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Main Types of Phylogenetic Methods

Data Method
Evaluation
Criterion

Maximum Parsimony Parsimony

Characters
(Alignment)

 Statistical Approaches:

Likelihood, Bayesian


Evolutionary

Models

Distances Distance Methods
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What is the Maximum Likelihood (ML) Approach?

Having the probabilistic process of evolution and its parameters, we could
compute the probability of any outcoming sequence data.

Probability Likelihood

p(Data | Parameter set θ) ≡ L(Parameter set θ | Data)

But here we are interested in the process and parameters themselves.

Hence, ”likelihood flips the probability around.”

Aim: The ML approach seaches for that parameter set θ for the process
(i.e., evolution) which maximizes the probability of our given dataset.
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Problem: parameter sets

Problem: In phylogenetic analysis, the parameter set θ comprises:

evolutionary model

its parameters

tree topology

its branch lengths

This makes ML a high dimensional optimization problem that usually
cannot be solved in one go.

Hence, some parameters like the substitution model and the model
parameters are often determined/set separately from the tree.
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Substitution Models

Evolutionary models are often described using a substitution rate matrix R
and character frequencies Π. Here, 4× 4 matrix for DNA models:
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Π = (πA, πC , πG , πT )

R and Π are then combined to a substitution probability matrix P(t) wich
allows us to compute the probability Pij(t) of a change i → j over a time t.
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DNA substitution models

equal base frequencies

JC69

2 transitions)
(transversions,
3 subst. types 6 subst. types

(4 transversions,
2 transitions)

frequencies
different base

2 subst. types
(transitions vs.
transversions)

frequencies

1 substitution type,

different base

F81

2 subst. types
(transitions vs.
transversions)

HKY85 TN93 GTR

K2P

There are further submodels (see Modeltest) and extensions like models
assuming rate heterogeneity and codon models.

Heiko A. Schmidt ML trees and topology testing

Protein Models

Generally this is the same for protein sequences, but with 20× 20
matrices. Some protein models are:

Poisson model (”JC69” for proteins)
Dayhoff (Dayhoff et al., 1978)
JTT (Jones et al., 1992)
mtREV (Adachi & Hasegawa, 1996)
cpREV (Adachi et al., 2000)
VT (Müller & Vingron, 2000)
WAG (Whelan & Goldman, 2000)
BLOSUM 62 (Henikoff & Henikoff, 1992)
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Computing ML Distances Using Pij(t)

The Likelihood of sequence s evolving to s ′ in time t:

L(t|s → s ′) =
m∏

i=1

(
Π(si ) · Psi s

′
i
(t)

)
Likelihood surface for two
sequences under JC69:

GATCCTGAGAGAAATAAAC
GGTCCTGACAGAAATAAAC

Note: we do not compute the
probability of the distance t
but that of the data D = {s, s ′}. 0 10 20 30 40 50
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Likelihoods of Trees (Single column C
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Likelihoods of nucleotides at inner nodes:

LU(i) = [PiC (10) · L(C )] · [PiG (10) · L(G )]

LW (i) =
[∑

u=
ACGT

Piu(tU) · LU(u)
]
·

[∑
v=

ACGT
Piv (tV ) · LV (v)

]
Site-Likelihood of an alignment column k:

L(k) =
∑

i=
ACGT

πi · LW (i) = 0.024323
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Likelihoods of Trees (multiple columns)

G

CT T

AA

10 10

1010

U

W

T

V

S
CAA

0.047554

0.047554
0.024323

Considering this tree with n = 3 sequences of
length m = 3 the tree likelihood of this tree
is

L(T ) =
m∏

k=1

L(k) = 0.0475542 · 0.024323

= 0.000055

or the log-likelihood

lnL(T ) =
m∑

k=1

ln L(k) = −9.80811
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Adjusting Branch Lengths Step-By-Step

To compute optimal branch lengths do the following. Initialize the branch
lengths.
Choose a branch (A.). Move the virtual root to an adjacent node (B.).
Compute all partial likelihoods recursively (C.). Adjust the branch length
to maximize the likelihood value (D.).

A. B. C.
D.

Repeat this for every branch until no better likelihood is gained.
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Number of Trees to Examine. . .
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Finding the ML Tree

Exhaustive Search: guarantees to find the optimal tree, because all trees
are evaluated, but not feasible for more than 10-12 taxa.

Branch and Bound: guarantees to find the optimal tree, without searching
certain parts of the tree space – can run on more sequences,
but often not for current-day datasets.

Heuristics: cannot guarantee to find the optimal tree, but are at least
able to analyze large datasets.
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Build up a tree: Stepwise Insertion
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Local Maxima

What if we have multiple maxima in the likelihood surface?

Tree rearrangements to escape local maxima.
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Tree Rearrangements: Scanning a Tree’s Neighborhood
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ML programs: DNAML (PHYLIP), fastDNAml

Concept: Stepwise insertion + NNI/SPR

1 Build tree with stepwise insertion

(a) after each insertion optimize using NNI/local rearrangement (default,
but user-adjustable gradually up to SPR; only fastDNAml)

(b) repeat (a) rearrangements until no better tree found.

2 after the last insertion optimize using SPR/global rearrangement (in
DNAML; in fastDNAml user-adjustable gradually down to NNI)

3 repeat (2) rearrangements until no better tree found.

Pro: Evaluating large neighborhood with SPR.

Con: Slow.

Note: To save time, in other methods steps (1) and (2) are usually
substituted by swiftly computed trees (e.g., BioNJ).

Heiko A. Schmidt ML trees and topology testing

ML programs: RAxML

Concept: MP tree + LSR
Descendant on fastDNAml, but . . .

1 Starting with MP tree.

2 Uses lazy subtree rearrangements (only the 3 insertion branches are
optimized), collecting candidates.

3 Candidates are evaluated.

4 Iterating (2)-(4).

Pro: Fast,
smart algorithmic and numerical optimized ML computation.

Con: Only few trees fully evaluated trees.
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ML programs: PHYML

Concept: BioNJ tree + fastNNI

1 Start with BioNJ tree.

2 Do fastNNIs to optimize trees, i.e., evaluate all NNIs simultaneously
and then merge all best ones which are non-conflicting.

3 Repeat (1) until no better tree found anymore.

Pro: Fast

Con: Prone to get stuck on local optima due to NNI-only.
(SPR-based version PhyML-SPR has not been released yet.)
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ML programs: IQPNNI

Concept: BioNJ tree + randomization + fastNNI

1 Start with BioNJ tree.

2 Do fastNNIs to optimize trees, i.e., evaluate all NNIs simultaneously
and then accept all best ones which are non-conflicting. (after first
round, identical to PHYML).

3 Remove randomly a certain amount of taxa and re-insert them by a
fast and rough quartet-based method. (some randomization)

4 Repeat (2)-(3) until stop criterion is met.

Pro: Can evade local optima,
offers automatic stopping criterion,
hints when search didn’t run enough,
numerically optimized ML computation,
offers codon models

Con: slower than PhyML/RAxML
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ML programs: Other strategies

Genetic Algorithms (GARLI, GAML, MetaPIGA)

Simulated Annealing (SSA, RAxML-SA)

Quartet-based trees (TREE-PUZZLE, Qstar)

. . .

Note: The first two are also based on NNI/SPR/TBR.
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How reliable is the reconstructed tree:

Usually programs deliver a single tree, but without confidence values
for the subtrees.

How can we assess reliability for the subtree?
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Branch Support

We can now reconstruct ML trees, but how comparable are the
likelihoods, how reliable the groupings?

Branch reliability can be checked, support values computed using:

Randomizing input orders in stepwise insertions (e.g., TREE-PUZZLE).
Jackknifing alignment columns + consensus.
Bootstrapping alignment columns + consensus.
Trees from Bayesian MCMC sampling + consensus.
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Are two evolutionary trees/models different?

Given sequence alignments and substitution models, we can reconstruct
tree and compute their likelihoods.

But can we decide from the likelihood

which is the best substitution model to use?

→ yes, using (hierarchical) LRTs

which tree is better?

→ only if likelihoods are computed from identical datasets/taxa.

whether two tree likelihoods are significantly different?

→ yes, for identical datasets/taxa

whether one tree likelihood is significantly better/worse?

→ yes, for identical datasets/taxa

These questions can be assesed by hypothesis testing.
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Hypothesis testing: prerequisistes

What question do I want to answer?

Say should I use the JC model or the GTR model?
Or perhaps, Is tree Ta statistically different from tree Tb?

It is important to note that you should know the null
hypothesis/hypotheses before you “collect” the data.
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Testing Tree Topologies with LRT?

Only nested models can be tested by ordinary LRT:
One model (H0, Null-model, constraint model) is nested in another
model (HA, alternative, unconstraint model) if the model H0 can be
produced by restricting parameters in model HA.

two differrent topologies are not nested.

Thus, LRT cannot be used on different topologies, because the
assumption of the χ2 distribution does not fit.

Hence, other (bootstrap-bases) methods have been devised to
determine the distribution of log-likelihood differences for testing
(e.g., KH or SH test).
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Usual Null-Hypotheses:
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First the Null hypothesis has to be stated, for
example:

top: The two likelihood are not
significantly different – i.e. their expected
difference E (ln L1 − ln L0) = 0.

bottom: The 2nd likelihood is not
significantly worse – i.e. their expected
difference E (ln L1 − ln L0) ≤ 0.

If the observed value falls into the white area,
the Null hypothesis cannot be rejected. If it
falls into the grey area, this is interpreted as
support for the alternative by rejecting the
Null hypothesis.
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Basic Idea:

Compute log-likelihood values L1, . . . , LN for your trees T1, . . . ,TN .

Draw bootstrap samples i from the alignment, re-estimate the

log-likelihood values L
(i)
x for each tree Tx and for each sample i .

Adjust the log-likelihoods with the mean by setting L̃
(i)
x = L

(i)
x − L̄

(i)
x

(Centering) Centering is needed to correct make the bootstrap
samples conforming to the Null model.

Use the differences between the L̃
(i)
x to determine the distribution of

differences δ(i) = L̃
(i)
y − L̃

(i)
z .

Use the distribution of δ(i) to test your trees.
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Time Saving: RELL

The re-optimization to get the log-likelihood values L
(i)
x is very time

consuming.

Hence, often the site-likelihoods are used fixed.

During the bootstrap the already estimated site-log-likelihoods are

sampled and added to produce L
(i)
x .

The resampling of estimated log-likelihoods (RELL) has been shown
to be often sufficient to produce the distribution of log-likelihood
differences.
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Original Kishino and Hasegawa test (KH test)

This test was devised to test whether two a priory chosen trees (e.g.,
from a Markov Chain) are equally well supported by the dataset.

H0: the expected δ = L1 − L2 = 0.
HA: the expected δ = L1 − L2 6= 0.
KH assumes that the ML tree is not among the trees.
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Kishino-Hasegawa test:
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Mis-use of the Kishino and Hasegawa test (KH test)

Often, instead two a priory chosen trees, one tree is tested against the
ML tree TML.

That means, δ = LML − L1 is rarely negative.

Hence, δ has to be tested in a single-sided regime.

H0: the expected δ = L1 − L2 = 0. HA: the expected
δ = L1 − L2 > 0.
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Multiple trees (Shimodaira and Hasegawa test - SH test)

The SH test offers a correct way to test a set of trees, which may be
chosen a posteriory after ML analysis.

H0: All trees including TML are equally supported. HA: Some or all
trees Tx are not equally well supported.

The SH test assumes, that the ML tree TML is among the trees.
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Shimodaira-Hasegawa test:
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The SH procedure:

Compute log-likelihood values and the differences δx = LML − Lx for
your trees.

Draw bootstrap samples i from the alignment (with RELL) to gain

log-likelihood values L
(i)
x for each tree Tx .

Adjust the log-likelihoods with the mean over the samples i by setting

L̃
(i)
x = L

(i)
x − L̄

(i)
x (Centering)

For each sample i , find L̃
(i)
ML over all topologies Tx .

and compute δ
(i)
x = L̃

(i)
ML − L̃

(i)
x .

For each tree Tx , test whether δx is a plausible sample from the

distribution of δ
(i)
x (over all replicates i).

We use a single sided test, since L̃
(i)
ML ≥ L̃

(i)
x .

Heiko A. Schmidt ML trees and topology testing

Expected Likelihood weights:
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Pros and Cons of various tests:

Kishino-Hasegawa test (KH) – usually mis-used if the trees are not
chosen a priori.

Shimodaira-Hasegawa (SH) – test for multiple trees, affected by
selection error, i.e., gets more conservative with the number of trees.

Weighted Shimodaira-Hasegawa (wSH) – SH test weighted with
the variance of the likelihood difference (less conservative than SH).

Expected likelihood weights (ELW) – less conservative than SH,
but the impact of model mis-specification unclear.

Approximately unbiased test (AU) – fixes the conservativeness
issue of SH, but many similarly good trees can lead to artificial
over-confidence.
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Summary

Likelihoods gives a strong statistical framework for hypothesis testing.

Proper experimental design and proper use of tests is required.

One should alway be aware of the hypothesis a test assesses and
should make sure that this answers the question asked.

Testing tree topologies can be used to assess whether two competing
hypotheses are really substantially different. If they are not, one
cannot be prefered over the other.
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