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Premature optimization is the root of all evil.

(Donald Knuth)
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Introduction

When studying a set of related nucleotide or amino acid sequences, we are in-

terested in several questions: What does the underlying tree look like? Which

positions in the sequences are homologous? What are the characteristics of

the evolutionary process that led to these sequences? How reliable are our

deductions? We normally try to tackle these questions by first constructing

an optimal multiple alignment on which we then base all our inference on

the tree topology and the parameters of the substitution model we prefer.

Due to highly elaborate alignment (e. g. Thompson et al., 1994) and tree re-

construction programs (e. g. Swofford, 1991; Felsenstein, 1993; Strimmer and

von Haeseler, 1996), this way of proceeding is fast and certainly works well

in most cases. Nevertheless, it has several drawbacks: Firstly, as we did not

attempt to model the insertion and deletion process explicitly, we can hardly

make any statements about the nature of this process. Secondly, in order to

find an optimal alignment we have to specify mismatch and gap penalties,

thus making implicit assumptions about the plausibility of substitutions, in-

sertions and deletions. Thirdly, multiple alignment methods either align the

sequences according to a prespecified phylogenetic tree or ignore their evolu-

tionary history (cf. Gotoh, 1999). Either way, our estimate of the phylogeny

will be affected. Finally, our knowledge of the statistics of alignment scores

and of the behaviour of the heuristics which are used to come close to the
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optimum is at the moment very limited. Thus, the problem of phylogenetic

analysis is twofold: Our estimates of phylogenies and model parameters are

influenced by the multiple alignments on which we base our studies, yet we

do not know how to judge alignment errors and thus have no clue about the

reliability of our estimates.

This thesis deals with some of these problems arising at the junction

between sequence alignment and phylogeny reconstruction: After giving a

brief overview over some basic concepts and methods of phylogenetic analysis

in chapter 1, we will study the influence of global sequence alignment on the

estimation of pairwise distances (chapter 2) as well as on the reconstruction

of phylogentic trees (chapter 3). Chapter 4 gives an introduction into the

application of insertion and deletion models. These models are then used to

simultaneously reconstruct phylogenies and multiple alignments (chapter 5).

Finally, we describe in the appendices the usage and some implementation

details of the main programs that were written for this thesis as well as some

possible generalizations of the models applied.
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Chapter 1

Basics of phylogenetic inference

The problems dealt with in this thesis originate from the study of phyloge-

netic relationships on the basis of biological sequences. In this chapter, we

give a brief introduction into the field and its terminology. At the center of

all our studies are sets of related biological sequences. These sequences may

be either DNA sequences, proteins or all kinds of RNAs, but for the purpose

of this thesis they are simply thought of as strings whose letters belong to the

canonical alphabets of nucleotides or amino acids (cf. Voet and Voet, 1995).

Thus, we are ignoring any biochemical features of nucleotides or amino acids,

and when we speak of DNA, we will always mean one strand of the double

helix. We consider sequences to be ‘related’ or ‘homologous’ if they derive

from a common ancestor. Due to the way that DNA is replicated, all the

sequences which stem from one ancestral sequence are related by a bifur-

cating tree: One sequence replicates and produces two daughter sequences,

each of these daughter sequences replicates after some time and, in turn,

produces two daughter sequences and so on. Normally we do not have the

whole progeny of an ancestral sequence at hand but only a small subset. Yet,

since picking a subset of the progeny corresponds to pruning the tree, the
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relationship of this subset’s sequences is still adequately described by a bi-

furcating tree which is called the sequences’ phylogeny or phylogenetic tree.

Genomic rearrangements like recombinations, inversions or transpositions do

however obscure this tree-like structure or complicate sequence comparison

by destroying the sequences’ original order. Throughout this thesis we will

therefore assume that these rearrangement events have already been sorted

out and we will only focus on sequence changes that occur by substitutions1,

insertions or deletions. In the following, we describe some of the methods

which lead from such data sets of unaligned biological sequences to estimates

for the underlying trees.

1.1 Sequence alignment

In order to be able to apply the tree reconstruction methods that are intro-

duced in the next section we have to know which bases of the sequences are

homologous and which ones are only present in a subset of the sequences

due to insertion or deletion events. We will depict any assertions about the

homology or the lack of homology between bases of different sequences in

the form of sequence alignments. A sequence alignment is simply an array

where each row corresponds to one of the sequences and where those bases

which are assumed to be homologous to each other stand in the same column

(see figure 1.1). We get such an alignment by inserting special characters —

throughout this thesis we will use the underscore — into the sequences so

as to make all of them have the same length. In the case that our alignment

covers the entire sequences we speak of a global alignment. If we are only

making assumptions about the relatedness of some parts of the sequences

1In this thesis we will use ‘substitution’ as synonym for ‘point mutation’.
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Figure 1.1: Top: A phylogenetic tree depicts the relationship of a set of sequences.

Center: The homology relations of the individual bases that result from sequence

evolution via point mutations, insertions and deletions can be represented as a

multiple sequence alignment. Bottom: The observables of this process are just the

unaligned sequences.
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we call it local alignment. An alignment which only has two rows is called a

pairwise alignment. If it has more than two rows we call it a multiple align-

ment. A whole discipline of bioinformatics is focusing on the development

and the study of algorithms that find the most plausible alignment for a set

of sequences. Before we describe how this is done for multiple alignments we

treat the case of pairwise alignments.

A simple way to judge a global pairwise alignment A is given by the

Needleman-Wunsch scoring function (Needleman and Wunsch, 1970):

SNW (A) = αa(A) + βb(A) + γc(A). (1.1)

Here, a(A) is the number of matches in the alignment A, i. e. the number of

columns of A where the base in the first row coincides with the one in the

second row, b(A) is the number of mismatches, i. e. the number of columns

where the bases in the two rows differ, and c(A) is the number of gaps,

i. e. the number of columns which contain a gap symbol (‘ ’) either in the

first or in the second row. The parameters α, β and γ are called the match,

mismatch and gap score respectively and are used to weigh the plausibilities

of match, mismatch and gap events. Usually β is chosen to be smaller than

α, and γ is set to a value smaller than β/2, i. e. a match scores higher

than a mismatch and a mismatch scores higher than two gaps. An optimal

Needleman-Wunsch alignment is an alignment where SNW (A) reaches its

maximum and which therefore maximizes the sequences’ similarity. For

two sequences x and y of length n and m respectively there are however

already
(

m+n
n

)
traces (cf. Ewens and Grant, 2001), i. e. groups of alignments

which have the same combination of aligned residue pairs although different

orderings of the indels. Since this number is growing very fast with n and m,

it is not feasible to find the maximum of SNW (A) by computing the score of

every thinkable alignment. Yet, it is also unnecessary. Suppose we drew a
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little arrow on the grid of integers Z
2 for every position of a global alignment

of x and y. Suppose also that each of these arrows started at the grid point

whose coordinates are given by the lengths of the prefixes of x and y which

contain every base to the left of the respective alignment position and that

it ended in the grid point which corresponds to the lengths of x’s and y’s

prefixes which end immediately after the bases of the respective alignment

position. It is easy to see that what we would get is a directed acyclic graph

with the following properties: it starts at grid point (0, 0), ends in grid

point (n, m) and the coordinates of its nodes increase monotonically and in

steps of at most 1 (see figure 1.2 b©). We will call such an object the path

representation of an alignment or simply an alignment path. The union of

all possible alignment paths of two sequences yields the so-called alignment

graph (see figure 1.2 c©). The structure of this alignment graph now suggests

finding the optimal Needleman-Wunsch alignment via the following dynamic

programming2 algorithm (Gotoh, 1982): Let Smax(i, j) be the score of the

optimal Needleman-Wunsch alignment of the first i positions of x and the

first j positions of y. Obviously, Smax(n, m) is the score of the optimal

Needleman-Wunsch alignment of the entire sequences. Like every other

alignment path of x and y the optimal one will end in node (n, m) of the

alignment graph and it will have entered this node coming from one of this

node’s three neighbours (n − 1, m), (n, m − 1) and (n − 1, m − 1). In the

latter case the last edge of the alignment path corresponds to a match or a

mismatch depending on the last bases of x and y whereas the first two cases

stand for alignments which end with a gap in y or in x respectively. Thus,

we get the following equation for the score of the optimal alignment

2Dynamic programming (Bellman, 1957) is an optimization strategy that decomposes

large problems into sub-problems whose optimal solutions are already known.
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Figure 1.2: The graphical representation of pairwise alignments. a©: A global align-

ment of the two sequences ACGTC and CCTAC. b©: The corresponding alignment

path. c©: The two sequences’ alignment graph.
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Smax(n, m) = max






Smax(n − 1, m − 1) + s(xn, ym),

Smax(n − 1, m) + γ,

Smax(n, m − 1) + γ,

(1.2)

where γ is the gap score and s(xi, yj) is either equal to the match score α if

the bases xi and yj match or to the mismatch score β if they differ. As the

same reasoning is true for any Smax(i, j) with 1 ≤ i ≤ n and 1 ≤ j ≤ m and

as we can set Smax(0, 0) = 0, Smax(i, 0) = iγ and Smax(0, j) = jγ, Smax(n, m)

can easily be computed by evaluating the Smax(i, j) row by row and in each

row from left to right. While computing Smax(i, j) for some node (i, j) we

also highlight the edge of the optimal path that enters this node. Thus we do

not only get the optimal score Smax(n, m), but we can trace back from (n, m)

along the highlighted path and derive the associated optimal alignment.

Dynamic programming recursions like the one described above form the

core of the search for optimal alignments. Similar algorithms exist for pair-

wise local alignments (Smith and Waterman, 1981), for scoring functions with

a more elaborate treatment of gaps (Altschul and Erickson, 1986; Miller and

Myers, 1988) and also the Viterbi algorithm, which is used to find the most

probable state path through a hidden Markov model (see chapter 4), works

like this. In principle the problem of aligning more than two sequences can

be addressed in the same way. Every additional sequence will however add

one dimension to the grid in which the alignment graph is embedded. There-

fore, dynamic programming becomes impractical even for a small number of

sequences.

Another problem with multiple alignment lies in the choice of an appro-

priate scoring scheme. The easiest way to assign a score to a multiple align-

ment M is the so-called sum-of-pairs objective function which simply yields
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the sum of the scores of all the pairwise alignments that are induced by M .

When we compute the sum-of-pairs score of a multiple alignment we do how-

ever ignore the relationship of the sequences. Weighted sum-of-pairs scoring

schemes (Altschul and Lipman, 1989) try to attenuate this problem by weigh-

ing the pairwise alignment scores according to the evolutionary distance of

the respective sequence pair. Based on a sum-of-pairs scoring scheme, Car-

rillo and Lipman (1988) developed an algorithm which successfully excludes

regions of the alignment graph that need not be considered in the search for

the optimal multiple alignment. Thus, one can find the optimal sum-of-pairs

alignment for up to seven protein sequences of 200 to 300 residues (Lipman

et al., 1989). If one wants to align more and longer sequences, as is usually

the case in phylogenetic studies, one has to rely on heuristics.

One commonly used and very fast strategy is the so-called progressive

alignment, which was put forth by a number of papers (e. g. Waterman

and Perlwitz, 1984; Feng and Doolittle, 1987; Higgins and Sharp, 1989) and

which also forms the basis of the widespread alignment program CLUSTALW

(Thompson et al., 1994). Progressive alignment algorithms construct a mul-

tiple alignment through several pairwise alignment steps. First, a pair of

sequences is aligned and then one sequence after the other is added. De-

pending on the implementation, this adding of sequences is done either by

standard pairwise alignments or by profile3 alignments. The input order of

the sequences during this procedure is however known to influence the align-

ments (Lake, 1991). Moreover, this input order is usually determined by a

guide tree which is constructed from pairwise distance estimates and which

might then bias the shape of the trees that are estimated based on these

3Profiles (Gribskov et al., 1987) are sequences of frequency vectors which hold for every

column of a multiple alignment the frequency that each character appears in that column.
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multiple alignments. Progressive alignment algorithms will also stick to sub-

optimal decisions once they have been made. Therefore, a number of iterative

refinement strategies have been developed (e. g. Barton and Sternberg, 1987;

Berger and Munson, 1991). These strategies start from a preliminary multi-

ple alignment. This alignment’s sequences are then repeatedly divided into

two groups whereupon the alignments within the groups stay fixed and the

alignment between the two groups is computed anew.

For a more detailed introduction into the field see Durbin et al. (1998),

Gotoh (1999), Gusfield (1997) or Waterman (1995).

1.2 Reconstructing phylogenetic trees

Algorithms abound that yield a phylogenetic tree given a multiple alignment

of sequences. They differ in the way they price the possible trees as well as in

the procedure with which they search for the optimal topology. For a detailed

overview over most of the methods that have been proposed see Swofford

et al. (1996). In this section we will describe only two of the optimality

criteria that are in use, namely the minimum evolution criterion and the

maximum likelihood principle.

Minimum evolution (Rzhetsky and Nei, 1992):

Suppose we know a way to compute a distance for every pair of aligned se-

quences x and y, i. e. there is a function d which gives a nonnegative real num-

ber d(x, y) that fulfils the following criteria: d(x, y) = 0 if and only if x = y

(distinctness), d(x, y) = d(y, x) (symmetry), and d(x, y) ≤ d(x, z) + d(z, y)

for any third sequence z (triangle inequality). The problem of reconstruct-

ing a phylogeny given the pairwise distances for a set of n sequences is then

11
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Figure 1.3: A phylogeny which shows the relatedness of five sequences (S1 to S5).

The bi symbolize the branch lengths. The distance between any two sequences can

be computed by summing up the lengths of the branches which connect them. As

this tree does not contain a node which corresponds to the ancestor of the five

sequences, it is called an unrooted tree. See the top of figure 1.1 for an example of

a rooted tree.

equivalent to arranging n points on a plane and finding a tree-shaped graph

which has these points as leaf nodes4 and where the length of a path that

connects any two of these leaves is proportional to the distance between the

corresponding sequences (see figure 1.3). This is only possible if the distance

measure that we have chosen fulfils the so-called four-point inequality (Bune-

mann, 1971), i. e. for any four sequences a, b, c and d

d(a, b) + d(c, d) ≤ max(d(a, c) + d(b, d), d(a, d) + d(b, c)) (1.3)

where max is the maximum value function. Distance functions for which con-

dition 1.3 holds are called additive distances. This additivity will, however,

4Nodes which have only one adjacent edge are called external nodes or leaves. Nodes

with more adjacent edges are called internal nodes.
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be violated by any real data set. Hence, instead of simply drawing a tree

which represents the data’s distance matrix we will have to fit a tree to our

pairwise distances. This fitting is usually done with least squares methods

(Cavalli-Sforza and Edwards, 1967; Fitch and Margoliash, 1967). Let T be

some unrooted phylogeny relating n sequences and let b̂k(T ) be the estimated

length of the k-th branch of T that we got by fitting T to the pairwise dis-

tances of the n sequences. The length L(T ) of T is then defined to be the

sum over all branch lengths of T :

L(T ) :=

2n−3∑

k=1

b̂k(T ) (1.4)

Rzhetsky and Nei (1992) suggested to take the tree for which L(T ) is min-

imal as estimate for the sequences’ phylogeny. This tree is usually called

the minimum evolution tree. If the chosen distance measure is additive and

if we can obtain perfect estimates of the pairwise distances, the minimum

evolution criterion will pick the correct tree. Finding the minimum evolu-

tion tree is however quite costly. For n sequences there are
∏n

i=3(2i − 5)

possible binary unrooted tree topologies (Felsenstein, 1978a). An exhaustive

search for the minimum evolution tree would involve getting least squares

estimates of the branch lengths for each one of them. Therefore, heuristics

like the neighbor-joining method (Saitou and Nei, 1987, see also appendix B)

which yield branch length estimates and a tree topology simultaneously are

normally applied when one reconstructs a phylogeny from pairwise distances.
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Maximum likelihood:

Statistics knows several methods to estimate model parameters from given

data. One of them is the extensively used maximum likelihood estimation

(cf. Edwards, 1972). Let x symbolize the data which is observed in some

experiment and assume that x is a realisation of a random variable X whose

distribution depends on some parameter θ. The basic task of statistical in-

ference is to estimate θ from the data x. Maximum likelihood’s answer to

this problem is to take the θ as estimate which maximizes the probability to

observe the data. This probability of x given θ is also called the likelihood of

θ given the data.

Felsenstein (1981) adapted this method to the reconstruction of phyloge-

netic trees. In maximum likelihood tree reconstruction the phylogeny’s topol-

ogy and its branch lengths are seen as parameters of a stochastic process that

generated the sequences. Provided that we model this process appropriately,

maximum likelihood tree estimation is known to yield the correct tree if only

we have enough data (Rogers, 1997). Yet, just like in the case of minimum

evolution, an exhaustive search through tree space is infeasible even for a

moderate number of sequences. There are however several heuristic search

strategies which apply maximum likelihood estimation (Olsen et al., 1994;

Strimmer and von Haeseler, 1996).

Maximum likelihood tree reconstruction requires explicit modelling of

sequence evolution. We will, for the moment, ignore the insertion-deletion

process (see chapter 4) and focus only on the substitutional changes. To keep

the computation tractable one commonly makes the assumption that the

substitution process acts independently and in the same mannner on every

branch of the tree. It is further assumed that each of the alignment positions

evolves independently of the others, yet according to the same process. Thus,

14



the evolution of sequences on a tree can be described in terms of the substitu-

tional changes of single positions during some timespan t (Felsenstein, 1981).

If one wants to model the substitution process which takes one nucleotide or

amino acid i into another one (j) after time t, one has to be able to compute

the probability of the initial state i as well as the conditional probability

of j given i for every positive t. Although this might prove difficult in the

general case, it gets easy when this substitution process is a stationary, time-

homgeneous and reversible Markov process (cf. Tavaré, 1986). To describe

such a process one only has to specify a rate matrix Q, where each entry

Qij stands for the rate of change from state i to state j during an infinites-

imal period of time. Since the process is time-homogeneous, one can then

compute the transition probability matrix P (t), whose entries Pij(t) repre-

sent the probabilities to be in state j after time t given that the initial state

was i, as matrix exponential eQt. Due to stationarity, the frequencies πi of

the nucleotides or amino acids do not change over time and as the process

is reversible one does not have to bother about the placement of the root.

Table A.1 in the appendix lists the rate matrices of some common nucleotide

substitution models.

The described substitution models are not only a prerequisite of max-

imum likelihood tree reconstruction but the processes’ expected number of

substitutions per positions constitutes a distance measure for which condition

1.3 holds and which may therefore serve as an input to the distance-based

tree reconstruction methods. See Zharkikh (1994) on how to estimate this

quantity from the observed sequence differences in a pairwise alignment.
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Chapter 2

Distance estimation from

pairwise sequence alignments

2.1 Introduction

In this chapter, we will have a closer look at global pairwise alignments.

Think of two homologous sequences x and y and of the set A which is to

contain all possible global alignments of these two. As the two sequences are

homologous and as we are assuming evolution to proceed only via insertions,

deletions or substitutions (see chapter 1) there is a nonempty set Atrue ⊂ A of

alignments which are in accordance with the evolutionary history of x and y,

i. e. alignments which align exactly those positions that are related by a series

of substitutional events and where exactly those positions are aligned to a

gap symbol that do not have a homologous counterpart in the other sequence.

We will call any Atrue ∈ Atrue a true alignment of x and y. It is these true

alignments that global alignment algorithms are trying to recover through

maximizing the sequences’ similarity. Figure 2.1 sketches the difficulty of this

task: In that figure only the edges of the alignment graph which correspond
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Figure 2.1: A toy example illustrating possible differences between the true align-

ment (grey path) and an optimal global alignment (black path). The thin lines

mark possible matches and the dashed rectangle signifies the contour of the align-

ment graph.

to a match are drawn. Finding an optimal alignment means finding an align-

ment path which picks up as many of the marked edges as possible yet tries to

avoid vertical, horizontal and unmarked diagonal edges. As there is no such

optimality criterion for true alignments, an optimal alignment path may well

deviate from the true ones. Furthermore, whether an alignment path is op-

timal or not depends on the parameters of the scoring function (see section

1.1). Thus, different parameter values may lead to different paths (see below).

In the last decade several articles have investigated the fidelity of optimal

sequence alignments, i. e. the fraction of diagonal edges of a true alignment
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that are also covered by the optimal path1. Holmes and Durbin (1998) were

able to show that given the probabilities of mismatches and gaps in the

true alignments one can choose the parameters of the Needleman-Wunsch

scoring function (see section 1.1) so as to maximize the fidelity of the optimal

alignment. They also demonstrate that this maximal fidelity decreases the

more the sequences are diverged. By applying statistical physics methods

Hwa and Lässig (1996) claim that for long sequences the fraction of correctly

found matches does not only tend to zero with increasing sequence divergence

but that there is also a threshold above which none of a true alignment’s

match positions can be detected. Mevissen and Vingron (1996) developed a

method to assign reliability values to individual alignment positions and come

to the conclusion that for highly diverged sequences even those alignment

positions with a high reliability value may be erroneous.

Although these are important results, alignment fidelity is not the quan-

tity one is interested in when one wants to use optimal alignments in a phy-

logenetic context. For phylogenetic inference, the most important quantity

to be estimated for a pair of sequences is the number of substitutions per

position that they have undergone during the evolution from their common

ancestor (see section 1.2). If we assume that the substitution process acts

independently and identically distributed on each site and if we further as-

sume that all nucleotides have the same frequency and that all substitutions

occur at the same rate, then there is a simple way to estimate this number

from the amount of differences per position in the true alignments of the two

sequences (Jukes and Cantor, 1969). The number of differences per position

1Note that although there may be more than one true alignment the fidelity of a given

optimal alignment is a well-defined quantity as two true alignments may only differ in the

ordering of adjacent gaps.
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in the true alignments, which we will also call the true Hamming distance

per position, is defined as

d(Atrue) :=
b(Atrue)

a(Atrue) + b(Atrue)
. (2.1)

In the above definition, a(Atrue) is the number of matches in a true alignment

and b(Atrue) its number of mismatches. However, since Atrue is unknown so is

d(Atrue). Hence we cannot compute the number of substitutions per position

from d(Atrue), but we may try to do so starting from

d(Aopt,θ) :=
b(Aopt,θ)

a(Aopt,θ) + b(Aopt,θ)
(2.2)

which is the observed Hamming distance per position in an alignment Aopt,θ

that is optimal for some tuple θ of alignment parameters.

For the sake of convenience, we will henceforth write d instead of d(Atrue)

and d̂θ instead of d(Aopt,θ). We will also refer to the numbers of matches,

mismatches and gaps in the true alignments as a, b and c instead of a(Atrue),

b(Atrue) and c(Atrue) and we will denote the respective numbers in Aopt,θ as

âθ, b̂θ and ĉθ.

2.2 The observed distance of optimally

aligned sequences

As described above, the true alignments and the optimal alignment of a se-

quence pair may differ and so may d and d̂θ. Furthermore, as the optimal

alignment depends on θ so does d̂θ. In this section, we want to answer the

question which values of d̂θ can be observed given the numbers of matches,

mismatches and gaps of the true alignments and given θ. Since true align-

ments for real sequences are in general unknown we addressed this problem
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through simulation. We restricted ourselves to the case of sequences of the

same length with equal base frequencies and with equal frequencies of the 12

types of mismatches that are possible for pairs of DNA sequences.

Case Scoring function λ ∈ Behaviour

I: α > β maximize (−∞, 0) only gaps

Sλ(A) = −b(A) − λc(A)
[
0, 1

2

)
no mismatches

with λ = α/2−γ
α−β

[
1
2 ,∞

)
less and less gaps for λ→ ∞

II: α < β minimize (−∞, 0] less and less gaps for λ→ −∞

Sλ(A) = −b(A) − λc(A)
(
0, 1

2

]
no matches

with λ = α/2−γ
α−β

(
1
2 ,∞

)
only gaps

III: α = β maximize (−∞, 0) only gaps

Sλ(A) = −λc(A) {0} every alignment scores 0

with λ = α/2 − γ (0,∞) no gaps

Table 2.1: The Needleman-Wunsch scoring function can be replaced by three scor-

ing functions which only have one parameter.

As optimality criterion in our simulation we used the Needleman-Wunsch

scoring function (equation 1.1). This scoring function has three parameters:

α which is the score of a match, β which is the score of a mismatch and

γ the score of a gap. It turns out, however, that we can also retrieve the

optimal Needleman-Wunsch alignments using a scoring function which only

has one parameter which stands for the relative weight of gaps as opposed
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to mismatches (cf. Holmes and Durbin, 1998):

Sλ(A) = −b(A) − λc(A) with λ =
α/2 − γ

α − β
. (2.3)

If α > β, then Sλ is maximal exactly where SNW is maximal. Table 2.1

summarizes the possible cases. In the following we will discuss only case I

from table 2.1 in detail as not preferring matches over mismatches would be

considered unreasonable in any biological application. Obviously, the optimal

alignments that we get by maximizing equation 2.3 depend on the choice of λ.

As we wanted to study what the optimal alignments look like with varying

λ we applied the concept of parametric sequence alignment (cf. Gusfield,

1997): Since the work of Fitch and Smith (1983) it is known that the space

of alignment parameters can be cut into pieces within which the optimal

alignments do not change. There are also efficient algorithms (e. g. Waterman

et al., 1992) to find this tesselation of the parameter space, which in our case is

just a partitioning of the λ-axis. Thus we can compute all optimal alignments

of two sequences at a relatively low computational cost.

The complete simulation now worked like this: We generated 1000

pairs of sequences of length 100, with exactly a matches, b mismatches

and c/2 gaps in each sequence for every triple (a, b, c) ∈ M with M =

{(x, y, z) ∈ N
3
0 | 2x + 2y + z = 200}. For each pair of sequences we then per-

formed the parametric sequence alignment with the modified Needleman-

Wunsch scoring function (equation 2.3) and recorded the corresponding{
(âλ, b̂λ, ĉλ)

}
.

The results of this simulation are summarized in the figures 2.2 to 2.6 and

in table 2.2. In order to display the results we find it convenient to define the

gap ratio of an alignment A as

rG(A) :=
c(A)

2a(A) + 2b(A) + c(A)
. (2.4)
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If we are refering to the gap ratio of true alignments we will simply write rG

and we will denote the gap ratio of alignments that are optimal for λ as r̂G,λ.

The gap ratio of an alignment can be interpreted as the proportion of bases

that form gaps. Similarly, the proportions of an alignment A’s bases which are

part of mismatches and of matches can be computed as the mismatch ratio

rS(A) := d(A)(1−rG(A)) and the match ratio rM(A) := (1−d(A))(1−rG(A))

respectively.

Figure 2.2 shows for every combination of the true Hamming distance per

position d ≤ 0.75 and the true gap ratio rG ≤ 0.15 which corresponds to an

(a, b, c) ∈ M the proportion of sequence pairs for which the true alignments

were optimal for some interval of the λ-axis. One can see that only if rG = 0

or if both d and rG were very small, the existence of λ values for which the

true alignments were optimal was guaranteed. With increasing rG and with

increasing d the number of sequence pairs whose true alignments were also

among their optimal ones decreases until it finally equals zero. Thus, the true

alignments were always suboptimal for the vast majority of the (d, rG) pairs

in our simulation.

What this means for a single point is displayed in figure 2.3. There we

regard the case (a, b, c) = (60, 30, 20). Thus, d is equal to 1
3

and rG equals

0.1. Considering only the non-degenerate case λ > 1
2
, we observe that none of

the optimal alignments had numbers of matches, mismatches and gaps which

equal the true (a, b, c) vector. They either had less gaps or less mismatches

or both. We also hardly have a good chance to estimate d correctly. Only if

(âλ, b̂λ, ĉλ) hits the line labelled ‘1/3’ the distance is estimated correctly.

How the observed Hamming distance per position d̂λ varies with λ is

shown in the figures 2.4 to 2.6 for some combinations of d and rG. The

shape of each of these plots results from the same cause: Large values of λ
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Figure 2.2: The proportion of sequence pairs for which the true alignment is one

of the optimal alignments. For each point in the upper diagram 1000 pairs of

sequences of length 100 with a given Hamming distance d (x-axis) and a given

gap ratio rG (y-axis) were simulated and then aligned parametrically with λ > 0

(see text). The grey levels indicate how many of these sequence pairs had optimal

alignments which had the same numbers of matches, mismatches and gaps as the

sequences’ true alignment. Points which are white thus represent combinations of

d and rG for which the true alignment is always suboptimal no matter how one

chooses λ. The lower diagram shows how to interprete the various grey levels.
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1/3

0<=lambda<=0.5

lambda<0
gaps

matches mismatches

Figure 2.3: A de Finetti diagram (de Finetti, 1926) showing the empirical distribu-

tion of the number of matches, mismatches and gaps for pairs of sequences having

exactly 60 matches, 30 mismatches and 10 gaps each (+) over the entire range

of the alignment parameter λ. The lengths of the perpendiculars from a point in

the diagram to the right, left and lower side of the triangle are proportional to

the corresponding match, mismatch and gap ratios respectively. The line labelled

‘1/3’ contains those points for which d is estimated correctly.
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d = 0.1 d = 0.3 d = 0.5 d = 0.7

rG = 0.0 ∞ / 1 ∞ / 1 ∞ / 1 ∞ / 1

rG = 0.1 1.08 / 1.33 2.17 / 1.21 5.77 / 1.28 125 / 1.05

rG = 0.2 0.769 / 1.28 1.49 / 1.10 3.77 / 1.24 78.7 / 1.06

Table 2.2: The values of λ̂ (left of the slashes) which Holmes and Durbin (1998)

predict to optimize the alignment fidelity given that the true alignment’s gap

ratio is equal to rG and that the true Hamming distance is equal to d and the

corresponding mean of d̂λ/d (to the right of the slashes).

will force the sequences to align without gaps. While this gives rise to the

possibility to get perfect estimates in the case that the true alignments did

not contain any gaps (figure 2.4), a large λ leads to an overestimation of

the sequences’ distance when the true alignments have gaps (figures 2.5 and

2.6). In the latter case, the pairwise alignment algorithm will falsely align

positions which are not related. These alignment positions will then have a

mean Hamming distance of 3
4

given that all bases occur at the same frequency.

Therefore, the overestimation increases with the number of gaps in the true

alignments (compare the corresponding diagrams in figure 2.5 and 2.6) and

decreases with the true Hamming distance per position. The most striking

result of this simulation is the fact that it is almost impossible to get reliable

estimates of the Hamming distance when d is small and the true alignments

include gaps.

Holmes and Durbin (1998) give a formula to calculate the relative gap

weight λ̂ which maximizes the alignments fidelity from the probabilities of

insertions, deletions and substitutions. Although they used a different way

to simulate their sequences, their method produces, in the expectation, the

same sequence pairs as ours. Hence, we computed λ̂ and the corresponding
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Figure 2.4: The ratio of the estimated and the true Hamming distance plotted

against the alignment parameter λ for sequences of length 100 when the gap ratio

rG is equal to 0.0 and when d is equal to the value indicated on top of each

diagram. The black points represent the means of 1000 simulations and the grey

area is bounded by the 2.5% and 97.5% quantiles. Along the dashed line, d̂λ equals

d.
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Figure 2.5: The ratio of the estimated and the true Hamming distance plotted

against the alignment parameter λ for sequences of length 100 when the gap ratio

rG is equal to 0.1 and when d is equal to the value indicated on top of each

diagram. The black points represent the means of 1000 simulations and the grey

area is bounded by the 2.5% and 97.5% quantiles. Along the dashed line, d̂λ equals

d. Note the different scalings of the y-axes.

27



rG = 0.2

0 2 4 6 8 10

0

2

4

6

8

λ

d̂
d

d = 0.1

0 2 4 6 8 10

0.0

0.5

1.0

1.5

2.0

2.5

3.0

λ

d̂
d

d = 0.3

0 2 4 6 8 10

0.0

0.5

1.0

1.5

2.0

λ

d̂
d

d = 0.5

0 2 4 6 8 10

0.0

0.2

0.4

0.6

0.8

1.0

1.2

λ

d̂
d

d = 0.7

Figure 2.6: The ratio of the estimated and the true Hamming distance plotted

against the alignment parameter λ for sequences of length 100 when the gap ratio

rG is equal to 0.2 and when d is equal to the value indicated on top of each

diagram. The black points represent the means of 1000 simulations and the grey

area is bounded by the 2.5% and 97.5% quantiles. Along the dashed line, d̂λ equals

d. Note the different scalings of the y-axes.
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means of d̂λ for the (d, rG) pairs from figures 2.4 to 2.6. As one can see in

table 2.2 even λ̂ does not yield correct distances for rG > 0.0. Note also that

for any pair of sequences whose true alignment is unknown it is impossible

to know the value of λ̂ unless we have a full-grown insertion-deletion model,

in which case we have more sophisticated techniques at hand than optimal

Needleman-Wunsch alignment (see chapter 4).

2.3 A least squares approach to distance es-

timation

Since the performance of the näıve estimator d̂λ is rather poor, we studied

a least squares approach to estimate evolutionary distances between pairs of

sequences in a more reliable manner. The goal is to include information of the

various (âλ, b̂λ, ĉλ) statistics for a pair of sequences. To do this we introduce

the variable X(A) := (rM(A), rS(A), rG(A)), which is the triple consisting of

the match, mismatch and gap ratio of alignment A. Again, we will write X

instead of X(Atrue) and X̂λ instead of X(Aopt,λ). With parametric sequence

alignment, a given pair of sequences, whose true alignments are unknown,

produces a collection
{
X̂λ

}
λ∈Λ

of match, mismatch and gap patterns, where

λ ∈ Λ is the center of an interval that gives rise to the same maximal align-

ment and estimate of the unknown X. The problem is to infer the unknown

match, mismatch and gap ratios from
{
X̂λ

}

λ∈Λ
. We suggest the following

least squares approach:

X̂LS := argmin
X

{∑
λ∈Λ

(
X̂λ − E(X̂λ|X)

)2
}

,

where E(X̂λ|X) is the expectation of X̂λ given X. While
{

X̂λ

}
λ∈Λ

can be

estimated quite quickly, we have to compute
{

E(X̂λ|X)
}

λ∈Λ
by extensive
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simulation employing the parametric alignment scheme. For a given X we

produce 1000 pairs of sequences (see section 2.2), which are then aligned

parametrically. Each parametric alignment induces a partition of the λ-axis.

The intersection of all these partitions is again a set of disjoint intervals. For

each interval one thousand X vectors are observed. Thus we can estimate{
E(X̂λ|X)

}

λ∈Λ
as the average of 1000 simulated pairs of sequences.2

Figure 2.7 displays the averages of the X̂LS estimates taken over 100

simulations for sequences of length 100. Even for sequences this short the

least squares approach allows quite good estimates of mismatch and gap

ratios when these are not too big, and thus also of d. For larger mismatch

and gap ratios, however, the estimates all lie near the center of the diagram.

At first sight, this bias towards the center looks strange, as it means that

for some true mismatch and gap ratios the values after aligning are in the

mean closer to the mean values of other true mismatch and gap ratios than

they are to their own ones. Yet, there are two possible explanations for this

phenomenon: Firstly, we do not account for the variance of the distributions.

This means we are being unfair to the broader distributions. Secondly, for

true values at the border of the diagram wrong estimates will always lie closer

to the center.

The quite good performance of the least squares method for sequences of

length 500 is shown in the figures 2.8 and 2.9. What is remarkable are the

very small standard deviations of the estimates of d when the true alignment

did not not contain gaps. Yet, this method, too, leads to an overestimation

for small values of d when rG = 0.1.

2For the case of distance estimation from ungapped local alignments, Agarwal and

States (1996) developed a similar method which relies also on parametric alignment but

uses posterior probabilities instead of least squares. In our case the least squares approach

is however much easier to handle.
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gaps

matches mismatches

Figure 2.7: The mismatch and gap ratios estimated with the least squares approach

(tips of the arrows) for several true values of rS and rG (the arrows’ starting points).

The sequence length was 100. The alignments were drawn from the ones produced

in 2.2.
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Figure 2.8: The performance of our method for sequences of length 500. One can

see the mean of the estimates (taken over 100 simulations).
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Figure 2.9: The performance of our method for sequences of length 500. One can

see the average of the estimates (based on 100 simulations for each true distance) of

the number of differences per position plotted against the true values. The vertical

bars display plus/minus two times the standard deviation. a©: rG = 0, b©: rG = 0.1
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2.4 Discussion

So far, the bias introduced into the estimation of pairwise differences when

aligning two sequences has not been recognized and therefore has not been

systematically studied. We have shown that the evolutionary distance be-

tween sequences cannot be estimated reliably if the sequences were subjected

to an alignment procedure. This statement holds true even if the entire space

of possible alignment parameters is studied. One might argue that sequences

of length 100 are too short to make valuable assertions, yet given the work

of Hwa and Lässig (1996) the problem should even get worse for longer se-

quences, since the fluctuations of optimal alignment paths increase with se-

quence lengths. Note also that the problems outlined in this chapter have

severe implications for the reconstruction of phylogenetic trees. If we tried

to reconstruct a phylogeny for a set of sequences using distance estimates

that we can obtain from their optimal pairwise alignments, we would hardly

get the correct tree. The more so as alignment parameters which might lead

to good estimates for one sequence pair of a data set, might yield biased

estimates for another one (see figures 2.4 to 2.6). Although we normally use

multiple instead of pairwise alignments when doing phylogenetic inference,

many multiple alignment programs (e. g. Thompson et al., 1994) start with

the computation of optimal pairwise alignments from which pairwise dis-

tances are estimated.

We have shown that, using a least squares approach, one can improve the

estimation of evolutionary distance and also of the gap frequencies, for a large

region of the parameter space. Moreover, our approach is an efficient way of

utilizing the information provided by parametric sequence alignment. Yet, we

have to rely on empirical distributions of the numbers of matches, mismatches

and gaps given the respective numbers in the true alignments and given the
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alignment parameter λ. In order to apply our method to scenarios of sequence

evolution different from the one we used here, for instance unequal base

frequencies or rate heterogeneity, we would therefore have to redo at least

some of our simulations to fathom these empirical distributions. The only

way to circumvent this would be an analytic result. Considering, however, the

enormous mathematical difficulties that one already encounters when trying

to distinguish between the local alignment scores of related sequences and of

random ones (cf. Siegmund and Yakir, 2000), a parameterized distribution of

some summary statistics of optimal pairwise sequence alignments which takes

into account the parameters of an evolutionary process and the alignment

parameters seems presently out of reach.
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Chapter 3

Reconstructing trees from

multiple alignments

3.1 Introduction

As they are the prerequisite for phylogenetic inference, the various tree re-

construction methods and programs have been studied in great detail. Ana-

lytical examinations have shown that while some methods like for instance

maximum parsimony (Farris et al., 1970; Fitch, 1971) may be inconsistent1

(Felsenstein, 1978b; Zharkikh and Li, 1993), others like maximum likelihood

or minimum evolution will reconstruct the correct topology given that the

sequences are long enough and given that the underlying assumptions are

not violated (cf. Rogers, 1997; Huelsenbeck and Hillis, 1993). Extensive sim-

ulation studies (e. g. Huelsenbeck, 1995; Schöniger and von Haeseler, 1995a)

have been carried out to assess the robustness of the commonly used tree-

building methods against violations of their assumptions and to get an idea

1An estimation procedure is called inconsistent if it fails to yield the correct value even

if provided with infinite data
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how many sites are needed for an accurate inference. Yet, all these investi-

gations presumed the true alignments of the sequences to be known. Studies

of multiple alignment algorithms, on the other hand, usually focus on the

methods’ ability to find the optimum of some scoring function (e. g. Gonnet

et al., 2000) or on their power to detect sequence motives that are common

to a given protein family (McClure et al., 1994; Briffeuil et al., 1998; Thomp-

son et al., 1999) and are not interested in phylogenetic inference. Thus, the

effects that alignment errors may have on the reconstructed trees are nor-

mally ignored. Morrison and Ellis (1997) have shown, however, that this is

not only an academic question but that phylogeny estimation may indeed be

influenced severely by sequence alignment. They aligned a data set of 18S

rDNA sequences with six different alignment methods. From the obtained

alignments they then estimated the sequences’ phylogeny using three tree

reconstruction algorithms. They found that the different alignment methods

caused more variation in the reconstructed phylogenies than did the usage

of different tree reconstruction methods.

In this chapter, we describe three simulations that investigate the suc-

cess rate of phylogenetic inference including also the alignment procedure.

As these simulations were very time-consuming we only studied two mul-

tiple alignment methods: the widespread progressive alignment program

CLUSTALW (Thompson et al., 1994), and PRRN (Gotoh, 1996) which is

an implementation of an iterative refinement method (see chapter 1) that

was reported to perform better than CLUSTALW in some tests (Gotoh,

1996; Thompson et al., 1999). The various parameters of the two programs

remained unchanged except of the gap penalties which were modified during

the simulations I and II. Note that both programs use affine gap penalties,

i. e. the opening of a new gap is penalized differently than the extension of
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an existing gap. Note also that unlike the gap score introduced in section 1.1

these gap penalties are subtracted from an alignment’s score and not added

to it.

3.2 Simulation I: The four-taxon case

In our first simulation we used the model tree depicted in figure 3.1. This

four-taxon tree has two parameters: the two-edge rate s2 which specifies the

expected number of substitutions that occur on the branches leading to the

sequences 1 and 3 and the three-edge rate s3 which is the length of the tree’s

central branch as well as the length of the branches leading to the sequences

2 and 4. Felsenstein (1978b) has shown that if sequences evolve according to

this tree and if s2 is large as compared to s3, maximum parsimony will be

inconsistent. This is also the tree that was used in the studies of Huelsenbeck

and Hillis (1993) and Schöniger and von Haeseler (1995a) to demonstrate

that many other methods also fail to be consistent for certain values of s2

and s3, especially if the distances between the sequences are underestimated

or if the evolution of the sequences is not modelled appropriately.

We adopted the simulation scheme of Huelsenbeck and Hillis (1993) and

simulated for each pair (s2, s3) whose corresponding expected numbers of se-

quence differences d2 and d3 lie in the set {0.01, 0.03, . . . , 0.73, 0.75−10−6} 100

artificial data sets of DNA sequences with the help of the program SEQGEN

(Rambaut and Grassly, 1997). As substitution model we used the one intro-

duced by Jukes and Cantor (1969) and the sequence length was set equal

to 200, 1000 and 5000 in three independent runs of the entire simulation.

Each simulated data set was then aligned with CLUSTALW (version 1.8)

and with PRRN (version 2.5.2). CLUSTALW used its default gap-opening
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s3

Figure 3.1: The four-taxon tree used in simulation I. The branch leading to se-

quence 1 has the same length (s2) in terms of expected substitutions per position

as the branch leading to sequence 3. The three other branches have length s3.

and gap-extension penalties of 10.0 and 0.1 respectively. PRRN’s gap-opening

penalty was set to 10 and its gap-extension penalty to 1. This was as close

as we could get to CLUSTALW’s settings, since PRRN only accepts integer

values. We then removed those alignment positions which contained gaps

and estimated the pairwise Jukes-Cantor corrected distances separately for

each of the two alignments as well as for the original data set. Finally, we

reconstructed neighbor-joining trees from these pairwise distances.

Table 3.1 shows how often we were successful in reconstructing the cor-

rect phylogeny. The higher the success rate, the darker are the points in the

depicted diagrams. While the success rates increase with increasing sequence

length when the trees are estimated directly from the simulated data sets
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without an additional alignment step, the usage of the two alignment pro-

grams leads to very low success rates in some areas of the grid even if the

sequences are quite long. Both programs result in a success rate of virtually

0 when d2 is above and d3 below certain thresholds. The almost rectangular

shape of this white area might look peculiar when one thinks of e. g. maximum

parsimony’s zone of inconsistency. Yet, similar shapes have been observed by

Huelsenbeck (1995) when the pairwise distances were overestimated. Addi-

tionally to the upper left corner of the diagrams, tree reconstruction from

CLUSTALW alignments exhibits a drastically reduced success rate when d3

gets too big. We cannot say, however, whether the usage of multiple align-

ment programs really creates inconsistencies or if the light areas in our plots

finally would become black if we increased the length of the data sets even

further. Yet, as the boundaries between the dark and the light areas in the

plots get sharper with increasing sequence length and as they do not shift,

the latter does not seem very plausible.

3.3 Simulation II: Varying gap penalties

The sequences in the last section were simulated without any insertions or

deletions. Therefore, if only the gap penalties had been big enough, the two

multiple alignment programs should have been able to retrieve the correct

alignment and thus would not have had a negative effect on the success rate

of tree reconstruction. In order to see whether it is always possible to pick the

gap penalties in a way that tree reconstruction is not affected by alignment

errors, we simulated four-taxon data sets which did not only contain substi-

tutions but also insertions and deletions and we varied the gap-opening and

the gap-extension penalties of CLUSTALW and PRRN Like in the previous
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Figure 3.2: This figure illustrates how to read the plots in table 3.1. The length of

the interior branch and of the branches leading to the sequences 2 and 4 (s3, see

figure 3.1) increases along the horizontal axis. The length of the two other branches

(s2) grows in vertical direction. d2 is the expected Hamming distance per position

that corresponds to the substitution rate s2 under the Jukes-Cantor model (Jukes

and Cantor, 1969). Accordingly, d3 is the expected Hamming distance per position

that follows from substitution rate s3. The depicted trees sketch the situation at

the corners of the diagram.
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l = 200 l = 1000 l = 5000

alignment

known

CLUSTALW

PRRN

Table 3.1: The success rate of neighbor-joining for data sets that have evolved

along the tree depicted in figure 3.1 without insertions or deletions. The columns

of the table correspond to simulated data sets of 200 (left), 1000 (middle) and 5000

positions (right). The rows show the results for the tree reconstruction based upon

the true alignments (top), CLUSTALW alignments (middle) and PRRN alignments

(bottom). See the text for the parameter settings. Each diagram is organised in

the way shown in figure 3.2. 100 data sets were simulated for each node of the grid

{0.01, 0.03, . . . , 0.73, 0.75 − 10−6} × {0.01, 0.03, . . . , 0.73, 0.75 − 10−6}. The grey

levels are proportional to the number of correctly reconstructed topologies. Thus,

black points correspond to a success rate of 100%, and white points mean that the

topology was never reconstructed correctly.
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Figure 3.3: The settings for the substitution rate s and the deletion rate µ during

simulation II.

simulation the substitutions occurred according to the Jukes-Cantor model.

Insertions and deletions were simulated with the TKF1 model (see chapter

4). See figure 3.3 for the substitution and deletion rates, that were used in

this simulation. 100 of these data sets with expected sequence length 1000

were simulated and then aligned with CLUSTALW (version 1.8) and with

PRRN (version 2.5.2). The programs’ gap-opening penalties were set to in-

teger values between 1 and 20 and the gap-extension penalties were set to

integer values between 0 and the gap-opening penalty used. The phylogenies

were inferred in the same way as in section 3.2.

The results of this simulation are summarized in figure 3.4. For both

alignment programs, the choice of the gap penalties strongly affects our ca-
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Figure 3.4: The success rate of neighbor-joining for data sets that evolved along

the tree shown in figure 3.3 when the sequences are aligned with CLUSTALW

(left diagram) or with PRRN (right diagram). The horizontal axes show the gap-

opening penalties of the programs, and the gap-extension penalties are drawn along

the vertical axes. In order to increase the contrast of the plots the grey levels of

the points are proportional to the difference of the success rate and the minimum

success rate of the respective plot normalized by the difference of the maximum

and the minimum success rate. Therefore, the grey levels of the two diagrams must

not be compared. See also table 3.2.
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minimum success rate maximum success rate

CLUSTALW
0.32

(8,1),(11,1)

0.62

(10,7)

PRRN
0.10

(17,15),(17,16),(18,15)

0.62

(4,2)

Table 3.2: The minimum and the maximum success rate of neighbor-joining ob-

served in simulation II. The values in brackets are the combinations of gap-opening

and gap-extension penalties for which the minimal and the maximal rates of suc-

cess are obtained.

pability to retrieve the correct topology. Furthermore, gap penalties which

lead to a relatively good performance of one alignment program may cause

the other one to perform badly. Table 3.2 shows that even for an optimal

choice of gap penalties we get less than two thirds of the topologies correctly.

For the worst choice of gap penalties, on the other hand, trying to reconstruct

the four-taxon trees from the multiple alignments does not work better than

guessing in the case of CLUSTALW or even significantly worse in the case of

PRRN.

3.4 Simulation III: Influence on larger trees

In order to get an idea in how far the reconstruction of larger phylogenetic

trees may be affected by alignment errors we applied a simulation scheme

which has been used in several studies (Saitou and Nei, 1987; Schöniger and

von Haeseler, 1993; Strimmer, 1997) to evaluate the performance of various

tree reconstruction methods, but added an alignment step between the sim-

ulation of the sequences and the reconstruction of their phylogeny. For each

of the three tree topologies depicted in figure 3.5 and for each of the four
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combinations of branch lengths given in figure 3.5 d© we generated 100 arti-

ficial data sets of DNA sequences with the expected length of the sequences

being 1000. Substitutions occurred following Kimura’s two-parameter model

(Kimura, 1980) with the transition-transversion parameter τ (see table A.1 in

appendix A.1) equalling 4 and with an overall substitution rate of 0.01 sub-

stitutions per position and per unit of time. Additionally to this substitution

process, short subsequences were inserted or deleted according to the TKF2

model (Thorne et al., 1992, see also chapter 5) with an insertion rate of 0.002.

The length of insertions and deletions was distributed geometrically with 10

being the expected indel length. For each of these data sets we recorded its

true alignment as well as the unaligned sequences. These were then aligned

with CLUSTALW (version 1.8) and PRRN (version 2.5.2), both programs

using their default settings. Thus, we got for every simulated data set three

multiple alignments: A CLUSTALW alignment, a PRRN alignment and the

true alignment that resulted from simulating the sequences. After removing

the positions which contained gaps, we reconstructed a quartet-puzzling tree

(Strimmer and von Haeseler, 1996) for each of these alignments using version

4.0.2 of the PUZZLE program. The model that was assumed by PUZZLE

was the one introduced by Tamura and Nei (1993) which is equivalent to

Kimura’s two-parameter model if its pyrimidine-purine-transition parame-

ter κ (see table A.1) is set to 1 and if all base frequencies are equal. Hence

there were four trees for every data set: Ttrue the tree that was used to cre-

ate the data, Trec the quartet-puzzling tree that was reconstructed from the

true alignment, TC the tree that was estimated based upon the CLUSTALW

alignment and TP the tree that we got from the PRRN alignment.

The figures 3.6 to 3.11 summarize the results of this simulation. Figure 3.6

shows that, no matter which tree topology we look at, the proportion of posi-
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Figure 3.5: The three tree topologies of simulation III. a©: an asymmetric tree with

clock-like evolution. b©: a symmetric tree with clock-like evolution. c©: a symmetric

tree with non-clock-like evolution. d©: the four combinations of branch lengths (in

terms of expected substitutions per position) used during the simulation.
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Figure 3.6: The proportion of positions in the true alignments that are also present

in the alignments found by CLUSTALW (left side of the figure) and by PRRN

(right side). The height of the bars shows the mean of 100 simulations, the error

bars represent the standard error. The labelling of the bottom line corresponds

to the three tree topologies from figure 3.5. For each topology the branch lengths

that were used for the simulation (see figure 3.5 d©) increase from left to right.

tions of the true alignments that were correctly recovered by the two multiple

alignment programs decreases with increasing sequence divergence. This is

in good agreement with the findings of Gotoh (1996), Briffeuil et al. (1998)

and Thompson et al. (1999). However, unlike the results in Gotoh (1996) and

unlike simulation I, PRRN performed significantly worse than CLUSTALW

in this simulation. This decrease in the alignments’ fidelity is accompanied

by an increase in the partition distance between the true topologies and the

ones which can be reconstructed from these alignments, as is shown in figure

3.7. The partition distance ∆(T1, T2) of two trees T1 and T2 is simply the

number of clusters which are only present in one of them but not in both

and is a convenient measure for the dissimilarity of the two trees (Robinson
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Figure 3.7: The mean partition distance between the true tree and the puzzle trees

that were reconstructed based upon the alignments found by CLUSTALW (left

side of the figure) and by PRRN (right side). The arrangement of the bars is the

same as in figure 3.6.

and Foulds, 1981). In order to see whether the increase in partition distance

with increasing branch lengths is due to alignment errors we computed for

every data set the difference between ∆(TC , Ttrue) and ∆(Trec, Ttrue) and the

one between ∆(TP , Ttrue) and ∆(Trec, Ttrue). As can be seen in figure 3.8 the

trees that were reconstructed from the CLUSTALW alignments are almost

as close to the true trees as are the ones which were reconstructed from the

true alignments. The trees that were estimated from the PRRN alignments

are, however, significantly worse.

As quartet-puzzling trees are consensus trees, they need not be bifurcat-

ing but may contain unresolved nodes. Thus, we can address the question

whether aligning the sequences is just blurring the data’s phylogenetic signal

or whether multiple alignment methods may force a wrong tree structure

upon the data. To do this we define the degree of unresolvedness u(T ) of a
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Figure 3.8: The mean increase in partition distance due to alignment errors. The

arrangement of the bars is the same as in figure 3.6.

tree T with n leaves as 1−eT /(n−3), where eT is the number of T ’s internal

edges and n − 3 is the number of internal edges of a completely resolved

n-taxon tree. Figure 3.9 shows that the unresolvedness of the trees that were

reconstructed from the CLUSTALW and PRRN alignments increases mono-

tonically with the branch lengths of the true trees. If we do, however, have a

look at the differences u(TC) − u(Trec) and u(TP )− u(Trec) (see figure 3.10),

we have to notice that the trees TC and TP are in the mean better resolved

than the ones we estimated from the true alignments. Hence, the two multi-

ple alignment programs squeeze the data in a treelike shape. Unfortunately,

it tends to be the wrong one (see figure 3.8).

That the alignment programs did not only influence the shape of the re-

constructed phylogenies but also the estimates of the transition-transversion

parameter τ , can be seen in figure 3.11. While CLUSTALW does not lead to

a biased estimation of τ , PRRN alignments yield smaller and smaller esti-

mates the more the sequences are diverged. This difference in the behaviour
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Figure 3.9: The mean degree of unresolvedness (see text) of the reconstructed trees.

The arrangement of the bars is the same as in figure 3.6.
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when PUZZLE is provided with CLUSTALW alignments (left) or PRRN align-

ments (right). The dashed line corresponds to the value that was used for the

simulation of the sequences. The arrangement of the bars is the same as in figure

3.6.

of the two alignment programs is probably caused by their different treat-

ment of mismatches: CLUSTALW penalizes transitions less than it penalizes

transversions, PRRN, however, does not distinguish between these two types

of mismatches. Hence, PRRN is implicitly assuming the same substitution

process as Felsenstein (1981) and pushes the data towards this simpler sub-

stitution model. Note also that the estimates of the pyrimidine-purine tran-

sition parameter κ were always close to the true value 1.0 no matter which

alignment method was used (data not shown).

3.5 Discussion

The simulations described in this chapter exemplify some of the problems

that one has to be aware of when using multiple sequence alignments in phy-
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logenetic research: Multiple alignment programs make implicit assumptions

about the plausibilities of mismatches and gaps. By projecting these views

on the data, they may be the cause of erroneous conclusions about the rela-

tionship of the sequences under study (see figure 3.8) or of biased parameter

estimates (see figure 3.11) and may even increase our confidence in the wrong

phylogeny (see figures 3.8 and 3.10). Thus, although we have accurate tree

reconstruction methods at hand, the necessity to align the sequences will in

some cases prevent us from getting the correct topology (see table 3.1).

One should note, however, that both alignment programs performed rea-

sonably well when the branch lengths of the model trees were not too extreme.

Therefore, this chapter’s results should not be seen as a criticism of multiple

alignment programs, but rather as a pleading for the development of methods

which allow to assess the reliability of these programs’ output.
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Chapter 4

Statistical pairwise alignment

4.1 Introduction

In chapter 2 we described the problems that arise from the traditional way

to study a pair of biological sequences: As we are only modelling the substi-

tution process but not the processes which create insertions and deletions,

we have to find an optimal alignment of the sequences before any further

analysis. Yet, our speculations about the properties of the evolutionary pro-

cess which has produced the sequences will influence which alignment we will

consider to be the best, and this alignment will in turn affect our conclusions

concerning the sequences’ evolution. If we possessed, however, a reasonable

and computationally tractable way to model the creation of insertions and

deletions, we would not only be able to find the most probable alignment

of two sequences or to get maximum likelihood estimates of the model pa-

rameters, but we could also address questions like the following: What is

the posterior distribution of the model parameters? Which parts of an align-

ment are relatively certain and which ones are more questionable? What do

typical alignments look like? How do the typical alignments depend on the
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parameters of the model?

Several attempts have been made to specify such a model: While some

(e. g. McGuire et al., 2001) try to model insertions and deletions in the same

way as they model substitutions, others (e. g. Holmes and Durbin, 1998)

construct hidden Markov models (HMMs) which create two sequences from

left to right, but need not correspond to an evolutionary process in time.

Following the work of Bishop and Thompson (1986), a number of models has

been described which try to provide both a reasonable insertion-deletion dy-

namics and computational tractability (Thorne et al., 1991, 1992; Miklós and

Toroczkai, 2001; Metzler, 2003). Yet, only the one introduced by Thorne et al.

(1991), which we refer to as the TKF1 model, has gained greater attention.

In the following we are going to give a brief and informal review of the

TKF1 model (section 4.2) and then we are going to describe one of its possible

applications, namely a method which jointly samples pairwise alignments and

mutation parameters (section 4.3).

4.2 The TKF1 insertion-deletion model

The TKF1 model contains three parameters: the substitution rate s, the

insertion rate λ, and the deletion rate µ. Each site is independently deleted

with rate µ, and hit by a substitution with rate s. Insertions occur between

any two sites or at the ends of the sequence at rate λ. When a substitution

or an insertion occurs, the new base is drawn randomly from {A, G, C, T}

according to a probability distribution (πA, πG, πC, πT)
1.

Given a sequence of length n, there are n sites which are candidates for

1The last sentence implies that a nucleotide may be substituted by a nucleotide of the

same type. During this chapter we will stick to this rather odd definition of the word

“substitution” as this is how the TKF1 model was originally formulated.
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deletion and n + 1 positions where a nucleotide can be inserted. Therefore,

the length of the sequence grows with net rate λ(n+1)−µn. In order to avoid

a drift towards longer and longer sequences it is assumed that µ > λ, which

then ensures the existence of a stationary distribution of the sequence evolu-

tion process. At equilibrium, the number of possible insertion sites, i. e. the

length of the sequence plus 1, is geometrically distributed with expectation

µ
µ−λ

and the bases are independently distributed according to (πA, πG, πC, πT).

This time stationary process is reversible: the probability of starting with an

ancestral sequence s1 and arriving after a time t at an offspring sequence s2

is unaltered when s1 and s2 are interchanged.

In general, certain nucleotides of the ancestral sequence will be conserved

in the offspring sequence; other nucleotides will appear only in the ancestral

or only in the offspring sequence. Assume for instance that the ancestral

sequence is ACGTC; it may happen that A is substituted by a C, the G is

deleted and an A is inserted between the T and the C. Then, with the ancestral

sequence on top, this results in the alignment

ACGT_C

CC_TAC
(*)

Other sequence histories lead to ambiguities in the alignment which must be

resolved by convention. For instance, starting with ACG, suppose C is deleted

and then T is inserted between A and G. There are two possibilities for the

resulting alignment:

alignment 1:
AC_G

A_TG
or alignment 2:

A_CG

AT_G

Thorne et al. (1991) make the convention that insertions happen to the right

of a nucleotide rather than between nucleotides. Thus in the example, T must

be the offspring nucleotide of A and alignment 2 is the appropriate one. This

would also be the case if T had been inserted between the A and the C before
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the deletion of the C, whereas alignment 1 would correspond to a history

in which T was inserted between the C and the G and the C was deleted

after that. This makes alignment 2 more probable than alignment 1. If the

bottom sequence would be the ancestral one, it would be the other way round:

alignment 1 would be more probable than alignment 2. Thus the alignment

convention destroys the time reversibility. But this affects only the order of

gaps in the two sequences and not the site homology, which is the primary

objective of alignment problems. Therefore, if two sequences are given which

have descended from some common ancestor, we may assume that the second

sequence has evolved from the first.

Now suppose that for given parameters s, λ, and µ, a sequence is drawn

from the equilibrium distribution and evolves for a time span t according to

the TKF1 model. How can we then compute the probability, that, say, the

alignment (*) is the true one? The first observation is that we can separate

the process into two independent components: the insertion/deletion process

and the process of substitutions. First we calculate the probability of the bare

alignment

BBBB_B

BB_BBB,
(**)

ignoring the base types (B just stands for “Base”). Then we compute the

conditional probability for the alignment (*) given the bare alignment (**),

which is easy, because all B

B
, B, and

B
take their base types independently of

each other. For the pair A

C and time t, this is the product of the probability

of A, the probability that at least one substitution occurs in a time span t,

and the probability that the new base is C: πA · (1− e−st) · πC. For the pair C
C

we have two possibilities: no substitution or one or more substitutions with

the last one being C: πC · [e
−st +(1− e−st) ·πC]. The probabilities for G (given

B) or
A

(given
B
) are πG and πA. In the sequel we rescale the time so that

56



the time elapsed between the sequences is t = 1.

The computation of the probability of the bare alignment (**) is slightly

more difficult, because the positions are not independent. But as a conse-

quence of the TKF1 alignment convention, the bare alignment is generated

by a Markov chain on the states Start, B

B
, B,

B
and End. Therefore, we

can compute the probability of a bare alignment by stepping through it

from left to right and iteratively multiplying the result with the transition

probability from the preceding state to the current one. For given states

x, y ∈ {Start,BB ,B ,B , End}, we denote the probability for the next state being

y, given that the current state is x, by Pλ,µ(x → y). For the calculation of the

transition probabilities (see table 4.1) we refer to Holmes and Bruno (2001).

y = B
B y = B y = B y = End

x = Start (1 − β(t))λ
µ
α(t) (1 − β(t))λ

µ
(1 − α(t)) β(t) (1 − λ

µ
)(1 − β(t))

x = B

B
(1 − β(t))λ

µ
α(t) (1 − β(t))λ

µ
(1 − α(t)) β(t) (1 − λ

µ
)(1 − β(t)))

x = B (1 − γ(t))λ
µ
α(t) (1 − γ(t))λ

µ
(1 − α(t)) γ(t) (1 − λ

µ
)(1 − γ(t)))

x =
B

(1 − β(t))λ
µ
α(t) (1 − β(t))λ

µ
(1 − α(t)) β(t) (1 − λ

µ
)(1 − β(t))

Table 4.1: The transition probabilities Pλ,µ(x→ y) in the TKF1 model with α(t) :=

e−µt, β(t) := λ(1−e(λ−µ)t)

µ−λe(λ−µ)t and γ(t) := 1 − β(t)µ
λ(1−e−µt)

.

The TKF1 model fits into the concept of a pair hidden Markov model

(pair-HMM ) as described in Durbin et al. (1998). The usual HMM is a

Markov chain which is hidden from an observer in the sense that he can

only observe a sequence of “emissions” which depend on the current states.

In the pair -HMM setting the observer sees a pair of sequences instead of a

single sequence. In our case, the Markov chain is the bare alignment (corre-

sponding to the path in the graphical representation) and the emissions are

the DNA sequences. Durbin et al. (1998) describe various pair-HMMs that
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can be used for sequence alignment. In general, these models are constructed

rather heuristically and are not exactly compatible with any stochastic se-

quence evolution model, as it is the case for the pair-HMM that arises from

the TKF1 model.

Many algorithms for HMMs can be adapted to pair-HMMs. One of them

is the forward algorithm for the calculation of the likelihood of possible val-

ues for the transition probabilities of the Markov chain, given the emitted

sequence. In our case, this likelihood is the probability ps,λ,µ(s1, s2) that the

observed sequences s1 and s2 are emitted from a TKF1 pair-HMM with pa-

rameters s, λ, and µ (here we think of the time span t for the evolution of

one sequence into the other to be scaled to unit time.)

For the computation of this likelihood it is necessary to sum over all

possible alignments of the sequences:

ps,λ,µ(s1, s2) =
∑

bare alignment w

pλ,µ(w) · ps(s1, s2 | w) (4.1)

pλ,µ(w) is the probability of the bare alignment w for given insertion and

deletion rates λ and µ, and ps(s1, s2 | w) is the probability of the sequences,

given the bare alignment w and the substitution rate s.

The forward algorithm uses a dynamic programming approach to calcu-

late the above sum. The main idea is the following (for details see Thorne

et al. (1991) and Durbin et al. (1998)): Let the evolution parameters s, λ,

and µ and a pair of sequences s1 and s2 of lengths n and m be fixed. For

0 ≤ i ≤ n and 0 ≤ j ≤ m let f(i, j, B

B
) be the probability that the following

three events occur in a run of a TKF1 pair-HMM with the given parameters.

• The first i bases of the emitted sequence 1 coincide with the first i bases

of s1.
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• The first j bases of the emitted sequence 2 coincide with the first j

bases of s2.

• In the bare alignment given by the hidden state sequence the i-th site of

the first sequence is homologous to the j-th site of the second sequence.

f(i, j, B) is defined similarly, except that site i is not homologous to site j

but is aligned with a gap between sites j and j + 1 of sequence 2. Note

that because of the Markov property of the bare alignment, one can easily

compute f(i, j, ·) if the values for f(i−1, j−1, ·), f(i−1, j, ·), and f(i, j−1, ·)

are known. For example, if there is a C at site i in the first given sequence

and a G at site j in the second sequence (for i, j > 1), it is easy to see that

the following equations hold:

f(i, j, B) =
[

f(i − 1, j, B

B
) · P ( B

B
→ B) (4.2)

+f(i − 1, j, B) · P ( B → B)

+f(i − 1, j,
B
) · P (

B
→ B)

]
· πC

f(i, j, B

B
) =

[
f(i − 1, j − 1, B

B
) · P ( B

B
→ B

B
) (4.3)

+f(i − 1, j − 1, B) · P ( B → B

B
)

+f(i − 1, j − 1,
B
) · P (

B
→ B

B
)
]
· πC · (1 − e−st) · πG

Therefore the n·m·3 values of the function f(·, ·, ·) can be computed efficiently

by calculating f(i, j, ·) iteratively while increasing i and j from i = j = 0 up

to (i, j) = (n, m). The desired likelihood is then:

ps,λ,µ(s1, s2) = f(n, m, B

B
) · P (B

B
→ End) (4.4)

+f(n, m, B) · P (B→ End)

59



+f(n, m,
B
) · P (

B
→ End)

Thorne et al. (1991) suggest using classical optimization algorithms in com-

bination with the forward algorithm to search for the triple (s, λ, µ) that

maximizes ps,λ,µ(s1, s2) for given s1 and s2. Recently, Hein et al. (2000) have

improved the efficiency of the algorithm. Note that the maximum likelihood

estimator, which is obtained by this procedure, does not rely on a single

alignment: it takes every possible alignment of the given sequences into ac-

count.

4.3 The sampling of pairwise alignments

The method

The TKF1 model can now be used to address the questions about the dis-

tribution of the model parameters and the reliability of alignment regions

that were raised in the introduction. Let θ be the parameters of the model,

i. e. in our case θ = (s, λ, µ). Again, we take t = 1 for simplicity. We as-

sume a Bayesian framework where we put some prior probability π(dθ) on

the parameters. For given θ, we denote the probability of an alignment A

by pθ(A). Thus, we can attack those questions through joint sampling of

the alignments A and the model parameters θ with weights proportional to

pθ(A)π(dθ), where A runs through the alignments compatible with s1, s2.

Using the idea of Gibbs sampling, we achieve this by an MCMC method in

which alternately the alignment is sampled given the model parameters, and

vice versa. As a prior for θ we propose π(dθ) = e−sds e−λdλ e−µdµ; this

makes the probability that no substitution occurs at a given surviving site

uniformly distributed on [0, 1]. We write p(dθ, A) for pθ(A)π(dθ). Our task is
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to sample (θ, A) according to p(dθ, A| s1, s2).

If θ is fixed and we want to sample an alignment according to pθ(A | s1, s2),

then we can apply a classical HMM backward sampling algorithm (cf. Durbin

et al., 1998, pp. 89-99), using the function f defined above. With f we can

easily compute the probability distribution for the last alignment state before

End given the sequences and the mutation parameters. For x ∈ { B

B
, B,

B
} the

probability that the last state is x, is c · f(n, m, x) · P (x → End), where c is

a normalizing constant such that the three values for the tree states add up

to 1. Therefore we can easily draw the last state at random according to this

probability distribution. Assume for example we drew a B for the last state. In

the graphical representation of the alignment, this would mean that the last

edge is a vertical one from (n− 1, m) to (n, m). For all states y ∈ { B

B,
B, B},

given that the last state is B, the probability that the preceding state equals

y is c′ · f(n − 1, m, y) · P (y → B), where c′ is a normalizing constant again.

We draw the preceding state according to this distribution and continue in

the same manner until we end up at the first state, i. e. until we have drawn

an edge in the alignment graph that starts at vertex (0, 0).

On the other hand, if an alignment is given, we can use a Metropolis-

Hastings approach (cf. Gamerman, 1997) for sampling the parameter θ ac-

cording to p(dθ| A). Starting with some parameter vector θ0 we generate a

Markov chain on the parameter space in the following manner: If the current

state in step i is θi = (si, λi, µi), then generate independent random numbers

s̃, λ̃, and µ̃, exponentially distributed with means si, λi, and µi. Consider

θ̃ = (s̃, λ̃, µ̃) as a proposal for the next state (si+1, λi+1, µi+1). Then make a

random decision: Accept it with probability

min

{
1 ,

p(dθ̃| A) · si · µi · λi

p(dθi| A) · s̃ · µ̃ · λ̃
· exp

(
s̃

si
−

si

s̃
+

λ̃

λi
−

λi

λ̃
+

µ̃

µi
−

µi

µ̃

)}
(4.5)
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or set θi+1 = θi if you do not accept2. As can be checked in a straightforward

way, the posterior distribution for (s, λ, µ) is a (reversible) equilibrium for

the process described above. By irreducibility, the process converges to this

equilibrium distribution and can thus be used (at least approximatively) for

sampling mutation parameters for given alignments. Of course, if one samples

from one realization of the process, the results are not independent. However,

the dependencies become small if one chooses the intervals between two sam-

plings sufficiently large. Especially before the first sampling one should allow

enough steps for the so called “burn-in”, because the initial state could have

been a bad guess in a region of low probability.

Now that we have an alignment sampling strategy for given mutation pa-

rameters and a mutation parameter sampling strategy for given alignments,

we can combine them using the idea of Gibbs sampling (cf. Gamerman,

1997) and obtain a method for sampling mutation parameters and align-

ments simultaneously. We construct a Markov chain on the space of muta-

tion parameters and alignments as follows: If (θ, A) is the current state, then

sample a new alignment A′ for the parameter triple θ, and afterwards per-

form a Metropolis-Hastings run to obtain a new parameter triple θ′ given the

alignment A′.

The disadvantage of this method is that we always have to sample align-

ments for new mutation parameters. For doing so, we have to compute the

3 · n ·m values for the function f with the new parameters each time, which

is very time consuming in general. Therefore, instead of sampling the whole

alignment in each step, we realign only a part of it, about 30 nucleotides

– then we have to compute only about 2700 values for f in each step. We

2In the implementation we use a slightly different proposal chain, where the quotient

λ/(µ− λ) is exponentially distributed (with the old value as expectation) instead of µ.
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use a part of the saved runtime to increase the number of steps between the

samplings to compensate the dependencies in the alignments that arise from

this strategy. Note that the posterior probability distribution p(dθ, A| s1, s2)

is still a reversible equilibrium for the Markov chain on {(θ, A)} which we ob-

tain by the algorithm described above. Therefore we can use this process for

simultaneous Markov chain Monte Carlo (MCMC) sampling of alignments

and mutation parameters from their common posterior distribution.

As in most applications of MCMC methods, appropriate algorithm pa-

rameters as the number of steps in the sampling intervals, the duration of

burn-in, and the length of alignment resampling ranges can only be found

with experience gained from careful analysis of the sampling results.

An example: pseudogene/gene pairs

Pseudogene Acc. Pseudogene Acc. Pseudogene Acc.

1. β actin ψ1 V00479 24. Cytochrome c ψC M22880 49. Casein kinase II-α ψ X64692

2. β actin ψ2 V00481 25. Cytochrome c ψE M22886 50. Keratin 19 ψ M33101

3. β actin ψ M55014 26. Cytochrome c ψF M22889 53. HSC-70 ψ Y00481

4. γ actin ψ M55082 27. Cytochrome c ψH M22891 55. Ferredoxin ψ-A M34787

6. γ actin ψ1 X04224 28. Cytochrome c ψI M22892 56. Ferredoxin ψ-B M34789

7. Aldolase reductase ψ M84454 29. α enolase ψ X15277 57. Ferritin H ψ J04755

8. Cyclophilin ψ133 X52856 30. ARS ψ3 K01846 58. Tubulin-β ψ67 M38484 E

9. Cyclophilin ψ167 X52858 31. ARS ψ1 K01845 60. Tubulin-β ψ14P K00840 D

10. Cyclophilin ψ18 X52855 32. Aldolase B ψ M21191 62. Tubulin-β ψ21P K00841 B

11. Cyclophilin ψ192 X52857 33. Na/K-ATPase-β ψ M25159 63. Tubulin-β ψ46P J00317 C

12. Cyclophilin ψ29 X52853 38. D2-type cyclin ψ M91003 64. Tubulin-β ψ7P K00842 F

13. Cyclophilin ψ39 X52852 40. LDH-A ψ X02153 66. TPI ψ5A K03224

14. Cyclophilin ψ43 X52854 41. LDH-B ψ M60601 67. TPI ψ19A K03225

15. Cytochrome c ψ1 D00266 42. Lipocortin 2 ψA M62895 68. TPI ψ13C K03223

16. Cytochrome c ψ2 D00267 43. Lipocortin 2 ψB M62896 70. Prothymosin-α ψD J04800

17. Cytochrome c ψ3 D00268 44. Lipocortin 2 ψC M62898 71. Prothymosin-α ψF J04801 A

18. Cytochrome c ψA M22878 45. Metallothionein I ψ M13073 72. Prothymosin-α ψG J04802

20. Cytochrome c ψG M22890 46. Metallothionein II ψ M13074 78. Adenylate kinase 3 ψ X60674

21. Cytochrome c ψJ M22900 47. PGK ψX K03201

22. Cytochrome c ψK M22893 48. PGK ψA K03019

Table 4.2: The analyzed pseudogenes. The marks refer to the labels in figure 4.1.

The numbering is the same as in table 1 of Gu. and Li (1995).
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In order to compare the substitution and insertion rates obtained with

our method with estimates of substitution rates and gap frequencies based

on usual sequence alignments we applied it to the pseudogene/gene pairs an-

alyzed by Gu. and Li (1995). Pseudogenes seem to be appropriate for testing

our approach as their evolution is not constrained by functional necessity.

Since they stem from functional sequences they should not contain repeats

of short sequence motifs which could distort the insertion-deletion-process

locally. Their functional homologs on the other hand should be practically

devoid of insertions and deletions. Although the main focus of Gu. and Li

(1995) is on the distribution of gap lengths, they also provide estimates of

the number of differences per position. Lacking access to the alignments on

which Gu and Li based their study, we retrieved the unaligned sequences

and aligned the coding regions of the functional genes to the presumably

homologous part of the corresponding pseudogene. For 20 sequence pairs the

numbers and lengths of gaps given by Gu and Li were not compatible with

the lengths of the available sequences; these were not analyzed further. The

remaining 58 of the 78 pseudogenes treated are given in table 4.2. For each

sequence pair the sampling procedure was started using 4/3 times the num-

ber of differences per position from Gu. and Li (1995) as estimator of the

substitution rate3. As an initial simple estimator of the insertion rate we used

the number of gaps divided by twice the alignment length: g
Lx+Ly+g

, where

Lx and Ly are the sequence lengths and g is the number of gaps in Gu. and Li

(1995). With these values a first alignment was sampled. Then, after 10,000

burn-in runs, every thousandth of 100,000 runs was sampled. The range of

resampling of the alignment in each of the steps was 30 nucleotides. Figure

3The factor 4/3 takes into account that a nucleotide can be replaced by a nucleotide

of the same type in the TKF1 model.
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4.1 compares the most probable sampled substitution rates with Gu and Li’s

values. In most cases the estimates given by Gu and Li lie well within the

central 95% of the sampled values. This is even true for large substitution

rates. Most of our most probable substitution rates are bigger than Gu and

Li’s estimates. This may indicate that the score-optimization of alignments

tends to make the aligned sequences more similar than they actually are (see

chapter 2).

For the sequence pairs which are labeled A-F in table 4.2 the 97.5% quan-

tiles of the sampled substitution rates are by far smaller than the estimates

given by Gu and Li. The gap frequencies as well as the sizes of the gaps in

the respective sampled alignments, however, were always close to the values

given by Gu. and Li (1995) (data not shown). Thus, any reasonable scoring

system (including the human eye) would prefer our sampled alignments to

Gu and Li’s alignments. This calls for an explanation like a typing error in

their paper or the use of a different sequence for the functional gene and can-

not be due to an error in our method. Table 4.3 shows examples of sampled

alignments. The small variability seen in the first two frames is typical. The

erratic behavior in the last frame is probably due to a single long gap. This

is of course not provided for in the assumptions of the TKF1 model.

4.4 Discussion

This chapter served mainly as an introduction into the fields of statisti-

cal alignments, hidden Markov models and Bayesian inference which are of

importance for the understanding of the next chapter. We have seen how

insertion-deletion models can be used to calculate the probability of a se-

quence alignment, to compute the joint probability of a pair of sequences or
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Paths Most probable alignment

CCAGTTGCGGAAGAAGAGGCA_CAGTCCAAAACAATAAGA

CCAGTTGCGGAAGAAGAGGCAACAGTTCCAAACAATAAGA

TCACTGTAGT

TCACTGTAGT

CGCCGATAGGATGCAGAAG___ATCACCACCCTGGCGCCC

TGCCGACAGGATGCAGAAGGAGATCACTGCCCTGGCACCC

AGCACAAT

AGCACAAT

GAGAAAGGCA___AGATTTTTGTTCCAAAGGGTGCCGCCC

GAGAAAGGCAAGAAGATTTTTATTATGAAGTGT_TC_C_C

AGTGCCACACCATGGAAAAGGGAA

AGTGCCACACCGTTGAAAAGGGAG

CTATATCCAGCAAGACACTAAGG__G__T________GC_

TTATATCCAGCAAGACACTAAGGGCGACTACCAGAAAGCG

_TG_T__ACC

CTGCTGTACC

Table 4.3: Some typical samples of alignment paths together with the most proba-

ble of the sampled alignments. The paths and alignments shown are cutouts from

the sampled alignments of LDH ψ, β actin ψ1, cytochrome c ψG and lipocortin 2

ψB.
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to get an idea of the reliability of alignment paths and of model parameters.

As far as the TKF1 model is concerned, one should note that many refine-

ments are possible: Instead of the simple substitution model described above,

one may plug in any of the reversible DNA or amino acid substitution models

listed in the tables A.1 and A.2 and even allow for regional rate heterogeneity

(Thorne and Churchill, 1995). All these could easily be incorporated into our

sampling method, though this could lead to parameter over-fitting problems.

Our model’s gravest defect is unfortunately not so easily remedied. The

TKF1 model considers only insertions and deletions of single nucleotides.

This assumption runs counter to a growing body of practical experience

and it can lead to implausible alignments, as the last example in table 4.3

shows (see also Saitou and Ueda (1994)). The challenge is to find biologically

more plausible models for the insertion-deletion process which still preserve

the hidden Markov structure essential for computational feasibility. Thorne,

Kishino and Felsenstein (1992) suggest a generalization of the TKF1 model

(see chapter 5) that allows insertions and deletions of longer fragments, but

they are forced to require that inserted fragments can only be deleted as a

whole.

The programs that were applied in section 4.3 are freely available from:

http://www.math.uni-frankfurt.de/∼stoch/software/mcmcalgn.
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Figure 4.1: The most probable of the sampled substitution rates for each pseu-

dogene/gene pair (ŝ) plotted against the values estimated by Gu and Li (ŝGL).

The latter was evaluated as − ln
(
1 − 4

3d
)

where d is the number of differences per

position given in Gu. and Li (1995). The dotted line is the identity, the plotted

intervals indicate the 2.5% and the 97.5% quantiles.
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Chapter 5

Simultaneous statistical

multiple alignment and

phylogeny reconstruction

5.1 Introduction

Statistical alignment procedures stand on the sound base of explicit models

for the insertion and deletion process. Therefore applying them in the field

of tree reconstruction is a tempting idea. Recently, the TKF1 model for two

sequences has indeed been generalised leading to an algorithm which gives

the probability of n sequences which have evolved on a star shaped tree (Steel

and Hein, 2001) or on arbitrary trees (Lunter et al., 2003). There now also

is a method that samples multiple alignments according to their posterior

probability under this extension of the TKF1 model conditioned on a given

phylogeny and parameter values (Holmes and Bruno, 2001).

The TKF1 model, however, is not very realistic in that it only allows for

insertions and deletions of single nucleotides (or amino acids). This deficiency
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was remedied in Thorne et al. (1992) by the TKF2 model. Here, we will first

give a brief overview over the TKF2 model and provide a possible extension

to the case of n sequences which are related by a tree (section 5.2). Then,

we will utilize this model to simultaneously construct a multiple alignment,

reconstruct the sequences’ phylogeny and estimate the mutation parameters

(section 5.3).

5.2 Model

If we want to describe the evolution dynamics which takes a DNA or protein

sequence into another one we have to model the substitution process as well as

the process of insertions and deletions. The substitution process we think of is

simply any model where the positions evolve independently according to the

same probabilistic dynamics and which has a unique stationary distribution.

These are described in detail elsewhere (Tavaré, 1986; Strimmer, 1997; Müller

and Vingron, 2000).

Here we focus only on the insertion and deletion process which is the

aforementioned TKF2 model. Under this model every sequence is thought to

be composed of disjoint fragments the lengths of which are geometrically dis-

tributed with expectation 1/(1 − ρ). Between any two fragments and at the

ends of the sequence a new fragment which is drawn from the same distribu-

tion may be inserted with rate λ. At rate µ each fragment is deleted entirely.

Thus, the fragmentation structure remains unchanged: the fragments are al-

ways deleted as a whole and are never split by an insertion. Although this may

be considered unrealistic, the results in Metzler (2003) indicate that at least

in the case of a sequence pair the estimation of the model parameters is quite

robust against violation of this assumption. Obviously, the insertion-deletion
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process of the TKF2 model acts in the same way on the sequence fragments

as does the TKF1 model on the nucleotides. Thus, we get an equilibrium for

the number of possible insertion sites, i. e. the number of fragments plus 1,

which is the geometric distribution with expectation µ/(µ − λ) and thus we

also have an equilibrium distribution for the sequence length. It is further

assumed that the length of the ancestral sequence was taken from the equi-

librium distribution of the process. In Thorne et al. (1991) and Thorne et al.

(1992) it is also specified how a given realization of the indel process is to be

represented as an alignment. The rule is to consider each inserted fragment as

offspring of its left neighbor and to write it as close as possible to its ancestor

in the alignment. The alignment notation rule and the fixed fragmentation

structure are necessary to make a TKF2-generated sequence pair alignment,

when read from left to right, a Markov chain on the states B

B
, B,

B
, Start

and End; see figure 5.1 and (Thorne et al., 1991, 1992; Metzler, 2003, see also

chapter 4) for details. This property is crucial for computational tractability

since it allows to apply pair HMM procedures (Durbin et al., 1998; Holmes

and Bruno, 2001). Using these techniques we can compute the joint proba-

bility of two related sequences by summing over all paths through the HMM

which might have produced them and we can compute the probability of any

alignment of these sequences by walking through the states it contains.

If we want to extend the TKF2 model to n sequences which are related

by a binary tree, there are two topics we have to consider: Firstly, think of

a sequence X which is the most recent common ancestor of the sequences

Y and Z (see the diagram in in the upper right corner of figure 5.2). If

a fragment in X has children in Y as well as in Z, i. e. there have been

insertions on both branches, the TKF2 model does not provide a rule in

which order we should write down these independent insertions. Therefore,
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we have to add the convention that insertions on the left subtrees (the root

being at the bottom of the tree) are recorded before the ones on the right

subtrees in a depth-first tree traversal. The second problem we have to deal

with is the fragmentation of the sequences. The HMMs in the figures 5.2, 5.3

and 5.4 keep the fragmentation structure fixed over the whole subtree under

consideration. Although this is the somehow canonical extension of the TKF2

model it is probably unrealistic and also impractical. In order to compute

the probability of a multiple alignment we would have to construct an HMM

for the entire phylogeny whereas the HMM from figure 5.1 suffices if we

confine the fragmentation structure to the individual branches. Moreover, the

algorithms we are going to introduce in section 5.3 would require a change in

this fixed fragmentation from time to time, yet it is not obvious how this can

be done without getting into trouble. That is why we allow the fragmentation

structure to change at every node of the tree. This is also a step towards a

fragment insertion-deletion model at arbitrary sites. Nevertheless, as will be

explained in section 5.3 we still use the multiple HMMs in the figures 5.2-5.4,

which leave the fragmetation fixed over the nodes, and correct their output

in subsequent steps.

5.3 Algorithm

Holmes and Bruno (2001) introduced a method that samples multiple align-

ments according to their posterior probability distribution under the TKF1

model. We will now present three search strategies that are intended to find

the tree (topology and branch lengths), the multiple alignment and the model

parameters that maximise this probability under the extended TKF2 model

described above. Each of them is based on the simulated annealing scheme
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γ

β
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 ρ

                 ρ + (1−ρ) β

1−β

1−γ

         λ/µ

1

Figure 5.1: The TKF2 pair-HMM that produces two sequences, X and Y (X

being the ancestor of Y ). X
Y is the ‘match’ state: The bases in the sequences are

homologous. X
− is the ‘deletion’ state: There is a base in sequence X which got

deleted, thus there is a gap in sequence Y . −
Y is the ‘insertion’ state: There is a

base in sequence Y and a gap in sequence X. ρ is the parameter of the geometric

distribution of fragment lengths, α is the probability that a fragment survives, β

is the probability of more insertions given one or more extant descendants and γ

is the probability of insertions given that a fragment did not survive. α, β and γ

are functions of the time. See Holmes and Bruno (2001) for details on computing

these values. Note that there are two ways from the ‘match’ state back to itself

(the same is true for the ‘deletion’ state).
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Figure 5.2: The fixed-fragmentation TKF2 evolutionary HMM that produces two

sequences , Y and Z, and their most recent common ancestor, X (see the graph in

the upper right corner). As the probabilities of fragment survival and of a fragment

having offspring with or without itself surviving (α, β and γ resp.) depend on the

time between an ancestral sequence and its descendant, they are indexed by the

appropriate edge labels.
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sketched in section 5.3.1. They only differ in the way they start and end.

A realisation of the extended TKF2 model for some phylogeny of n se-

quences produces sequences at the inner nodes and pairwise alignments of

every sequence to its neighbors in the tree. When computing the probability

of a multiple alignment of the sequences at the leaves of the tree we have

to sum over all possible sequences at the inner nodes and all possible pair-

wise alignments along the tree’s branches that yield this multiple alignment.

Whereas summing over all possible base or amino acid assignments at the

inner nodes of the tree can easily be done (Felsenstein, 1981), summing over

all possible pairwise alignments is prohibitively slow and computation time

increases drastically with the number of sequences (Steel and Hein, 2001).

We therefore just like Holmes and Bruno (2001) resort to emitting sequences

at the inner nodes of the tree when producing or judging (i. e. computing

their probability) multiple alignments.

5.3.1 Strategy I: pure simulated annealing

This strategy starts with a random unrooted guide tree (one randomly chosen

leaf being considered to be the root) and some arbitrary parameter values

for the substitution and insertion-deletion processes according to which the

sequences are aligned progressively. Then, two steps are repeated again and

again until one does not observe significant changes in the posterior probabil-

ity of the multiple alignment: In step 1 we propose a new tree and alignment,

in step 2 we propose new parameters. The probability to accept bad proposals

is decreased monotonically from iteration to iteration.
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Figure 5.4: The fixed-fragmentation TKF2 evolutionary HMM for four sequences

related by a binary tree (upper right corner). Sequence U is considered to be the
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connected by arrows pointing from left to right with the label ‘1’). The hexagon
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Getting the initial alignment

The initial alignment is created by a progressive alignment from the tips of the

randomly chosen guide tree downwards: A pair of sibling sequences is aligned

(i. e. the most probable path for the given parameters is chosen). Then, given

this alignment a sequence at their parent node is produced (together with

its pairwise alignments to its children) by the HMM in figure 5.2. Then, this

sequence is aligned to its sibling and so on. At the end of this procedure we

have a multiple alignment of all sequences in the data set which consists of

pairwise alignments along the branches of the tree.

Changing tree and alignment

Proposing a new tree is done in a similar way as in the tree sampling proce-

dure outlined in Mau and Newton (1997): For every leaf i of the tree with

branch length li a new branch length li
∗ is drawn from the uniform distribu-

tion U(li − δ, li + δ) if the positive parameter δ is smaller than li and from

δ−li
δ

U(0, δ− li)+ li
δ
U(δ− li, δ + li) if δ is bigger than li. Thus, it is guaranteed

that a leaf never gets a negative branch length. The branch lengths of inter-

nal branches on the other hand are always drawn from U(li − δ, li + δ) and

may therefore become negative. In this case the branch is removed and one

of the two alternative topologies is chosen randomly (the corresponding new

branch gets the absolute value of the drawn branch length as length). Every

time we change an internal branch we have to emit new sequences at the

new inner nodes. This is done using the HMM from figure 5.4. We keep the

alignment of the four ‘neighbors’ of this branch fixed and emit new sequences

at the inner nodes (V and X in figure 5.4). The alignment is further refined

by producing a new sequence at every internal node of the tree (in random-

ized order) using the HMM in figure 5.3 and by optimizing every pairwise
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alignment. The acceptance of the proposed tree depends on the likelihood

ratio of the new and the old tree. In order not to propose only trees which

will be rejected, the parameter δ is adjusted in the course of the program in a

way that the acceptance rate is maximised. When computing the likelihood

of such a multiple alignment we sum over all possible assignments of bases,

yet we do not attempt to sum over all possible states of the TKF2 model.

When proposing the new alignment we use several multiple HMMs which

keep the fragmentation structure fixed over different subtrees. However, this

does not cause major complications, because when we decide between two

tree topologies we only take their likelihoods into account, the proposal dis-

tribution does not matter.

Getting new parameters

New model parameters are suggested and accepted just in the same way as in

chapter 4: Let θ = (s1, s2, ..., sl, λ, ρ) be the model parameters, with s1 to sl

being the various parameters of the substitution model, λ being the insertion

rate and ρ being the parameter of the distribution of fragment lengths. As

prior for θ we take
∏l

ν=1 e−sνdsν e−λdλ e1−1/ρdρ. If the current parameter

vector in step i is θi then we propose new parameters θ̃ by drawing every

component of θ̃ except of ρ̃ from an exponential distribution whose mean is

the corresponding component of θi. For the parameter of the fragment length

we draw 1/ρ̃ − 1 from an exponential distribution whose mean is 1/ρi − 1.

Note that we do not attempt to optimize the insertion and the deletion rate

independently. Instead we use a fixed ratio of the insertion and the deletion

rates which yields the average sequence length as the expectation.

79



Simulated Annealing

We adopt the cooling schedule from Salter and Pearl (2001), i. e. a bad

proposal xj is accepted in step i with exp(
−(f(xi)−f(xj))

ci
) where the control

parameter ci = U
1+(i−1)b

. Here U is the maximum jump of f in one step and is

determined in an initial ‘burn-in’ phase. The parameter b equals c
(1−a)n−a lnL

m

where n is the number of sequences, m the number of sites in the alignment

at the end of the ‘burn-in’, ln L this alignment’s loglikelihood and c and a

are values between 0 and 1 (for the simulation and the example presented in

section 5.4 both were set to 0.5). The tree optimization and the parameter

optimization have both a cooling scheme of their own. Thus, xi and xj stand

for the old and the proposed parameter values respectively or for the old

and the proposed tree. In the former case f(xi) has to be interpreted as the

natural logarithm of the product of the probability of the old parameters

given the alignment and the probability to propose xj when in xi. In the

latter case f(xi) is the loglikelihood of tree xi given the alignment.

5.3.2 Strategy II: simulated annealing with improved

start

The pure simulated annealing strategy described in the last section might

start in a very exotic area of tree space. Strategy II tries to start with a more

reasonable tree which is found via neighbor-joining (Saitou and Nei, 1987).

Therefore, a distance matrix for the unaligned sequences has to be estimated.

This is done by a coarse variant of the EM-algorithm (for longer sequences

we use Viterbi training, i. e. we just optimise the probability of the optimal

path (Durbin et al., 1998)) in Thorne and Churchill (1995): Alignment paths

for each pair of sequences are sampled like in chapter 4, the transitions from
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one HMM state to the next and the numbers of the found matches and

mismatches are counted. Then, the likelihood of the substitution rate and

the weight of the indel process as compared to the substitution process given

these observations is optimised. Thus, we have for each pair an estimate of the

substitution rate and a ratio of the speeds of the indel and the substitution

processes. The median of these “indel-substitution-ratios” is used to rescale

the rates of the indel process and the whole estimation procedure is repeated,

but now only to estimate the substitution rates (Thorne and Kishino, 1992).

With these rates we then build the initial neighbor-joining tree (note that

we do not try to estimate the parameters of the substitution process in this

step).

5.3.3 Strategy III: simulated annealing with improved

start and nearest-neighbor interchanges

As always with simulated annealing the procedure might run for a very long

time without any changes in the estimates. Yet, we will never be sure if there

will not be any jumps some time in the future. To explore tree space a bit

faster we do nearest-neighbor interchanges (Swofford et al., 1996) in these

phases of stagnation: Every internal branch is visited in a random order and

pairwise distances for its four adjacent nodes are estimated (to remove the

least influence of the old topology, new sequences have been emitted at these

nodes by the HMM from figure 5.2 just paying regard to the subtree which

starts from there). The distance estimation is done by the EM-algorithm de-

scribed above (without rescaling of the insertion rate). Then, we reconstruct

a neighbor-joining tree for these four nodes and emit new sequences at the

new internal nodes. As this procedure does not pay respect to the new tree’s

likelihood and is only distance based the new tree might well have a drasti-
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cally reduced likelihood. After having done the nearest-neighbor interchanges

the program returns to the simulated annealing schedule until it encounters

another phase of stagnation. The program quits after having passed through

a prespecified number of nearest-neighbor interchange steps saving the most

probable of the found alignments. Like strategy II this strategy also starts

with a neighbor-joining tree.

5.4 Application

5.4.1 Simulation

A four-taxon example

In a first simulation we simulated 100 data sets of expected sequence length

1000 along the phylogeny shown in figure 3.3. The setting for this simulation

were exactly the same as the ones in section 3.3 which means that we used

the TKF1 model together with the Jukes-Cantor substitution model. Given

the four unaligned sequences at the leaves of the tree we tried to reconstruct

their phylogeny using strategy III together with the Felsenstein substitution

model and an initial insertion rate of 0.1 per time unit. 100 iterations at the

beginning of the search were the burn-in phase. If the absolute value of the

difference of the likelihoods in two succesive iterations was smaller than 1 for

more than 1000 iterations, we conducted nearest-neighbor interchanges after

which we continued with the simulated annealing. We stopped the searches

when this situation occurred for the 9th time. For 95 of the 100 data sets we

were able to reconstruct the correct topology which is quite an improvement

over the results from section 3.3.
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A eight-taxon example

To study the behaviour of the three search strategies we simulated 100 data

sets of nucleotide sequences on the tree shown in figure 3.5b (branch length

a being 0.01 and branch length c equalling 0.07) with the expected length of

500 nucleotides under Kimura’s two-parameter model (Kimura, 1980) with

the transition transversion parameter being 4.0. The insertion rate of the

TKF2 process was 0.002 and the expected fragment length was 10 (ρ = 0.9).

As described in section 4.2 the fragmentation structure was allowed to vary

from branch to branch.

Given the unaligned leaf sequences of the simulated data sets we then

tried to estimate the underlying phylogeny, their alignments and the model

parameters with each of three methods from section 5.3 using the Tamura-

Nei substitution model (Tamura and Nei, 1993) (for equal base frequencies

and with a pyrimidine-purine-transition parameter of 1 this model is equiva-

lent to Kimura’s two-parameter model). The initial value for the transition-

transversion parameter was 2.0 and the pyrimidine-purine-transition param-

eter initially was 1.0. The initial insertion rate was 0.1 and the initial ex-

pected fragment length was 2 (ρ = 0.5). 1000 iterations at the beginning of

the search were the burn-in phase (see 5.3.1). If the absolute value of the

difference of the likelihoods in two succesive iterations was smaller than 5

for more than 800 iterations strategy III conducted nearest-neighbor inter-

changes after which it continued with the simulated annealing. We stopped

the searches when this situation occurred for the 17th time.

Table 5.2 shows that all three strategies performed equally well in finding

the alignment. On average more than 96% of the positions in the true align-

ments were also present in the reconstructed ones. The parameter estimates

(see tables 5.3 and 5.4) are also quite reasonable, no matter which of the three
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Strategy Mean partition distance

from the tree in fig. 3.5b

I 7.8 ± 2.3

II 5.3 ± 2.2

III 2.0 ± 2.4

Table 5.1: The mean ± the standard deviation of the partition distances between

the best trees found by the three search strategies and the true phylogeny of the

simulated data sets.

Strategy Mean proportion of correct

alignment positions

I 0.962 ± 0.0238

II 0.973 ± 0.0156

III 0.977 ± 0.0142

Table 5.2: The mean ± the standard deviation of the proportion of alignment

positions in the simulated data sets that were also found in the corresponding

most probable alignments.

search strategies is used. In their ability to reconstruct the phylogeny (table

5.1) the three strategies show, however, remarkable differences with strategy

III performing best. As a measure of the dissimilarity of the tree from fig-

ure 3.5b and the reconstructed trees we computed their partition distance

(Robinson and Foulds, 1981). In order to interprete these results one should

keep in mind that the expected partition distance of two randomly chosen

bifurcating 8-taxon topologies is 9.4 and that less than 1% of those random

topology pairs have a partition distance smaller than 6 (Penny et al., 1982).
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Strategy Mean τ̂ Mean κ̂

(τ = 4.0) (κ = 1.0)

I 4.07 ± 0.84 1.06 ± 0.21

II 3.98 ± 0.76 1.05 ± 0.23

III 3.96 ± 0.83 1.04 ± 0.22

Table 5.3: The mean of the estimates of the substitution model parameters (±

their standard deviations).

Strategy Mean λ̂ Mean ρ̂

(λ = 0.002) (ρ = 0.9)

I 2.1 × 10−3 ± 1.1 × 10−3 0.85 ± 0.056

II 1.7 × 10−3 ± 8.1 × 10−4 0.87 ± 0.044

III 2.1 × 10−3 ± 1.2 × 10−3 0.88 ± 0.041

Table 5.4: The mean of the estimates of the parameters of the TKF2 model (±

the standard deviation).
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5.4.2 An example: HVR-1 from primates

In order to see whether our method works with real data we applied strategy

III to a data set of HVR1 sequences from 12 primate species. Details on

the accession numbers are given in the legend of figure 5.5. We modelled the

substitution process with the Tamura-Nei model starting with the transition-

transversion parameter being set to 5.0 and the pyrimidine-purine-transition

parameter initially being 1.0. The initial expected fragment length was 2

(ρ = 0.5). 100 iterations at the beginning of the search were the burn-in

phase (see 5.3.1). If the absolute value of the difference of the likelihoods in

two succesive iterations was smaller than 5 for more than 1200 iterations we

conducted nearest-neighbor interchanges after which we continued with the

simulated annealing. We stopped our search when this situation occurred for

the 25th time.

Figure 5.5 shows the consensus tree of the best trees found in 100 inde-

pendent runs of strategy III. The edge labels show the percentage of trees

which contain the respective branch. These values should not so much be

seen as support values for the individual branches, but rather as an illustra-

tion of how good we were in finding the optimum. Although the depicted

tree conforms well with textbook views on primate phylogeny, it has two

striking features. Firstly, the gorilla sequence, which has at least one very

long deletion (Burckhardt et al., 1999), seems to be misplaced and should

rather be the sister group to a Homo-Pan cluster. Secondly, the relationship

among humans, chimps and the Pongo-Gorilla cluster remains unresolved. 31

of the reconstructed trees favour a Pongo-Gorilla-Homo cluster and 31 trees

exhibit a Pongo-Gorilla-Pan cluster (data not shown). This may, however,

be a side effect of the misplacement of the gorilla sequence. The estimates of

the model parameters are given in table 5.5.
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Figure 5.5: Consensus tree of the hominoid HVR1 phylogenies with the high-

est likelihood found in 100 independent runs of strategy III. The accesion

numbers and included positions of the sequences are as follows: NC 002082 1-

366 (H. lar), AF311725 1-378 (H. hoolock), AF311722 1-396 (H. syndactylus),

Hvr1 ID 1 2-379 (H. sapiens neanderthalensis), Hvr1 ID 1244 24-400 (H. sapiens

sapiens), Hvr1 ID 264 24-398 (P. troglodytes), Hvr1 ID 261 24-399 (P. paniscus),

Hvr1 ID 389 1-374 (P. pygmaeus pygmaeus 1 ), Hvr1 ID 390 1-374 (P. pygmaeus

pygmaeus 2 ), Hvr1 ID 388 1-372 (P. pygmaeus abelii), Hvr1 ID 262 24-326 (G.

gorilla), NC 001992 1-378 (P. hamadryas). Accession numbers which begin with

‘Hvr1 ID ’ are the identifiers in the hvrbase (Handt et al., 1998). Regions with high

similarity were determined with the help of the program dotter (Sonnhammer and

Durbin, 1996).
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parameter mean ± std.dev.

τ 1.94 ± 0.20

κ 1.03 ± 0.12

λ 1.33 × 10−3 ± 5.4 × 10−4

ρ 0.798 ± 0.043

Table 5.5: The estimated parameters for the HVR1 data set. τ is the Tamura-

Nei model’s transition-transversion parameter, κ the pyrimidine-purine-transition

parameter, λ the insertion rate and ρ the parameter of the distribution of fragment

lengths. The table shows the averages over 100 independent runs of strategy III

5.5 Discussion and Outlook

In this chapter we have outlined methods which allow the statistical inference

of a multiple alignment, a phylogenetic tree with branch lengths and the

parameters of the substitution and the insertion and deletion process. The

algorithms can easily be adapted to more complex and more realistic insertion

and deletion models and also to allow for rate heterogeneity (cf. Thorne and

Churchill, 1995). A more pressing task is however decreasing the run time

of our programs and to graze the parameter and tree spaces more efficiently.

A step in this direction would already be to carefully analyze and optimize

parameters like the number of burn-in and sampling steps in the simulated

annealing procedure. Another step would be adapting some of the numerous

tree search heuristics to this problem. We hope that further optimization

will make it possible to develop methods to judge the reliability of multiple

alignments and phylogeny reconstruction by Bayesian MCMC-sampling, at

least if the number of sequences is not too high.
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Chapter 6

Summary

The focus of this thesis was the influence that the optimization of sequence

alignments may exert on the estimation of substitution rates and on the

reconstruction of phylogenetic trees. A topic which up to now has not gained

much attention.

Using the concept of parametric sequence alignment, we could show in

chapter 2 that substitution rates cannot be estimated reliably from optimal

sequence alignments. Therefore, we developed a simple least-squares method

which lead to better distance estimates in a large area of the parameter space.

The simulations of chapter 3 exemplified the problems that may arise

when one reconstructs trees from multiple alignments. We observed a drastic

reduction of the efficiency of neighbor-joining even if the sequences were

reasonably long. We also saw that multiple alignment programs may force

their implicit assumptions upon the sequences under study, thus being the

cause of erroneous trees and erroneous support values.

Finally, we studied the possibilities to make use of insertion-deletion mod-

els. In the last chapter, we introduced the first method which applies a frag-

ment insertion-deletion model to simultaneously reconstruct a phylogeny and
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a multiple alignment for a set of sequences. The development of this method

also resulted in writing a substantial software tool.
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Appendix A

Program manuals

A.1 ALIFRITZ

The program ALIFRITZ is a C++ implementation of the algorithm described

in chapter 5. Its source code is available on request. Given a guide tree

and a set of sequences, the program searches for the combination of tree

topology, branch lengths, multiple alignment and parameter values which

has maximal posterior probability. It is run from the command line by typing

‘alifritz control x’ where ‘control’ stands for the name of a file which holds

the parameter settings and where ‘x’ is either 0, 1 or 2 and selects one of the

three following search strategies: simulated annealing starting with a random

tree, simulated annealing starting with a neighbor-joining tree and simulated

annealing starting with a neighbor-joining tree and with nearest-neighbour

interchanges (see chapter 5). As far as the modelling of sequence evolution is

concerned, the user may choose among two insertion-deletion models, seven

nucleotide and five amino acid substitution models. The user can also specify

which parameters are to be estimated by the program and which ones should

remain unchanged. In order to document the parameter settings of a run
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of ALIFRITZ and in order to keep this record comprehensible, the various

program options are controlled by a simple ANSI-text file that consists of

a series of blocks which group the user-specified settings. Furthermore, this

control file allows for comments which are started with a hash (‘#’), end

with a new line and may appear anywhere in the file. Blocks begin with the

name of the block, which is followed by a colon and a new line. After this

initialization, a block has several lines, each of which assigns a value to one

of the block’s variables. These assignments are done with the ‘=’ operator.

Depending on the variable, the assigned value may either be a number, a

string or a vector of positive numbers which begins and ends with round

brackets and whose entries are separated by commas. Every block and each

of the statements it contains may be omitted as the program has default

settings for every parameter. We tried to keep the conventions for the control

file as flexible as possible. Thus, ALIFRITZ does not care about the case of

letters or about whitespaces other than new lines.

The ‘SUBST’ block:

This block has three variables that specify the substitution process: ‘model’,

‘parameter’ and ‘freqs’. By assigning one of several keywords to the variable

‘model’, the user can choose one of the substitution models listed in the

tables A.1 and A.2. The initial rate parameters of the chosen model are set

by assigning a vector to the variable ‘parameter’. The input order and the

default values of the parameters of the nucleotide substitution models are

shown in table A.1. To the variable ‘freqs’, the user may assign a vector

of nucleotide or amino acid frequencies. These frequencies need not sum up

to one, as the program will do the normalization. Therefore, however, the

vector has to have an entry for every nucleotide or amino acid respectively.
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The order of the frequencies corresponds to the alphabetical order of the

usual symbols for nucleotides or amino acids. If one wants to estimate the

frequencies from the data one may either write ‘freqs = estimate’, ‘freqs =

default’ or omit an assignment to ‘freqs’.

Table A.1: The nucleotide substitution models as implemented by ALIFRITZ. See the

end of the table for a detailed explanation.

model

keyword,

parameters (input order

and default values)

rate matrix

Jukes-Cantor model

(Jukes and Cantor, 1969)

JC69

A C G T

A

C

G

T




· υ
4

υ
4

υ
4

υ
4 · υ

4
υ
4

υ
4

υ
4 · υ

4

υ
4

υ
4

υ
4 ·




Felsenstein model

(Felsenstein, 1981)

FEL81

A C G T

A

C

G

T




· υπC υπG υπT

υπA · υπG υπT

υπA υπC · υπT

υπA υπC υπG ·




Kimura’s 2-parameter model

(Kimura, 1980)

KIMURA2P

τ = 1/2

A C G T

A

C

G

T




· υ
4
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2

υ
4

υ
4 · υ

4
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2

υτ
2
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4 · υ

4
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4

υτ
2
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continued on next page
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Table A.1: continued

Kimura’s 3-parameter model

(Kimura, 1981)

KIMURA3P

τ = 1/2, κ = 1

A C G T

A

C

G

T




· υ
4

υτ
κ+1

υ
4

υ
4 · υ

4
υτκ
κ+1

υτ
κ+1

υ
4 · υ

4

υ
4

υτκ
κ+1

υ
4 ·




HKY model

(Hasegawa et al., 1985)

HKY

τ = 1/2

A C G T

A

C

G

T




· υπC 2υτπG υπT

υπA · υπG 2υτπT

2υτπA υπC · υπT

υπA 2υτπC υπG ·




Tamura-Nei model

(Tamura and Nei, 1993)

TAMNEI

τ = 1/2, κ = 1

A C G T

A

C

G

T




· υπC
4υτ
κ+1πG υπT

υπA · υπG
4υτκ
κ+1 πT

4υτ
κ+1πA υπC · υπT

υπA
4υτκ
κ+1 πC υπG ·




general reversible model

(Lanave et al., 1984)

GENREV

α = 1, β = 1, γ = 1,

δ = 1, ε = 1, ζ = 1

A C G T

A

C

G

T




· υαπC υβπG υγπT

υαπA · υδπG υεπT

υβπA υδπC · υζπT

υγπA υεπC υζπG ·




Table A.1: The nucleotide substitution models as implemented by ALIFRITZ. The first

column holds the model’s names as well as the appropriate keyword in the control file. In

the case that the model has parameters which can be set by the user, these parameters’

input order and their default values are also given. The models’ rate matrices are shown

in the second column. The parameter υ is set by the program in order to keep the

processes’ overall substitution rates equal to 0.01 and cannot be specified by the user.

As usual, πN stands for the frequency of base N and the ‘·’ are placeholders for the

negative of the sum of the other row entries.

94



model keyword

Dayhoff model (Dayhoff, 1978) DAYHOFF

general reversible model (Müller and Vingron, 2000) MV2000

JTT model (Jones et al., 1992) JTT

mtREV model (Adachi and Hasegawa, 1996) MTREV24

BLOSUM62 model (Henikoff and Henikoff, 1992) BLOSUM62

Table A.2: The implemented amino acid substitution models and the respective

keywords.

The ‘INDEL’ block:

The block ‘INDEL’ comprises the settings for the insertion-deletion model.

It has the variables ‘model’ and ‘parameter’. By writing ‘model = TKF1’ the

user chooses the TKF1 model and ‘model = TKF2’ makes the program apply

the TKF2 model (see chapters 4 and 5). To the variable ‘parameter’, the user

can assign a vector that embodies the initial settings for the insertion rate,

the deletion rate and, in the case of the TKF2 model, the parameter of the

fragment length distribution.

The ‘KEEP’ block:

In this block, the user may select model parameters whose values the pro-

gram is not allowed to change. Unlike other blocks, the ‘KEEP’ block does

not use assignment statements but works with indexing of its two variables

‘substmod’ and ‘indmod’. These can be thought of as vectors that hold the

parameters of the substitution and the insertion-deletion model respectively.

The user selects the parameters of the substitution model which should be

kept fixed by writing ‘substmod[index]’, where ‘index’ can be a single non-

negative integer that corresponds to the number of the respective parameter
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or any unordered series of such values with commas as delimiters. Following

the conventions of C++, the numbering of the parameters starts with 0. In

the case that none of the substitution model parameters should be altered

by the program, the user may write ‘substmod[all]’. The variable ‘indmod’ is

accessed accordingly.

The ‘COOL’ block:

This block controls some parameters of the simulated annealing’s cooling

schedule as well as some options which influence the programs runtime and

the number of recorded intermediate alignments. As described in chapter

5, the cooling schedule of the simulated annealing is influenced by two pa-

rameters which are estimated from the data, namely the maximum jump

of the optimized function in one step (U) and the loglikelihood per posi-

tion (ln L/m), and by two parameters whose values may be adjusted by the

user and which were called c and a in chapter 5. Since both the parame-

ter optimization and the tree optimization have their own cooling schedule,

the ‘COOL’ block has a pair of variables for each of them. For parameter

optimization, they are called ‘cparam’ and ‘alphaparam’ and for tree opti-

mization, their names are ‘ctree’ and ‘alphatree’. The default value for each

of these variables is 0.5. The number of iterations at the beginning of the

simulated annealing procedure which are used to estimate U and ln L/m is

held by the variable ‘burnin’. The user can also specify the maximum number

of iterations (variable ‘maxsteps’), the number of iterations after which the

program produces output to the screen and to a logfile (variable ‘reportafter’)

and the size of the windows in which pairwise alignments are optimized (vari-

able ‘resamprange’).
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The ‘FILES’ block:

The program requires two input files and produces four output files. As in-

put, ALIFRITZ expects a file which contains a guide tree in Newick format

(Felsenstein, 1993) whose name can be set by an assignment to the variable

‘guidetree’ and a file with the sequence data in either FASTA (Pearson and

Lipman, 1988) or PHYLIP format (Felsenstein, 1993) whose name is held

by the variable ‘infile’. In its current version, the program does not auto-

matically recognize these two sequence file formats. Therefore, the variable

‘format’ has to be set to 0 if the sequences are in FASTA format and to 1 if

they are PHYLIP formatted. The default format is FASTA. As output, the

program creates a file which records intermediate steps of the optimization

(variable ‘logfile’) and three files which hold the tree topology (variable ‘out-

tree’), the parameter values (variable ‘outparam’) and the multiple alignment

(variable ‘outalign’) of the optimum. The default file names coincide with the

names of the variables of the ‘FILES’ block.

A.2 SIMULATOR

The program SIMULATOR is a software tool which generates data sets of

related sequences for a given phylogeny and a given evolutionary model.

Unlike currently available simulation programs (Rambaut and Grassly, 1997;

Schöniger and von Haeseler, 1995b; Stoye et al., 1998), SIMULATOR does

not only offer a wide variety of nucleotide or amino acid substitution models

but also a well-defined insertion-deletion dynamics1. The program is run from

1To our knowledge, the program ROSE (Stoye et al., 1998) is the only other program

which creates indels. Yet, the process with which these are produced is not strictly model

based.
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the command line and has to be called with the following three parameters:

1. The name of the control file which holds the settings of the various

program options (see below).

2. The expected sequence length.

3. The number of data sets to be generated.

Thus, if we invoke the program with ‘simulator ctrl 10000 100’, we will get

100 data sets which have evolved according to the settings in the file ‘ctrl’

and where the expected sequence length is 10000. The control files have the

syntax that was described in the last section. The variables are grouped in

the three blocks ‘SUBST’, ‘INDEL’ and ‘FILES’. The block ‘SUBST’ holds

the settings for the substitution model. The models that can be chosen are

the very same as the ones which are used by ALIFRITZ. See section A.1

for a detailed description. The variables which describe the desired insertion-

deletion process are grouped under the heading ‘INDEL’. Again, the choices

that can be made coincide with ALIFRITZ’s options. The names of the input

and output files of the program are specified in the block ‘FILES’. The name

of the input file that holds the Newick-formatted guide tree is stored in the

variable ‘treefile’. Two output files are produced by the program. The first one

whose name is set through the variable ‘alifile’ contains the simulated data

sets in PHYLIP format. The second one which is represented by the variable

‘seqfile’ is in FASTA format and lists the simulated sequences in unaligned

form. The default file names coincide with the names of the variables in the

control file. The program’s C++ source code is available on request.
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Appendix B

Two useful algorithms

B.1 Sampling pairwise alignments in linear

space

The algorithm described in chapter 5 involves steps in which the most proba-

ble alignment of two sequences has to be found or in which alignments of two

sequences are sampled according to their probability. If we tried to do this via

allocating enough memory for the entire alignment graph, we would soon run

into trouble, as the alignment graph grows with the product of the sequence

lengths. Moreover, even if we restricted the use of our program to sequences of

moderate length, its space requirement could still be too high, as we are also

performing pairwise alignments of sequences at a phylogeny’s interior nodes

whose lengths are not known in advance. In the following, we give a short

description of an algorithm that allows the sampling of alignments in lin-

ear space while only doubling the computing time. It combines Hirschberg’s

linear-space optimal alignment algorithm (Hirschberg, 1977) and the forward

and backward algorithms for pair-HMMs (Durbin et al., 1998). Before de-
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scribing the algorithm, we will introduce three ideas which are indispensable

for its implementation.

The first thing we have to notice is the fact that allocating the whole

alignment table is unnecessary if we are only interested in the joint probability

of two sequences but not in their alignment. In chapter 4, it has been shown

that the values of f(i, j, ·) can be computed easily if the values for f(i−1, j−

1, ·), f(i − 1, j, ·) and f(i, j − 1, ·) are known (here the ‘·’ stands for any of

states B

B
, B or

B
). Thus, to compute the entries in the ith row of the alignment

table we only need the entries in row i − 1. Therefore, the space which we

need to compute two sequences’ joint probability only grows linearly with

the length of the second sequence.

The second building block of our algorithm is the idea that the sequences’

joint probability can be computed not only with the forward algorithm from

chapter 4 but also in the opposite direction with the following backward

algorithm: Given two sequences x and y of lengths n and m, let b(i, j, v)

denote the probability that a TKF2 pair-HMM produces a sequence 1 whose

last n− i bases coincide with the last n− i bases of x and a second sequence

whose last m− j bases coincide with the last m− j bases of y conditioned on

the alignment of the two sequences going through the edge (i, j, v) where v ∈

{ B

B
, B ,

B
}. We initialize the recursion by setting b(n, m, v) = P (v → End)

and b(n + 1, j, v) = b(i, m + 1, v) = 0 for all i ∈ {0, ..., n} and j ∈ {0, ..., m} .

Then we can perform the following recursion for i = n, ..., 0 and j = m, ..., 0

except (n, m) and (0, 0):

b(i, j, v) = b(i + 1, j + 1, B

B ) · P (v → B

B ) · πxi+1
· P (xi+1 → yj+1)

+b(i + 1, j, B ) · P (v → B) · πxi+1

+b(i, j + 1,
B
) · P (v →

B
) · πyj+1
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The probability to observe the sequences x and y is then simply

p(x, y) = b(1, 1, B

B ) · P (Start → B

B ) · πx1 · P (x1 → y1)

+b(1, 0, B ) · P (Start → B ) · πx1

+b(0, 1, B ) · P (Start → B ) · πy1

The function b can be used to sample alignments just like we used f in

chapter 4 and just like in the case of the forward algorithm, we do not have

to allocate memory for the whole alignment graph to compute p(x, y) with

this backward algorithm as we can compute the b(i, ·, ·) from the b(i+1, ·, ·).

Thirdly, we have to notice that the forward and the backward algorithm

can be used not only to sample the entire alignment path, but also to sample

subpaths when other parts of the path are already given: Consider the case

that we want to sample the alignment path between the nodes (l, r) and

(l′, r′), where l < l′ and r < r′, i. e. we want to align the bases l + 1 to l′ of

sequence x to the bases r + 1 to r′ of sequence y. Let a ∈ {Start, B
B , B , B }

be the last state of the alignment immediately before node (l, r) and let

z ∈ { B

B
, B ,

B
, End} be the state which follows node (l′, r′). In this situation,

computing f(i, j, v) or b(i, j, v) for every edge (i, j, v) of the alignment graph

becomes redundant. Instead, we compute for every edge in the rectangle

defined by the nodes (l, r) and (l′, r′) the probability that a TKF2 pair-

HMM produces a sequence 1 which contains a substring whose first i − l

bases coincide with the bases l + 1 to i of x and a sequence 2 which contains

a substring whose first j − r bases coincide with the bases r + 1 to j of y

given that the alignment of the emitted sequences goes through the edge

(s, t, a) where s and t are the positions immediately before the respective

substrings. We denote this probability with flrl′r′(i, j, v | a). It is computed

just like f(i, j, v) with the difference that the computation is initialized in

the following way:

flrl′r′(l + 1, r + 1, B

B
| a) = P (a → B

B
) · πxl+1

· P (xl+1 → yr+1),
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flrl′r′(l + 1, r, B | a) = P (a → B ) · πxl+1
,

flrl′r′(l, r + 1, B | a) = P (a → B ) · πyr+1 and

all flrl′r′(i, r,
B
B | a) = flrl′r′(i, r, B | a) = flrl′r′(l, j,

B
B | a) = flrl′r′(l, j,

B | a) = 0.

Likewise, let blrl′r′((i, j, v) ∧ z) signify the probability that the following

events occur in a run of a TKF2 pair-HMM:

• The emitted sequence 1 contains a substring whose last l′ − i bases

coincide with the bases i + 1 to l′ of x,

• the emitted sequence 2 contains a substring whose last r′ − j bases

coincide with the bases j + 1 to r′ of y,

• the alignment of the emitted sequences goes through the node (s′, t′),

which is followed by alignment state z, where s′ and t′ are the last

positions of the respective substrings,

conditioned on the alignment of the emitted sequences going through edge

(s′ − l′ + i, t′ − r′ + j, v), i.e. through the edge which corresponds to the edge

(i, j, v) in the alignment of x and y. We can use the same recursion that

we used to calculate b(i, j, v) to compute blrl′r′((i, j, v) ∧ z), but it is now

initialized by setting blrl′r′((l
′, r′, v) ∧ z) = P (v → z) and all b(l′ + 1, j, v) =

b(i, r′ + 1, v) = 0 for all i ∈ {l, ..., l′} , j ∈ {r, ..., r′} and v ∈ { B

B
, B ,

B
}.

The problem of sampling an alignment in linear space can now be solved

with the procedure SAMPAL(l, r, l′, r′, a, z):

• Let i∗ = l+l′

2
and compute the values of flrl′r′(i

∗, ·, · | a) and

blrl′r′((i
∗, ·, ·) ∧ z) in linear space as described above.

• For every j ∈ {r, ..., r′} and every v ∈ { B

B
, B ,

B
} compute

plrl′r′((i
∗, j, v) ∧ z | a) := flrl′r′(i

∗, j, v | a) · blrl′r′((i
∗, j, v) ∧ z) . Obvi-

ously, plrl′r′((i
∗, j, v) ∧ z | a) is the probability that a TKF2 pair-HMM
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produces two sequences where the bases of the first one from some po-

sition s + 1 to some other position s′ coincide with the bases l + 1 to l′

of x and where the bases of the second one from some position t + 1 to

some other position t′ coincide with the bases r+1 to r′ of y and whose

alignment goes through the edge (s + i∗ − l, t + j − r, v) and through

the node (s′, t′) which is followed by state z given that their alignment

goes through the edge (s, t, a).

• Sample an edge (i∗, j∗, v∗) according to
plrl′r′((i

∗,j∗,v∗)∧ z | a)
P

j,v plrl′r′((i
∗,j,v)∧ z |a)

, i. e. from

the posterior distribution of the edges with first component i∗ con-

ditioned on the states a and z at the beginning and the end of the

subgraph for which we performed the computation.

• Sample edges backwards like in chapter 4 until the sampled edge’s first

component is i∗ − 1 and its third component is either B

B or B .

• In a similar way, sample forwards until the sampled edge’s first com-

ponent is i∗ + 1.

• Call SAMPAL(l, r, i∗−2, j1, a, z′) and SAMPAL(i∗+1, j2, l
′, r′, a′, z),

where z′ is the alignment state of the last edge which was sampled back-

wards, j1 is either this edge’s second component if z′ = B or this edge’s

second component minus 1 if z′ = B

B
, whereas a′ is the alignment state

of the last edge that was sampled forwards and j2 is this edge’s second

component. See also figure B.1 for an illustration of this recursion.

We begin the computation by calling SAMPAL(0, 0, n, m, Start, End). The

time analysis for this procedure is analogous to the one given on page 258

of Gusfield (1997) for Hirschberg’s optimal alignment algorithm. There it is

shown that this algorithm only takes twice as long as algorithms that allocate

memory for the entire alignment graph.
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Figure B.1: Sampling alignments in linear space. a©: In order to compute the

f(·, ·, ·) and the b(·, ·, ·) values (see text) one does not have to allocate memory

for the whole alignment graph whose size is indicated by the rectangle, but

only for four of its rows (part of the rectangle where the alignment graph

is drawn). The rows which hold the f(·, ·, ·) values are slid downwards and

the ones which hold the b(·, ·, ·) values move upwards until they meet in the

middle of the alignment graph (dashed line). b©: The stored values are used

to sample a subpath of the alignment (thick line). c©: The sampling of the

alignment path then decomposes into sampling a path between the upper

left corner of the alignment graph and the beginning of the subpath which

has already been sampled, and into sampling a path which goes from this

subpath’s end to the lower right corner. d© to f©: The recursion continues

until the whole path is sampled.
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B.2 Neighbor joining under constraints

As described in appendix A, the program ALIFRITZ may construct a

neighbor-joining tree (Saitou and Nei, 1987) for a set of unaligned sequences.

Yet, the user may also provide a tree file which contains the branches that

should not be changed by the program. In the following, we will give an out-

line of a simple method which constructs a neighbor-joining tree under the

inclusion of predefined branches.

Let T be an unrooted tree and D = (dij) a distance matrix that holds

the pairwise distances of the sequences at the leaves. The tree itself might

either be a completely unresolved star, a completely resolved binary tree or

anything in between. Our task is to find the binary tree that fits the distance

matrix and that includes each of T ’s branches. Let every leaf node of T

be labelled with the index of the row of D that holds its distances to the

other leaves and let all the internal nodes be unlabelled. We start by picking

randomly one of the leaves as root of the tree and then call for this node the

procedure NEIGHBOUR :

• For every child, i. e. for every adjacent node that does not lie towards

the root, call the procedure NEIGHBOUR.

• If the calling node, i. e. the node from which the procedure

NEIGHBOUR was invoked, has at least two children, do:

– compute for every child node i its net divergence (ri) from the

other labelled nodes: ri =
∑N

k=1 dik , where N is the number of

columns of the distance matrix ;

– for every pair of child nodes i and j, calculate a rate corrected

distance mij := dij − (ri + rj)/(M − 2) ; the variable M was set

equal to the number of taxa at the start of the recursion ;
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– find the pair of children i∗ and j∗ whose corrected distance is

minimal ;

– if the calling node has more than two children, then introduce a

new node which is the parent of i∗ and j∗ but a child of the calling

node ;

– set vpi∗ — the length of the branch between i∗ and its parent p —

equal to di∗j∗/2+(r∗i −r∗j )/[2(M −2)] and set vpj∗ — the length of

the branch between j∗ and the parent node — equal to di∗j∗−vpi∗ ;

– label the parent node with the number of columns of D plus 1 ;

– add the distance between any labelled node k and p to ev-

ery row or column k of D ; this distance is defined as follows:

dkp := (di∗k + dj∗k − di∗j∗) /2 ; set every entry of D where either

the row or the column number is equal to i∗ or to j∗ as well as dpp

equal to 0 ;

– decrement M by 1 ;

while the calling node has more than two children.

• If the calling node is the root, then set the length of the branch between

the root and its child equal to drs, where r is the label of the root node

and s the one of its child.

The combination of the if -condition and of the termination condition of the

do-while-loop in the above procedure might look peculiar. However, both of

them are necessary: We want the do-while-loop to be executed until the sub-

tree at the calling node is completely resolved and until we know the lengths

of the branches between the calling node and its two remaining children.

Hence the loop’s termination condition. On the other hand, we do not want
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to enter the do-while-loop if the calling node has less than two children, as

its computations are not defined in this situation. Hence the if -condition.
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Appendix C

Generalizations of the TKF2

model

When applying the TKF2 model (see chapter 5), we make several assump-

tions about the insertion-deletion process. It should be noted, however, that

some of them are expendable. In the next sections, we will show how to com-

pute the joint probability of two sequences when the fragments are not drawn

from one geometric distribution but from a mixture of geometric distribu-

tions (C.2) and we will explain what to do if the distribution of fragment

lengths is arbitrary (C.1).

C.1 Insertion-deletion models with arbitrary

distributions of fragment lengths

Think of two sequences x and y of length n and m , respectively. Consider

x to be ancestral to y. Like in the TKF2 model, let these sequences be

composed of fragments which are never split by insertions and which are

removed as a whole if hit by a deletion. Let insertions between any two
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fragments and at the ends of the sequence occur at rate λ and let µ be

the deletion rate of the fragments. Keep also the notation convention of

the TKF2 model. The only thing we change is the distribution of fragment

lengths: While the probability that a fragment has length l , l being at least

1 , is ρl−1(1 − ρ) in the TKF2 model, the distribution can now have any

shape. Clearly, the probability of fragment survival (α), the probability of

more extant descendants of a fragment given that there is at least one (β)

and the probability of a fragment having extant descendants given that it

did not survive (γ) can be computed with the same expressions that were

used in chapter 4 for the TKF1 model. However, dropping the assumption

of geometrically distributed fragment lengths destroys the Markov property

of the alignment positions. Nevertheless, the following recursion makes it

possible to compute the joint probability of x and y.

Let F

F denote the situation that a fragment of any length has survived.

Similarly, let F symbolize the deletion and
F

the insertion of an arbitrar-

ily long fragment. Let g(i, j, F
F ) be the probability that a realization of our

insertion-deletion process produces two sequences which fulfill the subsequent

conditions.

• The first i bases of the ancestral sequence coincide with the first i bases

of x.

• The first j bases of the descendant sequence coincide with the first j

bases of y.

• There is a fragment boundary immediately after position i of the an-

cestral sequence.

• The fragment which ends in the ancestral sequence’s ith position is

homologous to a substring of the descendant sequence which ends with
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this sequence’s jth position. As fragment boundaries are not changed

by the insertion-deletion model this implies that this substring is also

one entire fragment. We will say that the fragment ends in node (i, j)

of the alignment graph.

g(i, j, F ) and g(i, j, F ) are defined similarly, except that the fragment which

ends in position i of sequence 1 is aligned to gaps between the jth and the

j + 1th site of sequence 2 and that the fragment that ends with site j of

sequence 2 is aligned to gaps between the position i and i + 1 of sequence 1,

respectively. If a fragment has survived and ends in node (i, j) we enter (i, j)

through the edge (i, j, B

B
). Thus, the fragment can have any length from 1

up to the minimum of i and j. If the fragment got deleted, i. e. we enter

(i, j) through the edge (i, j, B ) , the maximum fragment length is equal to

i , and if it was inserted it may at most comprise j positions. Therefore, the

following equations hold

for i = 1, ..., n and j = 1, ..., m

g(i, j, F

F
) =

min(i,j)∑

k=1

[g(i − k, j − k, F

F
) · (1 − β) + g(i − k, j − k, F ) · (1 − γ)

+g(i − k, j − k,
F
) · (1 − β)] · α ·

λ

µ
· πFk

·

k−1∏

h=0

πxi−hPr(xi−h → yj−h) ,

for i = 1, ..., n and j = 0, ..., m

g(i, j, F ) =

i∑

k=1

[g(i − k, j, F

F ) · (1 − β) + g(i − k, j, F ) · (1 − γ) + g(i − k, j, F )

·(1 − β)] · (1 − α) ·
λ

µ
· πFk

·
k−1∏

h=0

πxi−h

and for i = 0, ..., n and j = 1, ..., m

g(i, j,
F
) =

j∑

k=1

[g(i, j − k, F

F
) · β + g(i, j − k, F ) · γ + g(i, j − k,

F
) · β] · πFk

·

k−1∏

h=0

πyj−h ,
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where πFk
is the probability of a fragment of size k . We initialize the recursion

by setting g(0, 0, F

F
) = 1 , g(0, 0, F ) = 0 and g(0, 0,

F
) = 0 . The probability

to observe the sequences x and y is then given by

p(x, y) =
[
g(n, m, F

F
) · (1 − β) + g(n, m,

F
) · (1 − β) + g(n, m, F ) · (1 − γ)

]

·(1 − λ/µ) .

The expectation-maximization algorithm described by Thorne and Churchill

(1995) can be as easily adapted to this recursion as can the alignment sam-

pling procedure from chapter 4. Thus, we can now get maximum likelihood

estimates of the model parameters and sample alignment paths from their

posterior distribution without strong assumptions about the size distribution

of indels. However, like in the case of optimal alignment with arbitrary gap

weights (cf. Gusfield, 1997, pp. 241), the computation time for our algo-

rithm grows with O(nm2 +mn2). Thus, it will be important to identify those

distributions which permit faster recursions. The next section will describe

one of these. Other obvious examples are the cases in which fragments have

constant size or — more reasonably — where the fragment length may not

exceed a certain number of positions.
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C.2 Insertion-deletion models with several

classes of fragments

Here, just like in the last section, we will keep all the features of the TKF2

model except for the geometric distribution of fragment lengths. Therefore, α

is still the probability of fragment survival, β the probability of more extant

descendants of a fragment given that there is at least one, and γ the proba-

bility of a fragment having extant descendants given that it did not survive,

All these probabilities can still be computed from the insertion rate λ and

the deletion rate µ like in chapter 4. We just assume now that the lengths

of the sequence fragments are drawn from a mixture of k geometric distribu-

tions, i. e. the probability that a fragment has some length l ≥ 1 is equal to
∑k

h=1 whρ
l−1
h (1−ρh), where the ρh are probabilities and the weights wh of the

individual geometric distributions are positive and sum up to 1. Thus, every

fragment chooses with probability wh the distribution ρl−1
h (1−ρh) from which

its length should be drawn. Although this scenario might seem artificial, it

is quite a natural setting if we consider the manifold causes for insertions or

deletions. Using this approach we can for example have a class of fragments

that has a small expected length and thus mimics insertions and deletions

via slippage, and we may have a class of fragments with a bigger expected

length that stands for the insertions or deletions of longer stretches of DNA.

As every fragment has to pick its geometric distribution, the weights wh and

the various parameters ρh of these distributions have to be taken care of when

computing the transition probabilities for this model. Therefore, a pair-HMM

with the states Start, B

B
, B ,

B
and End is not sufficient. Instead, each of the k

geometric distributions that are involved in the mixed distribution now has

to have its own state for homologous positions, insertions and deletions. Let
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B

Bh ,
Bh and B

h symbolize the respective states for the hth geometric distri-

bution. With this enlarged state space and under the assumption that the

ancestral sequence is drawn from the equilibrium distribution of sequences,

our model can be represented as a pair-HMM whose transition probabilities

are shown in table C.1. The forward and backward algorithms from chapter

4 and appendix B can easily be modified so that they can be applied to this

pair-HMM. Thus, the computation of the joint probability of two sequences

has the same time and space bounds under this scenario as under the simpler

TKF2 model. Yet, the time it takes to compute each entry of the alignment

table grows quadratically with the number of fragment classes. This number

will, however, be rather small in any reasonable application of this model.
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y = B
Bh y = B

h y = Bh y = End

x = Start (1 − β)λ
µαwh (1 − β)λ

µ (1 − α)wh βwh (1 − β)(1 − λ
µ )

x = B
Bg

if g = h :

ρg + (1 − ρg)(1 − β)λ
µαwg

if g 6= h :

(1 − ρg)(1 − β)λ
µαwh

(1 − ρg)(1 − β)λ
µ(1 − α)wh (1 − ρg)βwh (1 − ρg)(1 − β)(1 − λ

µ )

x = B
g (1 − ρg)(1 − γ)λ

µαwh

if g = h :

ρg + (1 − ρg)(1 − γ)λ
µ (1 − α)wg

if g 6= h :

(1 − ρg)(1 − γ)λ
µ (1 − α)wh

(1 − ρg)γwh (1 − ρg)(1 − γ)(1 − λ
µ )

x = Bg (1 − ρg)(1 − β)λ
µαwh (1 − ρg)(1 − β)λ

µ(1 − α)wh

if g = h :

ρg + (1 − ρg)βwg

if g 6= h :

(1 − ρg)βwh

(1 − ρg)(1 − β)(1 − λ
µ )

Table C.1: The transition probabilities P (x → y) of the pair-HMM for the fragment insertion-deletion model when the

fragments are drawn from a mixture of geometric distributions. See chapter 4 on how to compute α, β and γ. The indices g

and h may take any value between 1 and the number of geometric distributions that constitute the mixed distribution.
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