/T trimming

size vector_tag_size 10 contaminant removal
threshold vector_cutoff 20 contaminant removal
minimum good_sequence_length 100 overall quality control

xtra cpu_threads 1 overall program control
output, guiet, inform_me, debug none overall program control

From: Chou H.-H. and Holmes M. H. (2001) Bioinformatics 17:1093-104

Additional processing: Id of repeats CIBIv ///N\\\

ACATGEAGGLGCTCALTEAGCTC ATTTACGACAGAATCCACLACALG
TGATCTTCTTCTCCCTTTTCGTCC TACTTATCACCAGTAGLLACTGCL
TAGERACATTTCCATTATATTACGTTATCARGCTAGGCATTCTTCTCT
AMACTGLAGTTCTGGTTCAAGAGGRAACACCALNAGCTCC

EST sequence reads from
chromatogram and base
calling

ESTs from the database(dbEST)

ACATGGAGGAGCTCAAT GAGCTCATT TACGACAGARTCCACARCAAGA
TGATCT TCTTCTCCCTT TTCGTCCTACTT ATCACCAGT AGAAACTGGA
TAGAAACATTT CCATTATATT ACGTTATCAAGCTAGGCATT CTTCTCT
AAACT GAAGTT CTGGTT CAAGAGGAARCACCAARAGCTCC

Vector identification and removal
(UniVec/EMVEC)

ACATGGAGGAGCTCAAT GAGCTCATTTACGACAGAATCCACAACAAGA
TGATCTTCTTCTCCCTT TTCGTCCTACTT ATCACCAGTAGAAACT GGA
TAGAAACATTT CCATTATATTACGTTATCAAGCTAGGCATT CTTCTXX
XHKKH LXK XK XIHXK XK XEXK XK XHK

Masking of repeats (RepeatMasker)
low complexity regions

(DUST /nseg)

ACATGGAGGAGCTCAAT GAGCTCATT T ACGACAGAATC CACAACANNN
NNNNNNNNNNNNNNCTTTTCGTCCTACTTATCACCAGT AGAAAACTGCGA
TAGAAACAT TTCCAT TATAT T ACGTT ATCAAGCTAGGCATTCTT CTEX
posievsovoonevesasovecaseed

High quality sequence for clustering and assembly




EST-Clustering CIBIV || MFPL

ACATGEAGGASCTCAAT GAGCTCATT TACGACAGAATCCACARCANNN
HHNHHNNUNENMNNCTTTTCGTCCTACTTATCACCAGTAGRARACTGEA 4 poy g
TAGAAACATTT CCATTATATTACGTTATCAAGCTAGGCATT CTTCTXX
XHHOOO00CCOOON0CCO0000N0O0C

ACATGGAGGAGC TCAAT GAGCTCATTTACGACAGAATCCACAACANNN

EST 2 «— NHNNHNHNHNNHRNCIT TTCGICCTACTTATCACCAGT AGRARACTGEA
TAGARACATTTCCATTATAT TACGTTATCAAGCTAGGCATTCITCTXX
HHHRR KRR KK KK KKK KKK KHK

ACATGCGAGEAGCTCAAT GAGCTCATT T ACGACAGAATC CACAACANNN
HHHHNNNRHRNHENCTT T TOGTCCTACTTATCACCAGTAGRARACTEEA — o peT 3
TACKRS TATTACCTTATCARCCTACCOA:

HXOCOO00NEOO0000E

FST clustering, assembly and cansensus
sequence generation

! Comsensus sequence !

- H
1
|
S !
ESTs —_—
H — |
1 O I
| |
1 |
| |
| |
| |
i i
An example fram the analysis
TV 602+ ACAGAG- KTCGETOGTOAGGAAAGTOGCAGETCEAATAGCA CCGAGA TC GG TE GTGARG K.
ACCoke-k
ACCOAGCATEGOTOGTGANGAAAGTG

GGTOGTCAAGARAGTOGEAGETCGARTAGT
ACAEAG-KTCCETCCTCAACAAACTOSCACETCEAKTAGCA CECACATECETE CTCARE A
ACCGAG- KTCGETOGTCANGRAAGTG

ACCGAR- KTCGOTOGTOAAGAAAGTGGCAGETCGARTAGCACC GRGATL GGTG GTGANG A
ACCCAN-KTCCETCCTCAACAMACTCENACETEEA
GGTORTCAAGARAGTOGCAGETCGARTAGCACC AGATE BTG
ACCGAG-KTCOCTORTOAACAMAGTOSCAGETCGARTAG

ACAGAG- KTCGETOGTGAAGAAAGTGGEAGETCGAATAGCA CCGRGATC GETGOT

_ ACCOAGATCGETE

TVELI D02+ ACCGAGATCGRTE GTGARG A

GANGA

AT

CAP3: Overlap identification CIBIV ||

MFPL

ESTs
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ESTs

CAP3: Overlap identification CIBIV ///’“\\\ [/ MEPL

combined sequence

1. Concatenate sequences into a combined sequence. Reads are separated by a separation character

ESTs

CAP3: Overlap identification CIBIV ///’“\\\ [/ MEPL

combined sequence

1. Concatenate sequences into a combined sequence. Reads are separated by a separation

character.

2. Compute high scoring chains of segments between each EST and the combined sequence using
the Blast heuristic. Identify candidate pairs. Every pair counted only once.
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combined sequence

5' clipping position

Read h
i 1
l 1] 1
i 1

Read

I i
I t
Read g : — T
3’ clipping position

Figure 2 Computation of the 5' and 3’ clipping positions of

ESTs read f. Read fhas high local similarities to reads g and h. A pair of
broken lines shows the start and end positions of a similarity. A
thick line indicates the high-quality region of a read.

1. Concatenate sequences into a combined sequence. Reads are separated by a separation character

2. Compute high scoring chains of segments between each EST and the combined sequence using
the Blast heuristic. Identify candidate pairs. Every pair counted only once.

3. Remove poor quality sequence ends

What is good?

a) any sufficiently long region of high quality that is highly similar to a region of another read

b) any sufficiently long region that is similar to a high quality region of another read.

Method: Smith-Waterman alignment with quality-weighted scored: Match = m * min(q1,q2);
Mismatch = n * min(q1,92), Gap-extension = -g * min(q1,q2).

CAP3: Overlap identification CIBIV ///A\\\ J»[/'r MEPL

combined sequence

minimum length
2)  minimum identity
3)  minimum similarity
4)  number of high-quality mismatches
score a diff as max[0,min(q1,q2)-b]
b: high quality cut off
d: quality diff score that must not be exceeded
5) Difference rate of overlaps relative to sequencing error
ESTs rate.

1. Concatenate sequences into a combined sequence. Reads are separated by a separation character

2. Compute high scoring chains of segments between each EST and the combined sequence using
the Blast heuristic.

3. Remove poor quality sequence ends

4. Compute global alignment for the high quality sequence pairs to verify overlaps. Evaluate
according to the following criteria:
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1)

2)

CAP3: Contig Building B2V [ ey

Generate a general layout using the overlapping reads from the pair-wise
analysis (Greedy algorithm in decreasing order of overlap scores).

In a simple view: Check the layout for incompatibilities, remove incompatible
reads and align.

1)

2)

CAP3: Contig Building B2V [ ey

Generate a general layout using the overlapping reads from the pair-wise
analysis (Greedy algorithm in decreasing order of overlap scores).

In a simple view: Check the layout for incompatibilities, remove incompatible
reads and align.
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1)

2)

CAP3: Contig Building 81V [l ey

Generate a general layout using the overlapping reads from the pair-wise
analysis (Greedy algorithm in decreasing order of overlap scores).

In a simple view: Check the layout for incompatibilities, remove incompatible
reads and align. (For the whole story refer to Huang and Madan (1999) Genome
Res. 9:868-877)
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