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Organizing is what you do before you do something, so that when you
do it, it is not all mixed up.

A.A. Milne

his chapter is split into two sections and deals with how to design an
ffective experiment. First, we will discuss the principles of sampling to
ow how different sampling regimes affect the results we obtain. Then, we

Principles of Sampling
1.1 First, Catch Your Worm!

nalyse them. How we actually obtain these data is not a trivial matter. There
re practical as well as statistical issues. Let us consider the challenge.

\S0, we run the risk of cutting some of them, which we would then not
: able to use. Would there be a bias towards cutting and dlscardmg longer

\ which individuals we plck

How do we decide which ten worms to pick up from the many thousands
able? If we collect them from the footpath because it is convenient, we

3ht have individuals that can move through compacted soil and might
fore be smaller than average. We want a sample of ten worms that is
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ona method to pick ten worms is called sampling, This chapter will describs
alternative methods of sampling, together with their strengths and weak.
nesses, and then discuss the parts of a good experimental design.

4.1.2  The Concept of Random Sampling

We have already discussed this in some detail in Chapter 1, Section 1.24,
The purpose of random sampling is to ensure that each individual in the
population of interest has an equal chance of being selected (no biag
towards certain individuals). We usually take a random sample (in this
case, of ten observations). This may be unrepresentative because, by chance,
no observations have been selected from a distinctive part of the popula-
tion. Consider what we might infer about the heights of athletes in general
if our sample site was a basketball court as opposed to the jockey’s enclo-
sure at a race track. These are obvious biases, but we may not know the

biases of our population before we sample them, so we need to take

general
precautions.

4.1.3 How to Select a Random Sample

Let us consider a worked example of how to generate a random sample. For
simplicity we will imagine that a small square contains 400 bushes, conve-
niently arranged at 1 m intervals in 20 rows and 20 columns. Figure 4.1 below
shows the weight of fruit (g) from each bush. We need to work out how to
select a random sample without knowing anything about the distribution of
the population.

How could we do it badly? One of the easiest ways is to walk around and
sample the first ten bushes we see. Using this method, we would probably
have a bias towards the biggest, most conspicuous, bushes. Our sample of
bushes (and probably the yield) would be bigger than the population aver-
age, so from our sample we would infer that bushes have a larger yield than
they actually do. Also, our bushes would probably all be on the edge, so we
may sample bushes that are not competing as much for water and space.
This shows how problematic sampling can be, and why time spent planning
is not wasted.

To select a position at random we could use the last two digits from the
random number button on our calculator. If this gives 0.302 and then 0.420,
this would identify the position in row 2 and column 20 (2 m down from
the top of the field, and 20 m from the left). If we select a random sample
of 16 positions at which to harvest the crop and measure its yield, we
could get the selection shown in Figure 4.1. Note that, by chance, no
positions have been selected from the top right or bottom right of the field,

where crop yields happen to be low. So, this sample is random, but
unrepresentative.
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{1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
1 8 7 12 9 6 8 12 14 7 4 5 4 3 7 4 2 4 6 8 7
o| 16 18 9 10 7 9 14 10 6 3 4 8 5 6 5 3 3 4 6 6
gl 22 15 17 14 12 13 16 9 4 5 6 5 7 7 6 5 4 5 7 9
4l 19 16 13 10 8 9 12 9 8 7 9 10 9 8 3 38 7 10 13 10
5| 16 12 12 9 5 7 10 12 6 8 7 6 6 5 6 4 6 7 9 10
gl 19 16 11 7 8 10 14 10 16 15 17 16 18 17 19 22 24 20 19 15
7| 22 18 16 19 12 19 17 12 18 21 20 19 25 22 24 27 20 17 22 14
gl 25 14 16 12 13 15 16 14 23 25 28 33 30 27 31 25 22 20 24 29
9| 20 17 14 16 17 19 20 24 25 27 32 40 42 35 35 37 29 28 27 35
10 - 22 19 25 29 32 36 30 35 40 41 47 45 40 32 33 27 27 31 30
11| 29 30 27 32 37 42 45 45 43 51 53 52 48 39 42 87 33 29 27 20
12| 31 35 38 45 47 44 49 51 B0 58 56 50 41 43 30 27 29 23 21 19
13| 28 33 30 87 40 39 42 46 51 48 44 40 37 30 35 22 21 17 14 16
14 26 29 32 35 35 31 29 32 40 37 35 31 16 19 20 11 12 10 13 12
15| 22 28 31 29 28 27 25 27 16 22 19 16 8 4 2 3 6 5 7 10
16| 21 22 28 26 31 27 22 24 20 14 10 8 6 6 4 7 4 3 1 5
17 17 26 30 31 31 27 25 33 12 8 7 6 6 4 2 1 0 0 0 O
18| 17 24 31 33 27 22 19 17 14 10 9 7 3 0 3 1 0 4 2 0
19({ 19 19 21 17 15 16 16 19 16 13 10 12 8 3 1 0 3 2 5 3
20( 23 21 17 14 13 19 23 17 12 11 6 9 7 3 1 0 1 1 2 4
FIGURE 4.1

Random sample of 16 bushes. Bold numbers indicate samples.

4.1.4 Systematic Sampling

In systematic sampling, sample units are chosen to achieve maximum dlls-
Persion over the population. They are not chosen at random but regularly
Spaced in the form of a grid (Figure 4.2).

The first point of a systematic sampling grid should be chosen at re?ndom
S0 that we do not generate a systematic bias, for example, always miss out
the edges of a site. Once this is chosen (for example, column 15, row 2 in
Figure 4.2), the other sample points are chosen in a fixed pattern from this
Point, and so they are not independent of each other. .

Much use is made of systematic sampling. For example, every 10th tree in
€very 10th row may be measured in forestry plantatloqs. As long' as the
Mumber of sample units is high, there is little risk of comgdmg with any
€nvironmental pattern that might affect tree growth (e.g., drainage channels),
and the data are often treated as if they were from a random sample.
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14 26 29 32 35 35 31 29 32 40 37 35 31 16 19 20 11 12 10 13 12
15 22 28 31 29 28 27 25 27 16 22 19 16 8 4 2 3 6 5 7 10
16| 21 22 28 26 31 27 22 24 20 14 10 8 6 6 4 7 4 3 1 5
17( 17 26 30 31 81 27 25 33 12 8 7 6 6 4 2 1 0 0 0 0
18( 17 24 31 33 27 22 19 17 14 10 9 7 3 0 3 1 0 4 2 0
191 19 19 21 17 15 16 16 19 16 13 10 12 8 3 1 0 3 2 5 3
20028 21 17 14 13 19 23 17 12 11 6 9 7 3 1 0 1 1 2 4

FIGURE 4.2
Systematic sample of 16 bushes.

In social surveys, every 50th name on the electoral roll might be selected as a
person to be interviewed. This is very convenient. However, it is important to be
aware of the possibility of bias. If flats were in blocks of 25 and were all occupied
by couples, we might only interview people who lived on the ground floor!

Systematic sampling is very efficient for detecting rare events because we
are less likely to miss one such event (perhaps a fallen tree within a wood
or a molehill in grassland) than if the sampling has a random element. Also,
because we are more likely to include both very small and very large indi-
viduals, the mean of a homogeneous population is often close to the true
mean but has a large standard error.

4.2 Comparing More Than Two Groups

So far we have learned how to compare means of two groups. Very often,
however, we wish to compare the mean performance of several different
categories. For example:

qning an Experiment

Do four fertilisers differ in their crop yields?
Do three species of plant differ in their ability to colonise loam?
Do five drugs differ in their ability to cure disease?

this section we will see how to design experiments that will answer such
~estions. Let us start by designing an experiment to investigate the effect
g fertiliser on yield of barley. We will have three treatments (A, B, and O).

e term treatment is used to describe what the crop receives — so we are

going tO design an experiment with three treatments.

4,3 Principles of Experimental Design

4.3.1 Objectives

It is good practice to write down the background to your experiment. This
consists of why you are interested in the problem and your general Ob)&CthE.
Itis good to include any important aspects of the biology of your expeqmental
organism, or any practical considerations that may affect the exper‘lme.ntal
layout. Do you need to leave space between plots to avoid cross—contaml.natlo.n?
Do you need to leave access space for watering or feeding? It is best to identify
any biological factors that will affect your layout early on.

4.3.2 Replication

Replication gives us an indication of the variation of results and, in this way,
an idea of the accuracy of our estimates. Suppose you are a policeman
attending an accident. If you arrive on the scene and five separate witnesses
tell you that the car was blue, you would be much more confident that the
car was blue than if there were only one witness. Similarly, suppose four
Witnesses say blue, and one says green. You would still probably conclude
that the car was blue, but with less certainty than before. Replication has
also given you an idea of the variation. If you had spoken to the first witness
(green) and stopped there, you would have concluded the wrong color and
have no idea about the spread of opinion.

This concept is illustrated graphically below (Figure 4.3). Note how
Increasing the number of replicates dramatically changes the relationship
and the inferences you would draw.

So, how do we replicate each treatment in a planned experiment (Figure 4.4)?

Itis no good just splitting a field in three and applying a different fertiliser
to each third (Figure 4.4a). Perhaps the natural fertility of the soil is higher
at the bottom of the slope, so whichever fertiliser is allocated to that position
Will appear to be even better than it really is in comparison with the others.

ere is only one replicate of each treatment so how can we tell whether the
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FIGURE 4.4

(a) Allocating treatments without replication. (b) An experiment with four replicates, each
randomly allocated to a position on the field.

allocate treatments) to four of them, we will improve matters (Figure 4.4b).
We now have four replicates of each treatment.

We can compare the yields from the four plots receiving organic fertiliser
treatments. Any variation in these yields is caused by random variation in
conditions across the site. The same is true for variation in the four yields
from treatment B and, separately, from treatment C. So, replication has given
us three separate estimates of the background or random variation in the
yields of plots receiving the same treatment.

The greater the replication we have (perhaps six plots of each treatment instead
of four), the more independent pieces of evidence we have about the fertilisers’
effects. This means that we are able to detect smaller real differences in yield
between the populations from which we have taken our samples. We can achieve
increased precision in our estimates of the population mean yields and of dif-
ferences between them by having more replication. A more technical discussion
on choosing how much replication is needed to be found in Appendix B.

4.3.3 Randomisation

The four replicate plots of each treatment must be allocated to positions in
the field at random to avoid the unknown biases we discussed before (Section
4.1.3). This is achieved by numbering the 12 plots from 1 to 12 (Figure 4.5a).
We then use the random number button on the calculator (or use random
number tables) to select 4 of these plots for treatment A (e.g., the numbers
0.809, 0.312, 0.707, 0.836, and 0.101 allocate this treatment to plot numbers
9,12, 7, and 1; we ignore the value 36 from 0.836 because it is greater than
12) (Figure 4.5b). Then we select four more numbers for treatment B, and
treatment C must go on the four plots that remain, which will be random
because we randomised A and B.
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(@) (b) (c) (d)

1 2 A A A c
3 4 e
B c B
5 6 B B C
7 8 A A B A B
9 10 A A B A B
11 12 A
A c A
FIGURE 4.5

(@) Numbering of plots to enable random allocati i
ety allocation of treatments (b-d) Allocating each treat-

As with §electing a sample from one population (Chapter 2), we can think
of randqrrusation in allocating treatments to experimental uni/ts as an ins
ance Pohcy. It protects us from obtaining estimates of treatment means t}l: r;
are biased, that is, consistently higher or lower than the population meaa
This could arise because all the plots for one treatment happened to be 1n :
the corner of the field where the crop was damaged by frost. The re licateI;
of ea.ch .trea.tment must be interspersed (mixed up) over the site aﬁd ran-
domisation is a good way of achieving this. Most statistical analys;es assume
that you haye randomised experimental units to the treatments. Very rarely,
ran@omlsatlon may produce an arrangement of plots in which say, the foﬁrl
replicate plots of one treatment are grouped together at the ‘t;ottc;m of the
slope. Statistically, this would be fine because randomisation works to
ensure that experiments in general are bias free. However we are onl
interested in this particular instance of the experiment, whic,h will cost u}sl
time and money. In the case of randomisation producing a clear bias, it
would be prudent to rerun the randomisation process and reallocate I(;ts
Only do this in very clear cases, however. Humans are very good at dre)tect-

ing patterns, and as a consequence, we tend to thi
; ; o think we see clusters in
patterns that are actually truly random. o

4.3.4 Controls

Should we have a control in an experiment? A control is the name given to a
treatment in which nothing is applied to the plot. We can then see whagt changes
take place naturally during the experiment. Statistically, we treat this asgan
extra treatment. A variation on this idea is a procedural control. For example
in a drug trial, we might inject three different drugs into peo'ple (the trgat-’
ments), 'and the control would be injecting saline. This means that we are not
comparing people who have had an injection with people who have not

janning arn CXperimertt

So far we have been considering a simple experiment in which fertilisers are
oplied to a field. Imagine a more complicated experiment in which we are
aterested in the effect of sheep grazing at different times of year on the number
f wildflower species in grassland. We can fence off each plot to make sure that
e sheep are in the right place at the right time each year for, say, 5 years.
However, the grassland present at the beginning will contain a range of species
_haracteristic of its location, soil type, and previous management (for example,
always grazed with sheep or was growing maize 2 years ago). So, if we carried
out the same experiment on another site 50 km away, the species present would
be rather different. Thus, having control plots on each site is useful. It tells us
what happens on each site in the absence of any grazing treatments. We can
hink of it as providing a standard comparison between the two sites.

4.3.5 Blocking

What we are doing in experimental design is making it easy to partition
variation into what we are interested in and what we are not. We will cover
in greater detail in Chapter 5, but in the meanwhile, it is important to
introduce the concept of blocking. In Section 4.3.3 we looked at randomis-
ation as a way of avoiding experimental biases. Another way to do this is
by blocking, and the two techniques are routinely used together. Whereas
andomisation is used to control for unknown biases or variation, blocking
is brought in to control for known or likely differences between replicates.
~ With the completely randomised distribution of treatments earlier in this
chapter, it is quite likely that we will allocate two replicates of a particular
treatment to the field margin at the top of the slope and none to the margin
at the bottom. Therefore, our results for each fertiliser could be influenced
“as much by the sample location as the effect of fertiliser. If we were to carry
“out such an experiment many times, effects would even out because, perhaps
‘next time, the same treatment might be overrepresented at the bottom of the
slope. However, if we have only the resources for one or two experiments,
“We need to find a way of overcoming known variations like this. Look at
the two following graphs; see how our interpretation changes if we know
that the higher values in each treatment come from wetter soil. If we can
find a way of including this information in the analysis, then the error (the

If we know that the soil is dry at the top of our field and wet at the bottom,
then we should block for this rather than randomise. We have four replicates,
~ 80 it makes sense to divide the field into four blocks and represent each of
our three treatments in each block. We should still randomise the position
of treatments within block, but the main (known) bias is already dealt with
by block. The logic of blocking is that rather than averaging out a bias, we
are investigating it like a treatment, so that we work out the effect it has and
then discount it. How we analyse a design that includes a blocking factor
‘Will be covered in Chapters 5 and 6.
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How our understanding may be further improved by including the information that soil moisture varies across the field.
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Janning an Experiment

Top (a) (b)
Block 1 Block 1
Block 2 Block 2
Block 3 Block 3
i Block 4 Block 4
Bottom
FIGURE 4.7

A randomised complete block design; each treatment is present in each block, but the order
within each block is randomised.

A randomised complete block design (Figure 4.7) and reduces random
variation and improves our ability to detect differences between treatments.
Each quarter of the experiment is a “block,” and each block contains a complete
set of all the treatments within it. Each block is selected so that the conditions
are even (or homogeneous) within it but they differ between one block and
another. So, if the preceding diagram represents a field the top block might be
on slightly sandier soil, and the block at the bottom might be more shaded
because of a hedge. These differences should not be too great, as blocking is
just a way of getting rid of confusing variation and will not give reasonable
results unless the whole experiment is conducted on a reasonably uniform site.

How should we allocate the four treatments to the three plots within each
block? This must be done using random numbers (as in Figure 4.7), but here
we would generate random numbers from 1 to 3 to ensure that each treat-
ment has an equal chance of occurring on each plot. We number the four
plots in each block from 1 to 3. Then we use the random number button on
our calculator. If the last digit is 2, we allocate treatment A to plot 2; if number
1 appears next, we allocate treatment B to plot 1. This leaves plot 3 for
treatment C. Repeat this process for the next block.

Blocking should be used wherever there may be a trend in the environment
that could affect the feature in which you are interested. For example, in a
glasshouse heating, pipes may be at the rear of the bench, so one block should
be at the rear and another at the front of the bench. Even in laboratories and
growth cabinets there can be important gradients in environmental variables
?hat make it worthwhile arranging your plots (pots, trays, petri dishes, etc.)
Ito blocks. It is common to block feeding experiments with animals by putting
the heaviest animals in one block and the lightest ones in another block. This
helps to take account of differences in weight at the start of the experiment.
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4.4 Recording Data and Simulating an Experiment

Considering how much time and resources you will spend on your experi-
ment, it should be compulsory to simulate it before you start. Think aboy
what you are going to measure and how you should lay it out in your Iap
or field notebook. If you are really organised, it is worth creating a data table
and printing out copies of it to stick in your notebook. Try to copy the dat,
onto a spreadsheet as soon as possible. Aside from providing a copy, thig
will highlight mistakes while the data is fresh in your mind. Photocopy data
sheets whenever you can; if you cannot do this in the field, a useful substitute
is to take digital photos at the end of every day. These are usually of suffi-
ciently high quality to be able to recreate your data if it gets lost. In the req]
world, pages get wet or torn out, so do not forget to number every page or
subject (worm, plant, bacterial plate).

A huge number of undergraduate projects cannot be analysed at all or at
least in the way that was anticipated. This may be due to design, or loss of
data points. Data points are lost by plants or animals dying, experimental
plots getting disturbed, or by someone clearing out the fridge in the lab.
Murphy’s Law is alive and well in most experiments. Although in principle
we should be able to get the design correct, it is a good idea to create dummy
data using random numbers, and use these to try out your proposed analysis.
If the computer does not let you run the analysis you want, it may be that
you have insufficient replication or some other problem that you could fix
before starting the experiment. If this analysis works, try deleting randomly
selected data points to see how robust your design is. If the loss of one or
two data points prevents you from running the test you want, you might
want to reconsider the design. In addition to the factor of interest, take note
of unusual observations that might influence the results. You might be able
to account for them later, or it could lead onto another study:.

The take-home message is that time spent planning is never wasted. Dis-
cussing your experimental design with an experienced researcher will iden-
tify most pitfalls and probably throw up more ideas to incorporate. Having
a clear idea of what you are doing and exactly what to record saves a lot of
time in the field or lab. If nothing else, carry out a dummy analysis to see if you
can analyse your experiment according to your plans.

I

4.5 Simulating Your Experiment

You can create dummy data and analyse them for very complicated exper-
iments. However, we will show you how to do this with a simple experi-

mental design which can be analysed with a test we have already covered
(the two-sample t-test).
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Suppose you have been asked to carry out an experirfn?nt to('con;fta;zct;e)
i S
i t insect diets on the amount of frass (insect
e ilabl hoose which diet each
i and you can choo
duced. You have 18 insects available, . :
il::ect receives. The data collected is the dry weight of frass produced by

each insect.

4.5.1 Creating the Data Set

ites and 2 treatments, so we need the data in Table 4.1.

Ws{;ﬁl \éinl ?ys}ifeeihis in, or get MINITAB to do .it for you. Label t}'iae colusri\:rse,
and then go to Calc>Make Patterned Data> Simple Set Of-N;;n etrs>s g
atterned data in: Insect From first valuel: 1 To last value: 18 In steps of:

i : 1 List whole sequence: o
Ll]s;oeili?s :agle:lifl. flofl'ls":eatment, L?sing first value 1, ‘last Yalue 2, and _}}ISFm‘g
each value once, and you should getltheudatat ;zirct)}\ildseictrleént (’)fzta)l; 4t.rle.at n?eS nlts
fine, but we clearly have not randomly a ocated the el dom.
, this by making use of a trick in MINITAB: Calc>Ran
‘I;J:t::;aic}))le fromyColumng(s)>Sample 18 rows from column}fs)z T{eaéﬂzﬁt
Store samples in: Treatment. Make sure that thg sample wit] rept acu e
box is not checked. This randomises treatment with respect tc:1 mslf.c nourself,
and you should get something like Table 4.2. Note that if you g this ye " the,

you should get something similar, but not exactly the same becaus

randomisation process.

TABLE 4.1

Insect Number and Treatment for Insect
Experiment

Insect Treatment

N O Ul W=

—
jary
NN NN NRNORNNDNS =S s
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! Analysing the Simulated Data

| i i 3, and you should get
7 two-sample t-test as described in Chapter 3, Id ge
' o'ut asimilar topthe following output. The two groups are not signifi-

TABLE 4.2
Treatments Randomised to Insects

Insect Treatment ot . : :
~ - lv different, but this is hardly surprising, as we have just 51m1.11ated the
: : y. sing the same mean for each group. What this does tell us is that we
g f analyse the data in the way we intended and that there are no nasty
. 2 _\:. surprises.
5 2
o 1 t-Test and CI: Frass Weight, Treatment
d , t for Frass weight
8 2
4 . N Mean StDev SE Mean
5 2 9 12.08 1.29 0.43
¥ y 9 11.96 1.38 0.46
12 1
13 2
14 2 =mu (1) mu (2)
15 2 stimate for difference: 0.120598
2 . CI for difference: (1.217092, 1.458289)
= % t-Test of difference = 0 (vs. not =): T-value = 0.19
= : >-yalue = 0.850 DF = 15
TABLE 4.3
Simulated Data for the Insect Experiment
Insect Treatment Frass Weight
1 1 12.9013
2 2 12.6835
3 1 10.2610
4 2 9.7528
5 2 11.3427
6 1 14.1971
7 1 11.6366
8 2 13.8637
9 1 12.5817
10 2 13.8720
11 1 11.4658
12 1 11.4404
13 2 11.1036
14 2 10.9567
15 2 12.9425
16 2 10.3909
17 2 12.4214
18 1 12.4716

Finally, you need to simulate the data (the things you will record in the
experiment). Do this by: Cale>Random Data>Normal>Generate 18 rows of
data Store in column(s): Frass weight Mean: 12 Standard deviation: 1.0,

If you already have an estimate of the mean and standard deviation of what-
€Ver you are measuring, include it for realism, but it does not matter too much.

The simulated data are shown in Table 4.3,




