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Detecting and characterizing individual
recombination events

THEORY

Mika Salminen and Darren Martin

16.1 Introduction

In addition to point mutation, the most important mechanisms whereby organ-

isms generate genomic diversity are undoubtedly nucleic acid recombination and

chromosomal reassortment. Although this chapter will mostly deal with the char-

acterization of true recombination events, many of the methods described here are

also applicable to the detection and description of reassortment events. Moreover,

we will focus on homologous recombination, which is defined as the exchange of

nucleotide sequences from the same genome coordinates of different organisms.

Although heterologous recombination (i.e. recombination resulting in either the

physical joining of segments in unrelated genes or gross insertion/deletion events)

will not be considered, many of the methods described in this chapter may also be

applicable to the detection and analysis of this form of genetic exchange.

Whereas the genomes of all cellular organisms and some viruses are encoded

in DNA, many viruses use RNA as their genetic material. The importance of

recombination in the evolution of life on earth is underlined by the fact that various

mechanisms for both DNA and RNA genomic recombination have evolved. Well-

studied recombination mechanisms mediating double-stranded DNA break repair

and/or chromosomal recombination during meiotic cell division are extremely

common amongst cellular organisms and it is believed that DNA viruses also

access these mechanisms during nuclear replication within infected host cells.
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Conversely, the recombination mechanisms used by RNA viruses and retro-

viruses (whose genomes pass intermittently through DNA and RNA phases), are

generally encoded by the viruses themselves. For example, two features of retro-

virus life cycles that greatly facilitate recombination are packaging of two RNA

genomes within each virus particle (i.e. they are effectively diploid), and the pre-

disposition of retroviral reverse transcriptases to periodically drop on and off

these RNA molecules during DNA synthesis. If the reverse transcriptase drops off

one of the RNA molecules and reinitiates DNA strand elongation on the other,

and the two RNA molecules are genetically different, then the newly synthe-

sized DNA molecule will have a mixed ancestry and will therefore be effectively

recombinant.

Given the biological and evolutionary significance of recombination and the

real probability that recombination features in the recent histories of most DNA

sequences on Earth, it is perhaps surprising that so many (if not most) evolu-

tionary analysis methods in common use today assume that nucleotide sequences

replicate without recombining. The inescapable fact that a recombinant nucleic

acid sequence has more than one evolutionary history implies that recombi-

nation will have at least some effect on any sequence analysis method that

assumes correctly inferred evolutionary relationships (see Box 15.2 in the pre-

vious chapter). It is probably for this reason that an enormous number of recom-

bination detection and analysis methods have been devised (Table 16.1 and see

http://www.bioinf.manchester.ac.uk/recombination/programs.shtml for a reasonably

up-to-date list of the computer software that implements most of these methods).

This chapter will briefly discuss how some of these methods can be practically

applied to identify and characterize evidence of individual recombination events

from multiple alignments of recombining nucleotide sequences.

16.2 Requirements for detecting recombination

The vast majority of recombination events leave no trace on the recombinant

molecule that is generated. For an individual recombination event to be detectable,

the recombining or parental sequences must differ at two or more nucleotide posi-

tions. In practice, however, proof that a recombination event has occurred usually

involves a statistical or phylogenetic test to determine whether or not a poten-

tial recombinant has a non-clonal ancestry. To detect and characterize individual

recombination events, such tests demand considerable amounts of sequence data

that must meet certain criteria. Generally they require: (1) sampling of a recom-

binant sequence and at least one sequence resembling one of the recombinant’s

parental sequences; (2) that the parental sequences are different enough that at least

one of the two sequence tracts inherited by the recombinant contains sufficient
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Table 16.1 Available software tools for characterizing individual recombination events

Program Method(s) implemented References

3Seq 3Seq Boni et al., 2007

Barce Barce Husmeier & McGuire, 2003

DualBrothers DualBrothers Minin et al., 2005

Gard Gard Kosakovsky Pond et al., 2006

Geneconv Geneconv Sawyer, 1989

Jambe Jambe Husmeier & Wright, 2001

JpHMM Jphmm Shultz et al., 2007

Lard Lard Holmes et al., 1999

Maxchi Maxchi Posada & Crandall, 2001; Maynard

Smith, 1992

Phylpro Phylpro Weiller, 1998

Pist Pist Grassly & Holmes, 1997

Plato Plato Woroby, 2001

Rat Rat Etherington et al., 2005

Recpars Recpars Hein, 1993

Rega Rega de Oliveira et al., 2005

Rdp3 RDP, Geneconv, 3Seq, Bootscan,

Maxchi, Chimaera, Dss, Siscan,

Phylpro, Lard

Martin et al., 2004

Rip Rip Siepel et al., 1995

Simplot Simplot, Bootscan Lole et al., 1999; Salminen et al., 1995

Siscan Siscan Gibbs et al., 2000

Topal Dss McGuire & Wright, 2000

TOPALi Dss, Barce, Jambe Milne et al., 2004

polymorphisms to unambiguously trace its origin to a parental lineage; (3) that

the distribution of polymorphisms inherited by the recombinant from its parental

sequences cannot be credibly accounted for by convergent point mutation (see

Box 15.1 in the previous chapter); (4) that the recombination event has not occurred

so long ago that the distinguishing pattern of polymorphisms created by the event

has not been erased by subsequent mutations.

A good illustration of the importance of each of these factors can be seen

when attempting to detect recombination events in HIV sequences. In the case of

detecting recombination between HIV-1M subtypes (the viruses responsible for

the vast majority of HIV infections worldwide), all of these requirements are met.

(1) The over 600 publicly available full HIV-1M genome sequences provide ample

data for recombination analysis; (2) following the introduction of HIV-1M into

humans, founder effects in the epidemiological history of HIV-1 group M allowed

enough distinguishing genetic variation to occur between the subtype lineages
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Fig. 16.1 HIV subtypes. K2P model Neighbor-Joining phylogenetic tree using the 1999/2000
Los Alamos HIV database complete genome reference sequence alignment (http://hiv-
web.lanl.gov). Strain-name coding: X.CC.00.YYYY with X = Subtype, CC = two-letter country
code, 00 = year of sampling, YYYY = original isolate identifier. Note the nine discrete groups
of sequences.

(Fig. 16.1) that the origins of many sequence tracts found in today’s inter-subtype

recombinants can be quite easily traced; (3) the recombination mechanism yielding

HIV recombinants often results in “exchanges” of sequence tracts large enough to

contain sufficient polymorphisms that clusters of polymorphisms characteristic

of different subtypes within a single sequence cannot be reasonably explained

by convergent evolution; (4) mosaic polymorphism patterns that characterize the

many inter-subtype recombinants that have emerged in the wake of relatively recent

widespread epidemiological mixing of HIV-1 subtypes are still largely unobscured

by subsequent substitutions.

The ease with which inter-subtype HIV-1M recombinants can be detected is

starkly contrasted with the difficulty of characterizing individual recombination
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events that have occurred between sequences belonging to the same HIV-1M sub-

types – so-called intra-subtype recombination. While there are many publicly

available sequences for most of the subtypes and the sequences within each sub-

type are sufficiently divergent for intra-subtype recombinants to be detectable, it

is still very difficult to accurately characterize intra-subtype recombination events

because: (1) within subtypes, phylogenetic trees generally show star-like struc-

tures lacking clusters with enough distinguishing genetic variation. Such trees can

be expected for exponentially growing viral epidemics. However, also recombina-

tion makes structured trees appear more star-like, which aggravates the problem.

(2) Many of the mosaic polymorphism patterns of older intra-subtype recombi-

nants may have been obscured by subsequent mutations.

16.3 Theoretical basis for recombination detection methods

Again, using HIV recombination as an example, inter-subtype recombination can

be graphically illustrated using phylogenetic analyses. If separate phylogenetic trees

are constructed using sequences corresponding to the tracts of a recombinant

sequence inherited from its different parents, the recombinant sequence will appar-

ently “jump” between clades when the two trees are compared (Fig. 16.2). Most

methods developed to detect specific recombination events and/or map the posi-

tions of recombination breakpoints apply distance- or phylogenetic-based meth-

ods to identify such shifting relationships along the lengths of nucleotide sequence

alignments. We will hereafter refer to these shifts or jumps in sequence relatedness

as “recombination signals.”

There are a variety of ways in which recombination signals are detected. The

most common are variants of an average-over-window-based scanning approach.

Some measure of relatedness is calculated for a set of overlapping windows (or

alignment partitions) along the length of an alignment (Fig. 16.3) and evidence

of recombination is obtained using some statistic that compares the relatedness

measures calculated for different windows. Every scanning window approach is,

however, a simplification of a more computationally intense analysis-of-every-

possible-alignment-partition approach. Scanning window approaches are gener-

ally quite fast because relatedness measures are only calculated for a relatively small

proportion of all possible alignment partitions and sometimes only adjacent win-

dows are compared. All recombination signal detection approaches that do not

employ scanning windows have some other (occasionally quite complex) means of

first selecting the partitions (from all those possible) for which relatedness measures

are calculated, and then selecting which of the examined partitions are statistically

compared with one another. Generalizing, therefore, recombination signal detec-

tion involves partitioning of alignments, calculation of relatedness measures for
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Fig. 16.2 “Jumping” of recombinant isolates. Two representatives (AB.RU.97.KAL153-2 and
AB.RU.98.RU98001, in boldface) of a recombinant between HIV-1 M-group subtypes A
and B were phylogenetically analyzed in two different genome regions. The trees represent
a region clustering the recombinant isolates in (a) with subtype A and in (b) with subtype
B. Reference sequences are from the 1999/2000 Los Alamos HIV-1 database.
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Fig. 16.3 Basic principle of average-over-window scanning methods. An alignment of reference
sequences (A–J) and a potential recombinant (the query sequence) are sequentially divided
into overlapping sub-regions (i.e. window, box, and brackets) for which a statistic/measure
is computed. This statistic/measure is then plotted (broken arrow lines) in an x/y scatter
plot using the alignment coordinates on the x-axis and the statistic/measure range on the
y-axis. Each value is recorded at the midpoint of the window and connected by a line.

each partition, and use of some statistic determined from these measures to identify

pairs or sets of partitions where recombination signals are evident.

There are many possible relatedness measures and statistics that could be used

to compare partitions. The simplest and computationally quickest to compute

measures are pairwise genetic distances between the sequences in an alignment.

These are based on the reasonable (but not always true) assumption that any

given sequence will be most similar to whichever sequence it shares a most recent

common ancestor with. Therefore, if the genetic distances of every sequence pair are

computed along an alignment using, for example, a sliding-window approach, the

relative distances between non-recombinant sequences should remain consistent

across all alignment partitions (Fig. 16.4). If recombination occurs, however, the

relative distances between the recombinant sequence and sequences closely related

to one or both of its parental sequences might shift from one partition to the next,

with the point at which the shift occurs indicating the recombination breakpoint.
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Fig. 16.4 Similarity and dissimilarity methods. (a) Similarity plot. In this type of analysis, the measure
recorded is the similarity value (sim) between the query sequence and each of the reference
sequences. (b) The same analysis, except that the inverse value to similarity (1–sim) or the
dissimilarity is plotted. In various methods, similarity/dissimilarity values corrected by an
evolutionary model, i.e. any of the JC69, TN93, K80, F81, F84, HKY85, or GTR models (see
Chapter 4 and Chapter 10) may be used. (c) Schematic view of a plot of a recombinant
sequence.
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In this simple case, the calculated statistic would be something like the differences in

genetic distances between the potential recombinant and its two potentially parental

sequences in adjacent windows. Using raw pairwise genetic distances as a relatedness

measure for identifying potential recombination signals is one component of many

recombination detection methods including, for example, those implemented in

programs such as Simplot (Lole et al., 1999), Recscan (Martin et al., 2005), Rat
(Etherington et al., 2005), and Rip (Siepel et al., 1995).

Although the relative pairwise genetic distances between sequences usually cor-

relates well with their evolutionary relatedness, this is not always the case. This

is important because more accurate estimates of evolutionary relatedness should

enable more accurate identification of recombination signals. Therefore, using

phylogenetic methods rather than pairwise distances to infer the relative related-

ness of sequences in different alignment partitions has been extensively explored

in the context of recombination signal detection. Recombination detection meth-

ods that employ phylogeny-based comparisons of alignment partitions include

those implemented in programs such as Topal (McGuire & Wright, 1998; McGuire

et al., 1997), DualBrothers (Minin et al., 2005; Suchard et al., 2002), Plato
(Grassly & Holmes, 1997), Recpars (Hein, 1993), Gard (Kosakovsky Pond et al.,

2006), Jambe (Husmeier & Wright, 2001; Husmeier et al., 2005), and Barce
(Husmeier & McGuire, 2003). The most popular of these phylogenetic methods is

the bootscan method (Fig. 16.5). Implementations of bootscan can be found in the

programs Rdp3 and Simplot, which will be used later to demonstrate how recom-

bination can be detected with the method. The bootscan method involves the

construction of bootstrapped neighbor joining trees in sliding window partitions

along an alignment. The relative relatedness of the sequences in each tree is then

expressed in terms of bootstrap support for the phylogenetic clusters in which they

occur. Recombination is detected when a sequence, defined as a query, “jumps”

between different clusters in trees constructed from adjacent alignment partitions.

This jump is detectable as a sudden change in bootstrap support grouping the

potential recombinant with different sequences resembling its potential parental

sequences in different genome regions.

A third, very diverse, set of recombination signal detection approaches employ

a range of different relatedness measures and statistics and often draw on some

phylogenetic information to compare relationship measures determined for dif-

ferent alignment partitions. Usually, these are based on identifying shifts in the

patterns of sites shared by subsets of sequences within an alignment. These so-

called substitution distribution methods use a statistic (e.g. a Z-score, a chi square

value, Pearson’s regression coefficient, or some other improvised statistic) that can

be used to express differences in the relative relationship between sequences in

different, usually adjacent, alignment partitions. The relatedness measures used



528 Mika Salminen and Darren Martin

Fig. 16.5 Analysis using SIMPLOT of recombinant isolate KAL153 using (a) the distance-based sim-
ilarity method and (b) the phylogenetic based bootscanning method. (c) Phylogenetic
confirmation (K2P + NJ) of the identified recombination signal. The similarity analysis with
subtypes A, B (parental subtypes), and C (outgroup) is superimposed on the ranges of intra-
and inter-subtype variation.
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are generally counts of nucleotide sites in common and/or different between pairs,

triplets or quartets of sequences in the alignment being analyzed. The exact sites

that are considered differ from method to method with some counting all sites

of the alignment (e.g. the Phylpro method; Weiller, 1998) and others examining

only those sites that differ in some specified way amongst the sequences being

compared (e.g. the Siscan method; Gibbs et al., 2000). The major advantage of

the substitution distribution methods over pure phylogenetic and distance based

approaches is that they often allow detection of recombination events that cannot,

for example, be visualized as sequences “jumping” between clades of phylogenetic

trees constructed using different alignment partitions. By accessing information

on overall patterns of nucleotide substitution within an alignment, many substi-

tution distribution methods (such as those implemented in programs like 3Seq,

Boni et al., 2007; Geneconv, Sawyer, 1989; Maxchi, Maynard Smith, 1992; and

Chimaera, Posada & Crandall, 2001) can detect when sequences are either more

closely related or more distantly related in certain alignment partitions than would

be expected in the absence of recombination. These methods are able to detect

such recombination signals regardless of whether they have sufficient phylogenetic

support.

One of the most powerful substitution distribution methods is the Maxchi
method and it will be demonstrated in the practical exercises later. Like the bootscan

method mentioned above, the Maxchi method involves moving a window across

the alignment. However, before scanning the alignment, the Maxchi method first

discards all the alignment columns where all sequences are identical and then moves

a window with a partition in its centre along this condensed alignment. For every

pair of sequences in the alignment, nucleotide matches and mismatches are scored

separately for the two halves of each window and then compared using a 2 × 2 chi

square test. Whenever a window partition passes over a recombination breakpoint,

the method records peaks in the chi square values calculated for sequence pairs

containing the recombinant and one of its “parents” (they are actually usually just

sequences resembling the recombinant’s parents).

While substitution distribution methods such as Maxchi are both extremely

fast and amongst the most powerful ever devised, many of these methods gener-

ally also assume that sequence similarity is perfectly correlated with evolutionary

relatedness – an assumption that is often violated and could potentially compromise

their accurate inference of recombination.

Given that there are so many different methods with which recombination sig-

nals could be detected, it is important to realize that none of these methods has

yet emerged as being best under all possible analysis conditions. Some extremely

sophisticated and quite powerful methods, such as those implemented in Gard,

DualBrothers and TOPALi are also extremely slow and can currently only be
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applied to relatively small or simplified analysis problems. Some simpler meth-

ods, while less powerful, are capable of rapidly scanning enormous, extremely

complex data sets. Also, certain methods are incapable of detecting certain types

of recombination events, whereas others are prone to false positives if certain of

their assumptions are violated. For this reason certain recombination analysis tools

such as Rdp (Martin & Rybicki, 2000; Martin et al., 2005) and TOPALi (McGuire &

Wright, 2000) provide access to multiple recombination signal detection methods

that can be used in conjunction with one another. Not only can these methods

be used to crosscheck potential recombination signals but they can, in the case of

Rdp3, also be collectively combined to analyze sequences for evidence of recombi-

nation. While this may seem like a good idea, it is still unclear whether detection

of any recombination signal by more than one method should afford additional

credibility.

16.4 Identifying and characterizing actual recombination events

Many of the methods aimed at identifying recombination signals are also suited

to characterize certain aspects of the recombination events – such as localizing

recombination breakpoint positions, identifying recombinant sequences and iden-

tifying sequences resembling parental sequences. How this information is accessed

differs from one method to the next and also relies largely on the amount of prior

knowledge one has on the potential recombinant status of the sequences being

analyzed.

Currently available analysis tools use two main approaches to identify and char-

acterize recombination events. Choosing an approach and the tools that implement

it depends firstly on the types of recombination events one wants to analyze and,

secondly, on knowledge of which of the sequences available for analysis are probably

not recombinant. We will again use analysis of HIV-1 recombination as an example.

Analysis of inter-subtype HIV-1M recombination is vastly simplified by the exis-

tence of a large publicly available collection of so-called “pure-subtype” full genome

sequences. While not definitely non-recombinant (many of these sequences may

be either intra-subtype recombinants or ancient inter-subtype recombinants in

which the recombination signals have been degraded by subsequent mutations),

this collection of sequences can be used to reliably scan potentially recombinant

sequences for evidence of recent inter-subtype recombination events. Many recom-

bination analysis tools such as SimPlot, Rega, Rip, DualBrothers, jpHMM, and Rdp3
will allow one to analyze a potential recombinant, or query sequence, against a set

of known non-recombinants, or reference sequences, and identify: (1) whether

the query sequence is recombinant; (2) the locations of potential breakpoint
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positions; (3) the probable origins of different tracts of sequence within a recom-

binant (Fig. 16.5).

In cases where no reliable set of non-recombinant reference sequences is avail-

able, such as when attempting to analyze intra-subtype HIV-1 recombination, one

is faced with two choices. Either a set of reference sequences must be constructed

from scratch before applying one of the query vs. reference scanning methods, or

use must be made of one of the many exploratory recombination signal detection

methods that do not rely on a reference sequence set. Construction of a reference

sequence data set will not be discussed here, but see Rosseau et al. (2007) for an

example involving analysis of intra-subtype HIV recombination.

The exploratory recombination signal detection methods, such as those imple-

mented in Rdp3, Geneconv, 3Seq, Siscan, and Phylpro, all accept sequence align-

ments as input and, without any prior information on which sequences might be

recombinant, will attempt to identify signals of recombination. Although these

methods are completely objective and their use might seem more appealing

than that of methods relying on a largely subjective query vs. reference scan-

ning approach, one should be aware that there are two serious drawbacks to the

exploratory analysis of recombination signals. First, when enumerating all the

recombination signals evident in an alignment, the exploratory methods will often

compare thousands or even millions of combinations of sequences. This can create

massive multiple testing problems that must be taken into account when assessing

the statistical support of every recombination signal detected. In extreme cases,

such as when alignments containing hundreds of sequences are being analyzed,

statistical power can become so eroded by multiple testing corrections, that even

relatively obvious recombination signals are discounted.

The second, and probably most important, problem with exploratory recombi-

nation detection is that, even if one is provided with a very clear recombination

signal and a set of sequences used to detect the signal (something that many of

the exploratory methods will provide), it is often extremely difficult to determine

which sequence is the recombinant. As a result, “automated” exploratory scanning

of recombination often still requires a great deal of manual puzzling over which

of the identified sequences is “jumping” most between clades of phylogenetic trees

constructed using different alignment partitions. This can be a particularly serious

problem because the exploratory methods do not, for better or worse, exclude the

possibility of detecting recombination events between parental sequences that are

themselves recombinant. The apparent objectivity of exploratory recombination

detection is therefore ultimately compromised by a largely subjective process of

recombinant identification.
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16.5 Existing tools for recombination analysis

Software for analyzing recombination is available for all major operating sys-

tems (see http://www.bioinf.manchester.ac.uk/recombination/programs.shtml for a

reasonably comprehensive list). The two programs that will be used here for

demonstrating the detection and characterization of recombination events are

the Windows programs Simplot (downloadable from http://sray.med.som.jhmi.edu/

RaySoft/SimPlot/) and Rdp3 (downloadable from http://darwin.uvigo.es/rdp/

rdp.html). Both programs will run on Apple Macs under Virtual PC emulation

software. Both programs are capable of reading alignments in a wide variety of for-

mats and performing similarity/dissimilarity plots of any of the sequences against

all others in the alignment. They allow multiple analysis parameters to be varied,

including window sizes, window overlaps and evolutionary-distance corrections.

Both produce graphical outputs that can be exported in both bitmap (.bmp) and

windows metafile formats (.wmf or .emf). The programs enable reasonably precise

mapping of inferred recombination breakpoints and allow trees to be constructed

for different alignment partitions; Rdp3 implements various tree reconstruction

methods to this purpose. Simplot also allows sequence partitions to be exported

for phylogenetic analysis by other programs. Both Rdp3 and Simplot also imple-

ment the popular bootscanning method (Salminen et al., 1995), the use of which

will be described in some detail here using Simplot.

To install Simplot, go to http://sray.med.som.jhmi.edu/SCRoftware/simplot/ and

download the zip-compressed installation file; for this exercise, we used SIM-

PLOT version 3.5.1. Place the file in a temporary file folder (e.g. the C:\temp

folder found on most systems) and uncompress the file. Install Simplot using

the installer file SETUP.EXE. By default, Simplot is installed in Program

Files/RaySoft/ folder and a link is added to the Start menu. More

detailed instructions can be found on the Simplot website. Installation of

Rdp3 follows a similar process. Download the Rdp3 installation files from

http://darwin.uvigo.es/rdp/rdp.html to the temporary folder and uncompress it.

Run the SETUP.EXE that is unpacked and Rdp3 will add itself to the Start

menu.

To successfully perform the Simplot exercises, another program, TreeView (see

Section 5.5 in Chapter 5), is also needed.

532



533 Detecting and characterizing individual recombination events: practice

16.6 Analyzing example sequences to detect and characterize individual
recombination events

Several sets of aligned sequences will be used for the exercises. These are avail-

able at the website http://www.thephylogenetichandbook.org and have the following

features:

(1) File A-J-cons-kal153.fsa: A single recombinant HIV-1 genome (KAL153) aligned
with 50% consensus sequences derived for each HIV-1 subtype (proviral
LTR-genome-LTR form).

(2) File A-J-cons-recombinants.fsa: two recombinant HIV-1 sequences in FASTA for-
mat aligned with 50% consensus sequences derived for each HIV-1 subtype (pro-
viral LTR-genome-LTR form).

(3) File 2000-HIV-subtype.nex: A reference set of virtually complete HIV genome
sequences aligned in FASTA format (virion RNA R-U5-genome-U3-R form).

In the first three exercises Simplot will be used to demonstrate the query vs.

reference approach to detecting and characterizing recombination events. Rdp3
will then be used in the last three exercises to demonstrate some exploratory

approaches to recombination detection and analysis that can be used if one has no

prior knowledge of which sequences in a data set are non-recombinant.

16.6.1 Exercise 1: Working with Simplot

This exercise shows the use of Simplot and its basic properties. To start Simplot,

select the program from its group on the StartMenu in Windows or double-click

on the Simplot icon in the Simplot folder. The program will start with a window

from which it is possible to select the file menu to open an alignment file. Open

the file A-J-cons-kal153.fsa (the .fsa extension may or may not be visible, depending

on the settings of the local computer). This file contains an alignment of the CRF03-

AB strain Kal153 and 50% consensus reference sequences for subtypes A through

J. The tree-like graph shown in Fig. 16.6 appears, which has all the sequences

contained in a group with the same name as the sequence (by default). Groups can

be automatically defined using any number of characters in the sequence names or

using characters prior to a separator in the sequence names by clicking on “Use

first character to identify groups”. To reveal the sequences in each

group, select “Expand Groups”. Groups have a color code and are primarily used

to quickly generate consensus sequences; they are discussed in another exercise.

Groups or individual sequences can be excluded from the analysis by deselecting

them. Groups can be moved or individual sequences can be moved between groups

using the options in the right panel. Select the KAL153 group (not the sequence)

and try to move it to the top of the tree by pressing the “Move up” button repeatedly.

Under theFile andHelpmenus are four tabs; click onSimPlot to go to the page
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Fig. 16.6 Starting Simplot. The back window represents the view after opening a sequence-alignment
file. The front window represents the view after expanding the groups. Each sequence
belongs to a group, which by default is named the same as the sequence itself.

where the similarity plots are performed. The other tabs, SeqPage, Bootscan,

FindSites andHistogram, are the input page, the bootscanning-analysis page,

the phylogenetically informative site-analysis page and the histogram page; the

bootscanning analysis is discussed later, and the Simplot documentation describes

the FindSites and Histogram analysis.

To do the first analysis, go to the Commands menu and select Query and

KAL153 in the pop-up list, which reflects the sequences in the order determined

in the SeqPage window. This first operation determines which of the aligned

sequences is compared to all the others (Fig. 16.7). To set the window size for the

similarity scanning to 400 bp, click on “Window Size” in the lower left corner

and choose 400 in the pop-up list. Keep the default settings for “Step Size”. To

perform the analysis, go to the Commands menu again and click on DoSimplot;

the result should be similar to Fig. 16.7. The analysis indicates that the KAL153

strain is a recombinant of subtypes A and B, as reflected by the legend key. The

parameters for this analysis can be changed in the Options (Preferences)
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Fig. 16.7 Comparing KAL153 to the reference sequences with Simplot. The back window represents
the similarity plot for KAL153 as query compared to all reference sequences. The front
window represents the similarity plot for KAL153 compared to subtypes A, B, and C. In this
plot, the approximate positions of the breakpoints are indicated using red lines that appear
by double clicking on the appropriate positions in the plot. When two breakpoint positions
are indicated, a quick tree can be inferred for the alignment slice in between the two red
lines.

menu. These include the options for the distance calculation (see Chapter 4 for

models of evolution), the bootstrap options and miscellaneous options. Change

the window size to 800 bases and compare the plot to the composite similarity

plot shown in Fig. 16.5. Another useful option is whether to exclude gap regions

from the analysis (usually recommended). Consult the Simplot documentation,

accessible from the Help (Contents) menu, for more information about the

different options.

Return to theSeqPage tab and deselect groups so that only A, B, C, and KAL153

will be included. Go back to the SimPlot tab. When doing the analysis, it should

be easy to pinpoint the recombination breakpoints. In fact, the user can click on
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the breakpoint positions in the plot (but not on the distance lines themselves) and

a red line will appear with the position in the alignment where the breakpoint is

approximately located. A second position, e.g. representing the second breakpoint

position can also be selected and a quick tree can be reconstructed for the alignment

segment in between the red lines using the “Quick Tree” command (Fig. 16.7).

The red lines can be removed by double clicking on them. Clicking on the similarity

lines will result in a pop-up window with the name of the relevant reference

sequence, the position, the similarity score and the possibility to change the color

of the line.

The next analysis we will perform is bootscanning. Make sure that in the Seq-

Page tab only the four sequences are still included for this analysis. Click on the

BootScan tab, select again KAL153 as query sequence and start the bootscan pro-

cedure by selecting DoBootscan from the Commandsmenu. The default options

for this analysis are the Kimura-two-parameter model (see Chapter 4), a transition/
transversion ratio of 2 and stripping positions that have over 50% of gaps in a col-

umn. These settings can be changed in the Options (Preferences) menu.

As the bootscanning begins, a running dialog appears in the bottom right corner

that shows for which window a tree and bootstrap analysis is being performed;

simultaneously, the plot grows on the screen. The analysis is fairly slow but can be

stopped using the Stop Bootscan button in the upper right corner (it is not

possible to continue the analysis after prematurely stopping it).

16.6.2 Exercise 2: Mapping recombination with Simplot

In this exercise, we will map the structure of two other HIV-1 recombinant strains.

The sequences under study are in the file A-J-cons-recombinants. fsa. Open the file

A-J-cons-recombinants.fsa and use the skills learned in the previous exercise to map

the recombination breakpoints in the sequences. First, analyze the recombinants

individually by deselecting the other group including a recombinant. Identify the

subtypes of the parental sequences using all reference sequences and a relatively

large window size (i.e. 600–800). Finally, map the recombination breakpoints with

only the parental sequences and a smaller window size (i.e. 300–400). To verify

the results, quick trees can be reconstructed for the putative recombinant regions

identified by Simplot or those regions can be exported and analyzed running

separate phylogenetic analyses with Phylip or Paup*. To export a region of an

alignment from Simplot, first select the region of interest (i.e. map the breakpoints)

using two red lines. Go to the File menu and select “Save Marked Slice of

Alignment as ...”. The format of the new alignment file can be chosen; for

example, the PHYLIP interleaved format. Table 16.2 shows the correct result of the

analysis.
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Table 16.2 Key to recombinant strain structures of Exercise 2

Strain Parental subtypes Breakpointsa

UG266 AD 5430, 6130, 6750, 9630

VI1310 CRF06-DF 2920, 3640, 4300, 5260, 6100

a There may be some variation in the exact coordinates depending on

the window settings used.

16.6.3 Exercise 3: Using the “groups” feature of Simplot

To focus on recombinant events between major clades, e.g. HIV-1 group M sub-

types, the “group” feature provides a way to specify groups of reference sequences

and perform quick analyses on their consensus sequences. This is done by adding

an extra NEXUS block at the end of a NEXUS-formatted alignment file (see

Box 8.4 in Chapter 8 for an explanation on the NEXUS format). This block speci-

fies groups identified by users or written by the Simplot software. The following is

an example of a group-specifying block at the end of an alignment:

begin RaySoft; [!This block includes information about groups identified by users of

software written by Stuart Ray, M.D.] groups group1 = ′“@A”:clRed(@0, @1, @2, @3),

“@B”:clGreen(@4, @5, @6, @7), “@C”:clYellow(@8, @9, @10, @11, @12), “@D”:clBlue(@13,

@14, @15, @16), “@F”:clGray(@17, @18, @19, @20, @21, @22), “@G”:clFuchsia(@23,

@24, @25, @26), “@H”:clTeal(@27, @28, @29), “@J”:clNavy(@30, @31), “@K”:clSilver(@32,

@33), “@CRF01”:clWhite(@37, @36, @35, @34), “@CRF02”:clWhite(@41, @40, @39, @38),

“@CRF03”:clWhite(@43, @42), “@CRF04”:clWhite(@46, @45, @44), “@CRF05”:clWhite(@48,

@47), “@CRF06”:clMaroon(@49, @50)’; end;

The NEXUS-formatted alignment contains 51 sequences. The sequences in the

group definitions are represented by “@” and a number according to their occur-

rence in the alignment (starting with 0). Sequences are grouped by bracket notation

and the group is preceded by a “@name” and a color code.

To start the exercise, open the file 2000-HIV-subtype.nex in SIMPLOT and

compare the SeqPage view to the example NEXUS block; this file contains the

same groups as defined in the block. Expand the groups to see how the program

groups all the sequences. When the user scrolls to the bottom of the window,

six groups are visible: CRF01, CRF02, CRF03, CRF04, CRF05, and CRF06. They

contain reference sequences for six currently recognized circulating recombinant

forms of HIV-1 (CRF01 AE, CRF02 AG, CRF03 AB, CRF04 cpx, CRF05 DF, and

CRF06 cpx). The F subtype actually consists of two groups, the F1 and F2 sub-

subtypes; split them into two groups. First, rename the F group to F1. Next, create

a new group using the buttons on the right, name it F2, and move it right under

the F1 group. Expand the F1 group and move the F2 sequences one by one to
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Fig. 16.8 Using and rearranging groups specified in the alignment file. In the 2000-HIV-subtype.nex
file groups have been specified by the inclusion of a NEXUS block. The F group has been
renamed to F1 and a new group, F2, has been created. Both groups are expanded. F2
sequences were moved to the F2 group.

the new F2 group using the buttons to the right or by dragging and dropping

(Fig. 16.8). Deselect all other CRF groups except the CRF03 group. Switch to the

SimPlot tab and perform a default parameter analysis with window settings

of 400 nucleotides/20 steps and CRF03 as the query. The program calculates by

default a 50% consensus for the groups and plots the similarity values to that

consensus. By clicking on the consensus panel in the lower part of the window, it

is possible to change the type of consensus used in the analysis. Explore the effect

of different types of consensus models (see the Simplot documentation for more

details).

16.6.4 Exercise 4: Setting up Rdp3 to do an exploratory analysis

This exercise demonstrates how to modify Rdp3 analysis settings and do a basic

exploratory search for recombination signals in a simple data set. Start Rdp3 and

open the file A-J-cons-kal153.fsa. Certain default Rdp3 settings are not ideal for

the analysis of HIV sequences and should be changed. Press the “Options”

button at the top of the screen. All options for all methods implemented in Rdp3



539 Detecting and characterizing individual recombination events: practice

Fig. 16.9 Working with Rdp3. The top left panel represents the alignment. The boxes in the bottom
left panel indicate the positions of the breakpoints and the sizes of recombinant tracts
that have been detected. The top right panel provides information on the duration of the
analysis and the number of recombination events identified. The bottom right panel shows
the recombinant tracts identified in the different sequences. The middle window is the
options window in which the sequences have been set to linear.

(including tree drawing, matrix drawing and recombination detection methods)

can be changed using the form that is displayed (Fig. 16.9). The main page of the

options form contains details of the general exploratory recombination detection

settings. The only thing that needs to be changed here is that sequences should be

handled as though they are linear. Although it would not invalidate the analysis if

sequences were handled as though they were circular, this setting will make analysis

results a little harder to interpret. Press the button with the circular arrow besides

the “Sequences are circular” caption.

At the bottom of the general settings form are a series of colored rectangles with

names next to them and a colored strip beneath them (Fig. 16.9). Note that some

of the names next to the rectangles (“RDP”, “GENECONV”, “MaxChi” etc.) have

ticks next to them. Each colored rectangle represents a different recombination
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signal detection method. These are all of the methods implemented in Rdp3 that

can be used to automatically explore and enumerate recombination signals in an

alignment. If you wish to explore an alignment for recombination with any of

the methods you should click on the “check box” next to the method’s name. A

tick in this box means it will be used, along with all the other methods with ticks

next to them, to explore for recombination signals in the alignment. Note that the

Bootscan and Siscan methods each have two boxes, only one of which is ticked at

the moment. These methods are far slower than all the other methods (except Lard)

and the option is given to use these as either primary or secondary exploration

methods. Primary exploration methods will thoroughly examine an alignment

searching for and counting all detectable recombination signals. Whenever signals

are found by the primary exploration methods, secondary exploration methods

will be used to thoroughly re-examine sequences similar to those in which the

initial recombination signal was found. All of the listed methods except Bootscan,

Siscan and Lard will automatically be used as secondary exploration methods. The

Lard method is so slow that Rdp3 only permits its use as a secondary exploration

method. The colored strip at the bottom of the form gives an estimate of the relative

execution times of the different methods. An estimate of total analysis time is given

above the bar.

For the moment all analysis options on this form will be left to their default values.

However, some analysis settings need to be changed for some of the particular

exploratory recombination detection methods. Click on the “RDP” tab and change

the window size setting from 30 to 60. Click on the “MAXCHI” tab and change this

window size setting to 120. Click on the “CHIMAERA” tab and also change this

window size setting to 120. Click on the “BOOTSCAN” tab and change the window

size setting to 500. Click on the “SISCAN” tab and also change this window size

setting to 500. Window sizes were increased from their default settings because HIV

sequences are relatively unusual in that they experience mutation rates that are so

exceptionally high that recombination signals are rapidly obscured. Increasing

window sizes increases the ratio of signal relative to mutational “noise.” It is

important to note that increasing window sizes also makes detection of smaller

recombination events more difficult.

Now that the analysis settings have been made, press the “OK” button at the

bottom of the form. If you shut the program down now these settings will be saved.

The saved settings will be used whenever you start the program and you will not

have to reset them at the start of every analysis.

16.6.5 Exercise 5: Doing a simple exploratory analysis with Rdp3

To start an exploratory analysis with the Rdp, Geneconv, and Maxchi meth-

ods in primary exploratory mode and the Chimaera, Siscan, Bootscan, and
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3Seq methods in secondary exploratory mode press the “X-Over” button at

the top of the screen. A series of colored lines will flash past on the bottom of

the screen and will be almost immediately replaced by a set of black and pinkish

boxes (Fig. 16.9). These are indicating the positions of breakpoints and sizes of

recombinant tracts that have been detected and provide some indication of the

p-values associated with detected events. These graphics are intended to give you

something to look at when the analysis is taking a long time, so don’t worry about

exactly what they mean right now. In the top right-hand panel you will notice that

information is given on how long each analysis method took to explore the data

(Fig. 16.9). You will also notice that under the “Unique events (recombi-

nation signals)” heading there are some numbers. The first number indi-

cates the number of unique recombination events detected by each method and the

second number (in parentheses) indicates the number of unique recombination

signals detected. The second number will always be equal to or larger than the first

number. If the second number is larger it will indicate that two or more sequences

in the alignment carry traces of the same ancestral recombination event(s).

In the bottom right panel you will notice a series of colored rectangles

(Fig. 16.9). Move the mouse pointer around this panel a bit. You will notice

that when it moves over some of the rectangles, information flashes onto the top

right-hand panel. The information displayed here relates to the rectangle that the

mouse pointer is positioned over. The rectangles that are “sensitive” to the mouse

pointer are graphical representations of individual recombination signals detected

in the alignment. Use the scroll-bar on the right-hand side of the bottom right

panel to move down so that the rectangles representing the sequence, KAL153, are

visible (move the scroll bar right down to the bottom). This is the recombinant

sequence analyzed using the query vs. reference method in exercise 1 above.

Click on the button with the circular arrow at the bottom of the bottom right

panel displaying the graphical representation of recombination signals. The caption

beside the button should now read “Methods” (Fig. 16.10). You will notice that

the color of all the rectangles has changed. They are now either grey, red, orange or

blue. The long rectangle at the bottom, that is intermittently dark and light gray,

represents sequence KAL153. The dark parts represent the “background” sequence

and the light bits represent tracts of sequence that possibly have a recombinant

origin (Fig. 16.10). As mentioned before, the colored rectangles directly beneath the

light gray bits represent the recombination signal. These rectangles also represent

recombination hypotheses delimiting the bounds of tracts of horizontally inherited

sequence. The labels to the right of the colored rectangles indicate sequences in the

alignment resembling the donor parents. As the “Methods” coloring scheme is

selected, the red, blue and orange rectangles denote recombination events detected

by the Rdp, Geneconv, and Maxchi methods, respectively. Pressing the left mouse
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Fig. 16.10 Detecting recombination events using Rdp3. The top right panel provides information that
relates to the recombination signal, the rectangle in a sequence in the lower right panel,
over which the mouse has been positioned. In the bottom right panel, the graphical infor-
mation representing recombination signals has been changed from “Unique sequences”
to “Methods.” The bottom left panel shows the bootscan plot for the recombination event
identified for KAL153. (After clicking on the first recombinant tract identified by Rdp in
KAL153 at the bottom of the lower right panel, the “Check Using” option was changed to
“Bootscan”.)

button in the window when the mouse pointer is not over a colored rectangle gives

you a legend explaining the color coding.

Move the mouse pointer over the red rectangle to the left of the panel and press

the left mouse button. What should now be displayed in the bottom left panel is

a graphical representation of the actual recombination signal used to detect the

recombination event depicted by the red rectangle. This plot can be interpreted

in much the same way as the Bootscan plots described in earlier exercises. To

see a Bootscan version of this plot look for the label “Check using” to the

right of the plot and press the little arrow besides the label, “RDP”. On the menu

that appears select either “Bootscan” or “Re-Bootscan” (Fig. 16.10). Now
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Fig. 16.11 Investigating breakpoint positions using Rdp3. The top right panel provides information
that relates to the recombination signal identified by Maxchi for KAL153. The bottom right
panel shows “All Events for All Sequences”, the option selected after right clicking
in the panel. The color key for the different methods is shown (by pressing the left mouse
button on an open part of the panel). The bottom left panel shows the Maxchi plot for
KAL153. By clicking on the right border of the first pink region, the alignment in the top
left panel jumps to around position 2800. By clicking “Show all sequences” next to the
alignment panel, the option changes to “Show relevant sequences”, which results in
the differently colored three sequences in the alignment panel.

try the Geneconv, Maxchi, Chimaera, Siscan, Phylpro, 3Seq, Topal, and Distance
options. (Be warned not to select the Lard option unless you are prepared to wait a

few minutes.) The distance plot is similar to the “simplots” described in previous

exercises.

Notice that most of the plots involve three lines (Fig. 16.11). This is because most

of the exploratory methods scan through the alignment successively examining all

possible combinations of three sequences. These three-sequence sub-alignments are

examined in two basic ways, which are reflected in the two different color schemes

used in the plots. The green–purple–yellow schemes indicate pairwise comparisons
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of sequences in the three sequence sub-alignments whereas the green–blue–red

schemes indicate triplet analyses of the three sequences in the sub-alignment where

the pattern of sites in each sequence is compared to the other two. For Lard and

Topal a single line is plotted because only a single statistic is used to compare

partitions of the three-sequence sub-alignment.

Point the mouse cursor at a region of the bottom right panel that has no

colored rectangles in it and press the right mouse button. One of the options

on the menu that appears is “Show All Events for All Sequences.”

Select this option and use the scroll bar to get back to the representation of

sequence KAL153. You should see that some more colored rectangles have appeared

(Fig. 16.11). These include light green, dark green, yellow, and purple ones. Use

the color key to see what methods these represent (Fig. 16.11, press the left mouse

button on an open part of the bottom right panel).

Going back to the left-hand recombinant tract of sequence KAL153, you may

notice that, of the five methods detecting this recombination signal, only the

Bootscan and Maxchi methods (dark green and orange rectangles, respectively)

agree on the position of the breakpoint to the right (or “ending breakpoint”).

This indicates that there is some degree of uncertainty associated with the place-

ment of this breakpoint. Click on the orange rectangle. The recombination signal

detected by the MAXCHI method is displayed (Fig. 16.11). Notice that the pur-

ple and green peaks in the plot coincide with the right breakpoint position. It

is worthwhile pointing out here that the peaks in Maxchi, Chimaera, Topal, and

Phylpro plots all indicate estimated breakpoint positions (note, however that for

PHYLPROplots the peaks face downward). These methods are geared to breakpoint

detection.

Look at the upper left panel where the alignment is displayed and look for the cap-

tion “Show all sequences.” Beside the caption there is a button with a circu-

lar arrow on it. Press this until the caption says “Show relevant sequences”

(Fig. 16.11). You will notice that the color-coding of the alignment has changed. On

the Maxchi plot double click on the right border of the pink region. You will notice

that this causes the alignment to jump to around position 2800. Use the horizontal

scroll bar beneath the alignment to scan backwards. Whereas most nucleotides are

grayed out, some are colored green, purple, and yellow (Fig. 16.11). The grayed

positions indicate nucleotides ignored by the Maxchi analysis. Nucleotide pairs

labeled yellow, green, and purple represent nucleotide positions contributing to the

recombination signal plots in the same colors below. As the peaks in the plot below

are green and purple, one would expect to see more purple colored nucleotide pairs

on one side of the breakpoint (in this case it is the left) and more green nucleotide

pairs on the other side of the breakpoint (in this case it is the right). Scan the

sequence left of the breakpoint and you will notice that although purple sites are
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Fig. 16.12 Tree reconstruction using Rdp3. On the right, the neighbor-joining (NJ) tree is shown for the
first 2801 nucleotides in the alignment. In the NJ tree on the left, the KAL153 is clustering
with subtype B.

most common there are also a lot of yellow sites. There is a particularly high ratio of

yellow : purple sites between alignment positions 2570 and 2780. These yellow sites

may represent either post-recombination mutations or sites at which the sequence

in the alignment identified as resembling a parent (A in this case) differs from the

KAL153’s actual parent. Rdp3’s uncertainty over the breakpoint position is due to

sequence A being a poor match for KAL153 in the immediate vicinity of the break-

point, as indicated by the different breakpoint positions estimated by the different

methods.

At the top of the screen press the “Trees” button. A window should appear with

two phylograms or trees in it (Fig. 16.12). Now whenever the left mouse button

is pressed on one of the colored rectangles in the bottom right panel of the main

program window, two trees will be automatically drawn. The left tree is drawn

using an alignment partition corresponding with the “background” sequence of

the recombinant sequence being analyzed (in this case it is KAL153). The right tree

is drawn from the alignment partition corresponding with the currently selected

“recombinant region” – i.e. the alignment partition bounded by the ends of the

tract of sequence represented by the colored rectangle currently selected. The

default tree that is displayed is an UPGMA without any bootstrap replicates. While

not necessarily the best type of tree for describing evolutionary relationships, it is

very fast to construct and allows a quick preliminary assessment of whether there

is any obvious phylogenetic evidence of recombination, i.e. you should look and

see whether the proposed recombinant does indeed “jump” between clades of the

two trees.
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To more rigorously explore the phylogenetic evidence in favor of a recombination

hypothesis you should at the very least draw a bootstrapped neighbor-joining tree.

To do this, right click on each of the trees and select the “Change tree type >

Neighbor-joining” option that is displayed on the menu that appears. Notice

that whereas there is 100% bootstrap support for a KAL153-B clade in the left tree,

there is 100% support for a KAL153-A clade in the right tree (Fig. 16.12). This

is good phylogenetic support that KAL153 has arisen following a recombination

event between A- and B-like viruses. These trees are constructed using the neighbor

joining method found in the Neighbor component of Phylip (Felsenstein, 1996).

You could also have constructed least squares trees (using the Fitch component

of Phylip; see Chapter 5), maximum likelihood trees (using Phyml; Guindon &

Gascuel, 2003; see Chapter 6) or Bayesian trees (using MrBayes; Ronquist &

Huelsenbeck, 2003; see Chapter 7), but be warned that large trees can take a

very long time to construct with these methods.

16.6.6 Exercise 6: Using Rdp3 to refine a recombination hypothesis

In this exercise we will use what you have learned to complete our analysis of

the A-J-cons-KAL153.fsa data set. It should become clear that the exploratory

analyses carried out by Rdp3 yield a set of recombination hypotheses that are not

necessarily consistent among different methods or not necessarily the absolute truth

about the recombination events that have left detectable traces in a set of aligned

sequences.

Rdp3 formulates its recombination hypotheses in a stepwise fashion. It firstly

scans the alignment for all the recombination signals detectable with the primary

exploratory methods selected, and then, starting with the clearest signal (i.e. the

one with the best associated p-value), it attempts to identify which of the sequences

used to detect the recombination signal is the recombinant. This is not a trivial

process and the program uses a variety of phylogenetic and distance-based tests

to try to figure this out. While the results of these tests are a completely objective

assessment of which sequence is recombinant, the program will incorrectly identify

the recombinant from time to time. When it has identified a putative recombinant

sequence, Rdp3 looks for other sequences in the alignment that might share evidence

of this same recombination event (i.e. the recombination event may have occurred

in some common ancestor of two or more sequences in the alignment and Rdp3 tries

to see if there is any evidence for this). From time to time it will miss a sequence, but

Rdp3 will usually be a bit overzealous grouping sequences it thinks are descended

from a common recombinant ancestor. It then takes the recombinant sequence

(or family of recombinant sequences) and splits it into two sections – one piece

corresponding to each of the bits inherited from the recombinant’s two parents.

The smaller bit (from the “minor” parent) is then added to the alignment as an
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extra sequence. The alignment of the split sequences with the rest of the alignment

is maintained by marking deleted bits of sequence with a “missing data” character

(as opposed to the conventional “A,C,G,T,-” characters). This process effectively

“erases” the recombination signal from the alignment and ensures it is not counted

again when Rdp3 next rescans the alignment from scratch for the remaining signals.

Once the remaining signals are detected, it again selects the best and restarts the

process.

The most important point of this explanation of how Rdp3 explores and counts

unique recombination signals is that the program does it in a stepwise fashion. You

can see the order in which signals were analyzed by moving the mouse cursor over

one of the colored rectangles at the bottom right of the screen. On the first line of

the information appearing in the top right panel you will see the caption “EVENT

NUMBER.” This number tells you the order in which this event was analyzed. The

number is very important because if the program has made any judgment errors

when analyzing earlier events, it might affect the validity of the conclusions it has

reached regarding the currently examined event.

When refining Rdp3’s recombination hypotheses after the automated phase of its

exploratory analysis, it is strongly advisable to trace the exact path the program took

to derive its hypotheses. You can do this by first clicking the left mouse button when

the mouse pointer is over an empty part of the bottom right panel and then using

the “pg up” (page up) and “pg dn” (page down) buttons on your computer

keyboard to go through events in the same order that the program went through

them. Do this and navigate to event 1 using the “pg up” and “pg dn” buttons.

Don’t be surprised if some events are skipped – these represent recombination

signals that were detected by fewer methods than the cut-off specified in the

“general” section of the options form you looked at earlier.

Event one is the recombination signal we analyzed earlier and persuaded our-

selves was, indeed, genuine evidence of a recombination event. Move the mouse

cursor over one of the colored rectangles representing the event and press the right

mouse button. On the menu that appears select the “Accept all similar”

option. This allows you to specify to Rdp3 that you are happy to accept that this

is genuine evidence of recombination and that it does not need to concern itself

with this event during any subsequent reanalysis cycles. Press the “pg dn” button

and you will be taken to event 2. Assess the evidence for this event the same way

that you did event 1. Notice the blue area of the recombination signal plot. This

specifies that one of the three sequences being examined in the plot contains miss-

ing data characters – these missing data is in the “blued-out” region of the plot.

The missing data characters are those introduced by Rdp3 into the background

KAL153 sequence to keep it in alignment with the rest of the sequences after the

recombination signal yielding the event 1 was analyzed.
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After looking at event 2, move on to subsequent events. One of the following

events has red capitalized text in the top right panel, “POSSIBLE MISSALIGN-

MENT ARTIFACT”, which is particularly worrying. In the plot window for this

event double click on the pinkish region specifying the recombinant tract. If you

are not on the “Show relevant sequences” view of the alignment display,

change the alignment display to this setting now (see the previous exercise). It is

quite plain that there has been unreliable alignment of the three displayed sequences

in the area identified as being a potential recombinant tract. Recombination sig-

nal detection is particularly error prone in poorly aligned sequences and it would

be advisable to mark this evidence of recombination as being of dubious quality.

To do this, move the mouse pointer over the flashing rectangle, press the right

mouse button and select the “Reject all similar” option on the menu that

appears. The rectangle and its associated caption should become gray.

If you navigate through the remainder of the signals you will notice both that

their associated p-values are just barely significant and that they are only detectable

by the Chimaera and Maxchi methods (see the Rdp3 manual for specific differences

between both methods). These two methods are the most similar of the methods

implemented in Rdp3 and supporting evidence for one by the other should per-

haps not carry as much weight as if it was provided by another of the methods.

Nevertheless these remaining signals may indicate some genuine evidence of recom-

bination. It is not entirely improbable that trace signals of ancient recombination

events might be detectable in the sequences identified.

If you are feeling particularly brave, you may want to attempt an exploratory anal-

ysis of the more complicated recombinants in A-J-cons-recombinants.fsa. Besides

some obvious inter-subtype HIV recombination events, an exploratory analysis

will reveal that these contain some pretty good evidence of other, currently unchar-

acterized, recombination events.
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